antibody-targeted nanoparticles for cancer treatment · keywords: antibodies, nanoparticles,...

Post on 11-Oct-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Antibody-TargetedNanoparticlesforCancerTreatmentThomasCarter1,PaulMulholland1,2,KerryChester1AbstractNanoparticlesarediverseandversatilewithphysicalpropertiesthatcanbe

employedforuseincancermedicine.Targetingnanoparticlesusingantibodies

andantibodyfragmentscouldovercomesomeofthelimitationsseenwith

currenttargetedtherapies.Thisreviewwilldiscusstheroleofantibody-targeted

nanoparticlesinthetreatmentofcancer:asdeliveryvehicles,targeted

theranosticagentsandintheevolvingfieldofcancerhyperthermia.

Keywords:Antibodies,nanoparticles,targeting,cancertreatment,clinicaltranslation,theranostics,hyperthermia1.0IntroductionAsourunderstandingofcancerbiologyhasevolved,sotoohastheappreciation

thatantibodytargetedcancertreatmentofferssignificantadvantagesover

conventionaltherapy.Anumberofstrategieshavebeensuccessfulintheclinic:

mostnotablytheuseofmonoclonalantibodies(mAbs)totargetcancer-specific

antigens[1],delivercytotoxicchemotherapyintheformofantibody-drug

conjugates(ADCs)[2],releasebrakesontheimmunesystem[3]andtorecruit

cytotoxicTcells[4].However,thesuccessesofthesetargetedtherapiesarenot

withoutdrawbacks,includingdose-limitingtoxicities.

Advancesinnanotechnologyhaveenabledthecreationofavastarrayofdevices,

collectivelyreferredtoasnanoparticles(NPs),whichpossessuniquephysical,

chemicalandbiologicalproperties.Theuseofantibodiestotargetthesenano-

sizeddrugdeliveryvehiclesoffersnewpotentialthatcanbeharnessedforusein

cancermedicine[5].Indeed,asmallnumberoftargetedNPshavebeenalready

beensuccessfullytranslatedintoearlyphaseclinicaltrialsusingtargeting

ligands[6-8].Antibodies(Abs)havebecomethemostwidelystudiedofthese

targetingligands[9],duetotheirhighspecificityandthevitalroletheyplayin

moderncancertherapeutics.

2

ThemainchallengeforAb-targetedNPsisensuringthataswellas

demonstratingefficacytheNPhasanadequateplasmahalf-lifeandcan

specificallytargetcancercellswithatolerablesideeffectprofile.Thereare

controversiesoverwhichNPplatformscanbestoffertheseproperties,with

unansweredquestionsconcerningcellularinteractionanduptake,potential

toxicitiesandhowNPpropertiesaffectbehaviourbothin-vitroandin-vivo[10].A

robustunderstandingofthephysicalpropertiesofNPsisrequiredtoguide

researchintothecellularandphysiologicalinteractionsofNPs,generating

clinical-gradeproductsthatcouldbecomethenextgenerationofcancer

treatments.

ThisreviewaimstodefineandoutlinethedifferentNPplatformsthatare

currentlyusedinpre-clinicalandtranslationalcancermedicineandthe

challengesfacedintheAb-functionalisationofNPs.Researchregardingthe

variousapproachesandadvantagesofferedbyAb-targetedNPsincancer

therapywillalsobediscussed.

1.1.NanoparticlesNPsaredefinedbytheCommissionoftheEuropeanUnionasanynaturally

occurringormanufacturedparticulatematerialeitherunbound,asanaggregate

oragglomerate,whereatleasthalfoftheparticleshaveoneormoreexternal

dimensionsbetween1and100nminsize[11].However,thereremainsno

formalconsensusonthedefinition[12]andwhilstNPsareoftendefinedbytheir

sizeitisgenerallyconsideredimportanttoalsodefinethembypropertiesnot

sharedwithotherparticleswiththesamechemicalcomposition[13].For

examplehighmobilityinthefreestate,largesurfaceareatovolumeratioand,in

somecases,thenanosize-dependentexhibitionofquantumeffectswhichcontrol

physicalpropertiesandNPbehaviour[14].

Thiswideanddiverserangeoffunctionalpropertiesisfacilitatedbythevariety

ofmaterialsavailabletosynthesiseNPs.Theresultingversatilityoffersattractive

translationalpotentialforanumberofbiomedicalapplicationssuchastargeted

3

deliveryoftreatment,innovativeimagingtechniquesandnoveltherapeuticsfor

hyperthermia.Table1showsthefavourablephysicalcharacteristicsoftheNP

treatmentplatformsdiscussedinthisreview.Giventhesecharacteristics,itisnot

surprisingthatoverthelastdecadenanoparticleshavereceivedincreasing

attentionfortheirexcitingpotentialinboththediagnosisandtreatmentof

cancer.

4

Nanoparticle Size FavourablePhysicalCharacteristics

NATURALPOLYMERS*(Albumin)[15] 50-300nm

Biocompatible,biodegradable,non-toxicandnon-immunogenic.Straightforwardtocross-linkandchemicallymodify,drugsreadilyincorporatedintoalbuminpolymermatrix.

SYNTHETICPOLYMERS*(Poly-lacticoglycolicacid(PLGA)[16] 50-300nm

FDAapprovedsyntheticmaterialthatisnon-toxicandundergoeshydrolysisin-vivotoproducebiodegradablemetabolites.Drugseasilyincorporatedintothematrix.

LIPOSOMES*[17] 20–1000nm

Wellestablishedascancertherapeutics,canencapsulatehydrophilicandlipophillicdrugs,soluble,lowuptakebymacrophages,favourablestabilityin-vivo,andascolloids,protectdrugsfrombreakdown.

MICELLES*[18] 10-100nm

Uniquecore-shellarchitecture,hydrophobiccoreactsasnaturalcarrierenvironment,hydrophilicshellenablesstabilityinaqueoussolution,structuralmodificationscanfurtheraugmenttumourcelluptake

DENDRIMERS*[19,20] 5–20nm

Symmetricalbranchedpolymericmacromoleculeswithacentralcorealloweitherencapsulationorconjugationoftherapeuticagent.Self-assembling,polyvalent,chemicallystable,non-toxicandsoluble.

IRON-OXIDENANOPARTICLES*(Superparamagneticiron-oxidenanoparticles(SPIONs))[21] 10-100nm

Biocompatibleandbiodegradable,establishedclinicaluseasmagneticresonanceimaging(MRI)contrastagents,controllablebyanexternallyappliedmagneticfield,diverseformulationsallowfine-tuningofphysicochemicalproperties

SILICA(PorousSilicaNanoparticles(pSiNPs))[22] 50-1000nm

Goodchemicalandthermalstability,largesurfaceareaandporevolume.Canencapsulatelargeamountsofbioactivemoleculeandpromotecontrolleddrugrelease.Alsoofferssimplesurfacefunctionalisation

GOLDNANOPARTICLES*(Goldnanoparticles(AuNPs),Goldnanorods)[23] 1-100nm

Intenselightabsorptionandhighphotothermalconversionrate,andeaseofsynthesisinavarietyofshapesandsizes.Goodbiocompatibility,colloidalstabilityandsimpleligandconjugationchemistry.

CARBONNANOPARTICLES(Carbonnanotubes(CNTs))[24] 1-10nm

Highcarryingcapacity,andhighpropensitytotraversecellmembranesEasilychemicallymodifiedorfunctionalizedthroughformationofstablecovalentbonds.

QUANTUMDOTS(QDs)[25] 2-10nm

Broadabsorptionspectraandhighfluorescencequantumyield,highphotostability.Possibilityofmultiplexing(differentcoloursofQDsusedwithinoneassaywithasingleexcitationsource).CanbecombinedwithotherNPplatformsforcancertheranostics.

5

Table1.PhysicalcharacteristicsofthecommonlyusedNPplatformsexploitedforclinicalapplications.NPslabelledwithanasterix(*)havebeenusedintheclinicforthediagnosisortreatmentofcancer[26].1.2.TargetingNanoparticlesforCancerTreatmentTheabnormalhyperpermeablevasculatureandimpairedlymphaticdrainage

foundwithintumours[27]canleadtopassiveaccumulationofNPswithin

malignanttissues.Thisprocessisknownasenhancedpermeabilityandretention

(EPR).EPRhasbeendemonstratedextensivelyinpre-clinicalresearchandinthe

clinicalsettingusingliposomaldrugssuchaspegylatedliposomaldoxorubicin

(PLD).ThesuccessofPLDliesinencapsulatingthetoxicanthracycline

doxorubicinwithin100nmliposomestolimitdruguptakeintosensitivehealthy

tissuessuchasthemyocardiumtherebyavoidingtheseveredose-limiting

cardiotoxicitycommonlyseenwithfreedoxorubicin[28].Oncelocalisedwithin

thetumour,liposomebreakdownreleasesthedoxorubicin,causinglocaltumour

celldeath.

WhilstEPRcanincreaseoveralltumouruptakeofNPs,specifictargetingofNPs

tocancercellscanbebestachievedthroughtheadditionofatargetingmoiety

[29],anumberofwhichhaveshownpromiseincludingproteins,nucleicacids

andsmallmolecules(Figure1).

6

Figure1.SchematicshowingthemostcommonlyusedligandstoactivelytargetNPsincludingDNAaptamers(A),antibodies;asbothwholeimmunoglobulinGmolecules(IgGs)(B)andfragmentssuchassinglechainvariablefragments(scFv)(C),non-immunoglobulinproteinssuchastransferrin(D)andsmallmoleculessuchasfolicacid(E).Figureadaptedfrom[30].Antibodies,themostwidelyusedligandsforNPtargeting,recogniseavastarray

ofantigens,duetotheiruniquespecificityconferredbythecomplementarity

determiningregions(CDRs)(Figure2).Antibodiescanbereadilygeneratedas

intactIgGsorasfragmentssuchassinglechainvariablefragments(scFvs)

(Figure2)indefined,recombinantform[31,32].Antibodytargetingappearsto

becomplementarytopassiveintratumouralaccumulationmediatedbyEPR[33-

35].Ab-NPsalsoshowimprovedefficacyandcytotoxicitycomparedwithnon-

targetedNPs[36].

7

Figure2.ImmunoglobulinG(IgG)Structure:Theheavychain(blue)ismadeupofonevariableregion(VH)andthreeconstantregions(CH1,CH2,CH3).Thelightchain(green)hasonevariable(VL)andoneconstant(CL)region.Oneachvariablechaintherearethreecomplementaritydeterminingregions(CDRs),whichbestowthevastvariabilityinspecificantigenbindingcapacity.VHandVLtogetherwithCH1andCLareknownastheFab(fragment,antigenbinding),andtheremainderofthemoleculeisknownastheFcregion(fragment,crystallisable),whichconfersbiologicalactivityandhalf-life.Recombinantantibodyfragmentsincludesinglechainvariablefragments(scFvs),whicharemadeupoftheVHandVLsegmentsjoinedusingapeptidelinker.2.0Antibody-Nanoparticlebio-conjugationThechallengesinestablishingconjugationstrategiesthatpreservethe

functionalityofboththeantibodyandNPduringtheconjugationprocesscanbe

broadlydividedintothreemaincategories;controllability,stabilityand

reliability.Controllabilityrelatestothenumberofantibodiesconjugatedtoeach

NPandtheorientationofthisinteraction,bothofwhichcangreatlyaffectthe

subsequentfunctionalabilityofanAb-NPconjugate[37].Whilstitremains

difficulttopre-determinethenumberofAbsconjugatedtoeachNP,itispossible

tofractionatefunctionalisedNPsbasedonthenumberoflinkermoleculesonthe

NPsurface[38].Sophisticatedtechniqueshavealsobeendevelopedtocontrol

antibodyorientation[39,40],resultinginpreservationofAbbioactivity[41].

ThesenewtechniqueshavebeenreportedtoachieveAbbioactivityashighas

88%ofthenakedantibody[41,42].

8

ItiscruciallyimportanttomaintainstabilityoftheNPandAbthroughoutthe

conjugationprocessandtoensurethatthefinalconjugatehasacceptable

stabilityin-vitroandin-vivo.Harshreactionconditionsshouldbeavoided,as

thesecantriggerantibodyunfoldingwhichimpairsantigenbinding[43].Itis

alsonecessarythattheattachmentofAbtoNPsurfacedoesnotleadtounfolding

fromunfavourableinteractionsoftheproteinsidechainswiththeNPsurface

[44].Thechoiceofconjugationstrategyhasalsobeenshowntoaffectlong-term

stability.Forexample,whilstthehighlyspecificinteractionbetweenstreptavidin

andbiotinadaptormolecules(engineeredontothenanoparticlesurfaceand

antibodyrespectively)successfullygenerateAb-NPconjugatescapableof

targetingtumourcellsin-vitro[45],theseconjugatesdidnotdemonstrate

acceptablelong-termcolloidalstability.However,byaddingareactivethiol

grouptotheAbandcovalentlycross-linkingitviaabifunctionallinkermolecule

tothenanoparticlesurfacehigherbindingefficiencyandimprovedstabilitywas

achievedwithequalin-vitrotargetingefficacy[46].

Reliable,reproducibleandwellvalidatedconjugationproceduresareessentialto

enableupscaledevelopmentforuseinclinicalapplications[47]andtodate,this

hasbeenmostsuccessfullyachievedbydirectcovalentconjugationvialinker

molecules.Establishedcovalentconjugationmethodsincludecarbodiimide

coupling,maleimidecouplingandclickchemistry(coppercatalysedalkyne-azide

cycloadditionreactions)[48],asshowninfigure3.InthecaseofAuNPsgold-

sulphurlinkagecanbeexploited,utilisingthehighaffinitywithwhichthiol

modifiedligandsbindtogoldsurfaces[49].Theadvantagesanddisadvantagesof

conjugationstrategiesaresummarisedintable2,andhavebeenreviewedin

depthbyMontenegroet.al.[50].

9

Figure3.Establishedmethodsforthecovalentconjugationofantibodiesto

nanoparticles:(A)carbodiimidecoupling,(B)maleimidecouplingand(C)

Coppercatalysed‘click’cycloadditionreaction[48].

ConjugationStrategy

Advantages Disadvantages

PhysicalAdsorption(ionic,electrostatic,van-der-Waals)

• Simpleandstraightforward• UnnecessarytomodifyeithertheAbortheNP

• Electrostaticattractioncanorientatetheantibodies‘endon’preservingbindingability

• Reversible• HydrophobicinteractioncancausedenaturationofAb

• ElectrostaticattractionisweakandpHdependent

• Competitivedisplacementbyserumproteinscanoccur

CovalentConjugation(includingvialinkermolecules)

• Higherstabilityandimprovedreproducibility

• ModificationstoAbusuallynotrequired

• Orientedbindingpossible• Useoflinker-moleculecanavoidhostilereactionconditions

• Possibletocontrolvalency

• Reactionconditionsmayleadtoproteinunfolding/reduction

• Conditionscanaffectantigenbindingcapacity

• Choiceofbindingmoietiesorlinkercansignificantlyaffectfunction

Useofadaptormolecules(biotin/streptavidin)

• Usuallyorientatedbinding• Canresistharshreactionconditions

• Difficulttocontrolvalency• Expensivetechnique• Reversibleattachment

BispecificAntibodyConjugation[51]

• Noneedfordisruptivechemicalconjugation

• MinimalimpactuponNPstability

• Longtermstabilityunknown• Onlyoneantigenbindingsiteavailable

Table2.SomeadvantagesanddisadvantagesofAb-NPbio-conjugationstrategies.Tableadaptedfrom[50,51].

10

3.0ClinicalApplicationsofNanoparticlesforCancerTherapyAnumberofuntargetedNPshaveenteredinearlyphaseclinicalcancertrials

[26].Theseincludecyclodextrin-polymercamptothecin-containingNPsfor

advancedovariancancer[52],micellesdeliveringpaclitaxeltopatientswith

advancedgastriccancer[53]andAuNPsdeliveringrecombinanthumanTNF-

alphatopatientswithadvancedsolidtumours[54].SuperparamagneticIron-

oxideNPs(SPIONs)havefoundclinicalapprovalforuseascontrastagentsin

cancerimaging[55,56]andhavealsobeensuccessfulinearlyphasetrialsin

cancerhyperthermia[57,58].SomeuntargetedNPshavebeenfullyapprovedfor

clinicaluseascancertherapeutics[26]includingtheliposomaldrugPLD[59],

andnanoparticlealbumin-boundpaclitaxel(nab-paclitaxel)[60].

Ab-targetedNPsintheclinicareshowingearlypromisebuthavebeensofar

beenrestrictedtoliposomes.Inonetrial,ascFvagainsttransferrinreceptorwas

usedtotargetliposomesbearingp53DNAinpatientswithavarietyofadvanced

solidtumours[61].Doserelatedaccumulationofthetransgenewasobservedin

tumoursbutnotinnormalskintissue.Furthermore,7outof11patientshad

stablediseaseafter6weeksoftreatmentwithtolerablesideeffects[61].PLDhas

alsobeentargetedtotheFDA-approvedchimericanti-epidermalgrowthfactor

receptor(EGFR)mAbcetuximabinaphaseIclinicaltrialwithsomeevidenceof

clinicalefficacy.Furthermore,thesideeffectsseenwerelessseverethanwould

beexpectedwitheitherfreedoxorubicinorcetuximab[6].Themostcommon

dose-limitingtoxicitywasmyelosuppression,whichcouldbemanaged

prophylacticallywithgranulocyte-colonystimulatingfactor(G-CSF)[6].

TargetedPLDhasalsobeeninvestigatedintheclinicusingananti-human

epidermalgrowthfactorreceptor2(HER-2)scFv[7].Theseearlyclinicaltrials

areencouragingandfurthertranslationofAb-targetedNPsisunderpinnedbya

numberofexcitingpreclinicalstudies.Theongoingpre-clinicaldevelopmentof

Ab-targetedNPsfordeliveryofcytotoxicdrugs,radiotherapyandnucleicacids

andtheirroleincancertheranosticsandcancerhyperthermiaisdiscussed

below.

11

4.0PreclinicalDevelopmentofantibody-targetednanoparticlesforcancertherapy4.1DeliveryofcytotoxicagentsAbtargetedNPdrugdeliveryoffersanumberofbenefitsoversystemic

administrationoffreedrugs.Theseincludeimprovedintratumouraldrug

distribution,controlledreleaseofdrugswithinthetumourmicroenvironment,

superiorefficacyandmoretolerablesideeffects.Althoughantibody-targeted

liposomes(immunoliposomes)remainintheleadfordeliveryofcytotoxicagents

[62],otherinnovativeapproachesareclosebehindusingwholeAbsaswellasAb

fragments.Thisisillustratedbythevarietyofdrug-loadedNPsinpreclinical

development(Table3).

12

Nanoparticle Antibody/Fragment

MolecularTarget

CytotoxicAgent

Stage Cancer Reference

PEGylatedPLGAPolymer

mAb DR-5 Camptothecin In-vivo Colorectal [63]

Liposome mAb GD2 Etoposide In-vitro Mixed(GD2expressing)

[64]

Lipid-PolymerHybrid

mAb EGFR Adriamycin In-vivo HepatocellularCarcinoma(HCC)

[65,66]

PLGAPolymer mAb EGFR Paclitaxel In-vivo Lung [36,67]PorousSilicaNPs(pSiNPs)

mAb p75(NTR),EGFR,CD20

Camptothecin In-vitro Glioblastoma,Neuroblastoma,B-celllymphoma

[68]

Polymericnano-micelles

mAb HIF-1α Paclitaxel In-vitro Gastric [69]

CarbonNanotube(CNT)

mAb CEA Doxorubicin In-vitro Colon [70]

AuNPs mAb EGFR Gemcitabine In-vitro Pancreatic [71]PLGA/MMTPolymer

mAb HER2 Paclitaxel In-vitro Breast [72]

SPIONs mAb HER2 Paclitaxel/Rapamicin

In-vitro Breast [73]

Liposome mAb 2C5 Doxorubicin In-vivo Glioma,Lung [74,75]PLAPolymer mAb SM5-1

bindingprotein

5-FU In-vivo HCC [76]

Lipid-PolymerHybrid(PLGA)

Half-Ab(hAb)

CEA Paclitaxel In-vitro Pancreatic [77]

Iron-Oxide(SPION) ScFv Endoglin Docetaxel In-vitro Ovarian [66]PEGylatedPolymer ScFv CD44v6 Arsenic

trioxideIn-vivo Pancreatic [67]

PLGAPolymer ScFv SM5-1bindingprotein

Paclitaxel In-vitro HCC [78]

Liposome ScFv HER-2 Doxorubicin PhaseIClinicalTrial

Breast [7]

Liposome ScFv c-Met Doxorubicin In-vivo Lung [79]PLGA Fab HER2 Pseudomonas

ExotoxinA(PE38KDEL)

In-vivo Breast [80]

Liposome Fab EGFR Doxorubicin PhaseIClinicalTrial

Mixed(EGFRexpressing)TumourTypes

[6,71]

Table3.Drug-loadedNPstargetedusingantibodiesorantibodyfragments.WholeAbs:ThemajorityofwholeAbtargetedNPshavebeendirectedtoEGFRor

HER2;bothofwhichhaveillustratedtheprospectofNP-mediatedintracellular

drugdeliverythroughreceptormediatedinternalisation.Oneexampleused

cetuximabtotargetgemcitabine-loadedAuNPs[71].Intheseexperiments,the

authorsdemonstratedspecifictargetingoftheNPstoEGFRexpressing

pancreaticcelllinesin-vitroandadditionalantibody-mediatedcytotoxicity

13

comparedtonon-targetedcounterparts[71].TargetingEGFRhasalsoshownin-

vivoefficacyinarangeofmodels.Forexample,indeliveryofpaclitaxel-loaded

polymericNPstolungtumours[36],camptothecinloadedporoussilicaNPstoa

rangeofEGFRover-expressingtumoursincludingglioblastoma[68]and

adriamycinencapsulatedpolymer-lipidNPstohepatocellularcarcinoma[65].In

thisfinalexample,therewasalsoevidencesuggestingthatboththeantibodyand

adriamycinwerecontributingtotheobservedcytotoxicity[65].HER2targeting

usingtrastuzumabhasbeenshowntobeeffectiveusingpaclitaxelandrapamicin

partitionedwithinpolymercoatedSPIONs;In-vitroefficacywasover7times

higherthanthenon-targetedcounterparts[73].Inanotherstudy,HER2-targeted

polymericNPsdeliveringpaclitaxelshowedsustaineddrugreleasein-vitro[72].

PolymericNPshavealsobeensuccessfullytargetedtothepro-apoptoticcell

surfacedeath-receptor,DR5[63].Intheseexperiments,theDR5-targeted

polymericNPswereshowntoinitiateapoptosisin-vitroand,whencaptothecin

wasencapsulated,theNPwasabletoovercometheresistancecommonlyseen

withsingleagentanti-DR5therapyin-vivo.Inanotherexample,hypoxia

induciblefactor1α(HIF-1α),anextracellularproteinoverexpressedina

numberofhumancancersinresponsetolocalhypoxia,wassuccessfullytargeted

withanti-HIF-1αAbfunctionalisedpaclitaxelloadedpolymericNPs[69].The

NPswereshowntoselectivelyinternaliseincellsoverexpressingHIF-1αand

paclitaxelmediatedcytotoxicitywasshowntobespecifictowardsHIF-1α

expressingcells.Othertargetsinvestigatedforcontrolleddeliveryofdrug-loaded

NPsincludethecellsurfaceglycoproteinandtumourmarkercarcinoembryonic

antigen(CEA)andthep75neurotrophinreceptor(NTR)[68].NTRisamember

ofthetumournecrosisfactor(TNF)superfamily,whichhasaroleincelldeath

andisoverexpressedinanumberofmalignanciesincludingsarcomaand

malignantmelanoma[81].Drug-loadedNPshavealsobeentargetedusingSM5-

1,amouse-humanchimericantibodywhichishighlyspecifictotheSM5-1

bindingprotein,atargetknowntobeoverexpressedinanumberofcancers

includinghepatocellularcarcinoma(HCC),melanomaandbreastcancer.Binding

oftheSM5-1Abtoitstargetproteininhibitscellgrowthandinducesapoptosisin

cancercellsinacaspasedependentmanner[82].PolymericNPsloadedwith5-

14

Flurouracil(5-FU)havebeensuccessfullytargetedusinghumanisedSM5-1inits

wholeAbform,demonstratingsustaineddrugreleaseandfavourableanti-

tumouractivityagainstsubcutaneousandorthotopicHCCxenografts[76].

PLDhasbeenshowntoexhibitenhancedtumourretention,Abdependent

endocytosisandincreasedcytotoxicitywhentargetedusingtheanti-nucleosome

mAb2C5inorthotopicgliomatumoursin-vivo[74].The2C5Abspecifically

recognisesextracellularandtumour-cellboundnucleosomesthatarisefrom

apoptotictumourcellsin-vivo[75].Evenwhenusedatsubtherapeuticquantities,

2C5isaneffectivetumourtargetingmoietyforPLD,alsoshowingefficacy

againstprimaryandmetastaticlungtumoursinmice[75].Centralnervous

system(CNS)tumourspresentauniquechallengetotreatmentduetothe

presenceofthebloodbrainbarrier(BBB);auniquephysiologicalbarrierwhich

functionstoprotectthebrainbutalsolimitsdrugdeliverytotheCNS[83].To

facilitatemovementpasttheBBB,polymeric,2C5-targetedNPshavealsobeen

co-targetedusingananti-transferrinreceptor(TfR)Ab.In-vivointratumoural

localisationwasfoundtobesignificantlyhigherforthedualtargetedNPthan

thatseenforNPstargetedwitheachantibodyalone[84].Morerecently,

transferrinreceptorbispecificantibodyplatformshavebeenshownto

successfullycrossandtargetpasttheBBB[85],andthesebispecificAbscould

equipdrugloadedNPstomoreeffectivelytargetCNStumours.These

experimentssuggestthatAbtargetedNPscouldofferanovelsolutiontodeliver

treatmentpasttheBBB.

AbFragments:Abfragmentsareconsideredtomakeattractivetargetingagents

thankstoasmallersizeandpotentiallyreducedimmunogenicitycomparedwith

wholeAbs[86].Themostcommonlyusedfragments,scFvs,arereadily

generatedusingrecombinantantibodytechnologyandhavebeensuccessfully

appliedinthefollowingexamples.ScFvshavebeensuccessfullyexploitedto

targetarsenicloadedpolymericnanoparticlestargetedtoCD44v6,a

transmembraneglycoproteinoverexpressedonpancreaticadenocarcinoma

cells.Accumulationandretentionwithinthetumourwassignificantlyhigherfor

CD44v6-targetedNPsthanforthenon-targetedcontrols.Furthermore,the

targetedNPsinhibitedtumourgrowthsignificantlymorethanthenon-targeted

15

NPsorfreearsenic[67].Inanotherexample,phagedisplaytechnologywasused

toobtainacell-internalisingscFvtotargetc-Met;atyrosinekinasereceptor

expressedonbothtumourandendothelialcells[79].Whenthisanti-c-MetscFv

wasusedtotargetPLDtolungtumours,significantdisruptionofthetumour

vasculaturewasobservedinadditiontodirecttumourcellcytotoxicity[79].

Duetotheirmagneticproperties,ithaslongbeenproposedthatSPIONscouldbe

targetedusinganexternallyappliedmagneticfield[87].However,following

successfulinitialin-vivostudies,problemswithbloodvesselembolisationledto

thedevelopmentofalternativemethodsoftargeting,includingAbs[88].More

recently,thepossibilityofmagnetictargetinghasbeenrevisitedincombination

withanscFvtargetedtoendoglin,acellsurfaceglycoproteinoverexpressedon

ovariancancerendothelialcells[66].ThescFvswereconjugatedtothesurfaceof

ironoxidenanoparticlespre-loadedwithβ-cyclodextrinencapsulateddocetaxel

tocreatedrug-loaded,endoglintargetedSPIONs.In-vitrostudiesshowedthatthe

scFvdirectedspecificbindingontoendoglinpositivecellsandalsothatthe

majorityoftheSPIONswerelocalisedwithinthemagneticfield[66].

ProgresshasalsobeenmadeusingFab-targetedNPs.Forexample,Fab

fragmentsderivedfromahumanisedanti-HER2mAbhavebeensuccessfully

usedtotargetpseudomonasexotoxinA(PE)encapsulatedwithinPLGANPs[80].

PEisapotentimmunotoxinwithsignificanttoxicity,whichhassofarlimitedits

useasananti-cancerdrugdespiteevidenceofimpressiveanti-tumouractivity

[89].Theresultsfromtheseexperimentsdemonstratedimprovedanti-tumour

activityandreducedsystemictoxicitywhencomparedtothenon-encapsulated

anti-HER2-PEAb-drugconjugate(ADC).

4.2DeliveryofradiationtreatmentRadiationistheprimarytreatmentmodalityinthemanagementofmany

cancers.Themainchallengeinradiotherapyishowtoachieveadequate

radiationexposuretothetumourwhilstavoidingdamagetosurrounding

healthyareas,especiallyinsensitivetissuessuchasthebrain.Ab-targetedNPs

haveshownpromiseinaddressingthischallengeforexamplebyfacilitating

16

neutroncapturetherapy(NCT);atechniquewhichreliesontheintratumoural

injectionofanon-radioactiveisotope,mostcommonlyBoron-10(10B),which

actsasacaptureagentandreleaseslocalisedionisingradiation[90].In-vitro

studieshavetargeted10B-loadedliposomestoEGFR-expressinggliomacellsin-

vitro[91],raisingthepossibilitythatAb-targetedNPscouldovercomethe

barrierofdirectintratumouralinjectionofcaptureagents.Inasecondexample,

cetuximab-conjugatedSPIONswerefoundtosensitiseradioresistantgliomasto

theeffectsofradiation,possiblythroughproductionofreactiveoxygenspecies

andtheinhibitionofDNAdamagerepair[92].

4.3.Deliveryofnucleicacids

Ab-targetedNPdeliveryvectorssuchaspolymericNPs[93],AuNPs[94]and

liposomesarealsobeginningtofindaroleindeliveryofnucleicacidsforcancer

therapy.ThisprovidesopportunityforthedeliveryofDNAtoinduceexpression

oftherapeutictumoursuppressorgenes,ordeliveryofsmallinterferingRNA

(siRNA)oranti-senseDNAsequenceswhichcandisruptthetranslationof

oncogenes[95].EncapsulationofnucleicacidinNPsaimstoovercomebarriers

suchasphysiologicalinstability,poorintracellulardeliveryandoff-targeteffects

[96].Forexample,inonestudy,polyethyleniminewasusedtocondenseand

compactDNAencodingthep53gene[97]generatingpolymer-DNANPswhich

werethentargetedusingJ591,ananti-PSMAmAb.TheresultantJ591targeted

NPsshowedefficienttransfectioninvariousprostatecancercelllinesin-vitro

andeffectivePSMAspecifictargetingwhentestedin-vivoinprostatecancer

xenografts[97].J591isparticularlyfavourableforclinicaltranslationduetoits

previoususeinaphaseIIclinicaltrial[98].

Fordeliveryofanti-senseDNA,AuNPshavebeencoatedwithahighlyorganised

anti-sensenucleicacidlayerdesignedtobindHER2mRNA.Correspondingsense

DNAsequenceswerefunctionalisedviaclickchemistrytoanti-HER2Absand

hybridisedtotheanti-senseDNAontheNPsurface.TheseNPshadsuperior

uptakeintoHER2positivecellsin-vitrocomparedtonon-targetedcounterparts.

Inaddition,aconcentrationof1nManti-HER2NPswassufficienttocompletely

17

blockexpressionofHER2intargetcellswhilstcontrolNPseithercontaining

scrambledanti-sensenucleicacidsorfunctionalisedusinganoff-targetAb

controlwereunabletoinhibitanyexpression[99].Asimilarapproachwas

undertakenusingclickchemistrytoconjugatechemicallystabilisedantisense

nucleicacidsandtrastuzumabtothesurfaceofpolymericmicelles.Thesedual

functionalisedpolymericNPsdemonstratedHER2targeteddeliveryandefficient

geneknockdowninHER2positivecellsin-vitrowhencomparedwithnon-

targeted,non-stabilisedcontrols[100].

Anotherexampleofefficientnucleicaciddeliveryutilisedaliposomal

formulationofantisensenucleicacidsagainstBCL2,anantiapoptoticgene

overexpressedinthemajorityofacuteleukaemias.Inthisstudy,theliposome

wastargetedusingtheanti-CD20mAbrituximab[101].Thetargetedliposomes

demonstratedeffectivereductionsofBcl-2proteinwithincancercells.Further

in-vivostudiesusinghumanBurkitt’slymphomaxenograftsshowedsignificant

reductionsintumourgrowth.Furthertothis,theliposomeswerefoundtobe

stableforover1yearinstoragewhetherasasuspensionorlyophilisedpowder,

highlightingfeasibilityforclinicaltranslation[101].

4.4.Antibody-conjugatednanoparticlesastheranosticagents:

NPsofferanattractiveplatformfordevelopmentofso-calledtheranosticagents,

whichcombinetherapyanddiagnosiswiththeaimofreducingtheneedfor

multi-stepproceduresandavoidingtreatmentdelays[102].Antibodytargeting

hasamajorroletoplayinthisfield(Figure4),andSPIONshavebecomethe

mostadvancedtheranosticNPsusingarangeofinnovativeapproaches.One

successfulexampleofAb-SPIONtheranosisusedthecommercialanti-EGFRmAb

cetuximab,conjugatedtoPEG-polymercoatedSPIONsthroughcarbodiimide

chemistry,totargetEGFRandthemutantvariantEGFRvIIIexpressingorthotopic

gliomatumours.ThemAb-functionalisedSPIONstriggeredapoptosisinhuman

gliomacellsin-vitroandconferredasignificantsurvivaladvantageoverboth

cetuximabandSPIONsalonewheninfusedintoorthotopichumanGBMmodels

[103].Intheseinnovativestudies,thechallengeofcrossingtheBBBtoachieve

18

adequateintratumouraldistributionwasaddressedusingconvection-enhanced

delivery(CED).PotentinhibitionofEGFRphosphorylationandincreasedlevels

ofcaspasecleavagewereobservedalongwithconsistentcontrastenhancement

oftheSPIONsonT2-weightedMR.Inadditiontothispromisingexperimental

data,toxicityexperimentsinhealthymiceshowednoevidenceofdamageto

normalbraintissues[103].

Targetingchemotherapyincombinationwithimagingagentsdemonstrates

anothertheranosticapproachthathasbeenexemplifiedusinghybrid

superparamagneticiron-platinumNPs(SIPPs)targetedtotheprostatecancer

targetPMSA.TheSIPPswereencapsulatedwithpaclitaxelinsidephospholipid

micellesandthenconjugatedusingstreptavidin/biotinadaptormoleculesto

anti-PMSAAbs.Theresultinghybrid-NPswereshowntotargetPMSApositive

prostatecells,inducecytotoxicitysimilartofreepaclitaxelin-vitroandfunction

asMRIcontrastagentsin-vivo[104].

Iron-oxidemagneticnano-crystals(MNCs)havealsobeeninvestigatedfor

theranosticpotential.TheseparticlesretaintheimagingabilitiesofSPIONsbut

aresmalleranddonothavesurfacecoatings.Assuch,theyhavetheadvantageof

beingreadilyincorporatedintothestructureoforganicpolymericNPsto

generatemultifunctionalNPs.Inoneexample,doxorubicinandMNCloaded

PLGApolymernanoparticleswereconjugatedviacarbodiimidecouplingtothe

anti-HER2mAbtrastuzumabformingNPswiththepotentialtobothdetectand

treatmalignantbreastcancercells.In-vitroresultswiththeseNPsdemonstrated

excellentefficacyasMRprobeswithspecificityforHER2positivecells.Aswellas

this,theNPsshowedsustainedreleaseofdoxorubicin[105].IronoxideMNCs

havealsobeensuccessfullyemployedastheimagingcomponentofdocetaxel

loadedPLGANPstargetedusingascFvagainstprostatestemcellantigen(PSCA).

PSCApositivecellsincubatedwiththetargetedNPsappeareddarkeronT2-

weightedMRimagingcomparedwithnon-targetedequivalents[106].Unusually

inthisstudy,drugreleaseshowedinitialrapiddesorptionofdrugfromthe

particlesurface,followedbymoresustainedreleaseduringdegradationofthe

polymermatrix.In-vitroefficacystudiesindicatedthatthedocetaxel-loadedNPs

19

wereeffectiveatalowerdosethanfreedocetaxel.PolymericPLGAnanoparticles

havealsobeenusedtoprovideavehiclefortheranosisbycombining

doxorubicinwithindocyaninegreen(ICG);aheat-generatingnear-infrared(NIR)

dye[107].Whenconjugatedtoanti-HER-2Absusingcarbodiimidechemistry,

theNPsdemonstratedtargetedcelluptake.Furthermore,NIRlaserexcitationof

theICGreleasedcytotoxicheatin-vitro.Theseresultsshowcaseasingle

theranosticNPwithtriplefunctionsin(i)imaging,(ii)deliveryofchemotherapy,

and(iii)inductionoflocalhyperthermia[107].

TheranosticAb-targetedlipidbasedNPshavealsobeencreatedusingquantum

dots(QDs)astheimagingcomponent,rapamycinfortherapyandtrastuzumab

fortargeting.TheresultingNPstargetedandimagedHER2positivecellsin-vitro,

showninboth2Dand3Dmodelsusingconfocalmicroscopy.Inthisstudy,lipid-

encapsulationaloneappearedtoimparta2foldincreaseineffectivenessover

freerapamycin,whilsttheadditionofaHER2targetingAbimpartedafurther5

foldincreaseinefficacyinHER2positivecells[108].

Multi-walledcarbonnanotubes(CNTs)offernewpotentialascancer

theranostics,duetotheirhighcarryingcapacityandhyperechogenicity

(increasedultrasoundcontrast).Preliminaryresultsinvestigatingthe

theranosticapplicationofCNTsconjugatedwithAbagainstPSCAhavebeen

encouraging.WhenfunctionalisedwithAbs,theCNTsshowedefficacyas

contrastagentsandenhanceduptakeintoPSCA-expressingcells.Moreover,after

loadingwithdoxorubicin,theAb-functionalisedCNTsaccumulatedwithin

tumourtissuesandinhibitedtumourgrowthin-vivo[109].

20

Figure4.Schematicillustratingthe4majorcomponentsofanAb-targetedtheranosticNP:(1)Deliveryvehicle,(2)Imagingagent,(3)Therapeuticcomponentand(4)TargetingAb.Figureadaptedfrom[110].4.5.CancerhyperthermiaAlmost50yearsagoitwasshownthattemperaturesofjust42°Ccouldinduce

cancercelldamagewithinarelativelyshorttimeframewhilstnon-malignant

cellswereabletowithstandthisriseintemperature[111].Morerecentwork

hasshownthatthehypoxictumourmicroenvironmentandtheincreasedmitotic

rateofmalignantcellspredisposemalignantcellstotemperaturesensitivity

[112],andthathyperthermiatreatmentshowssynergismwithconventional

therapies[113].Whilstpotentiallyaneffectivetreatment,themajorchallenge

fortherapeuticapplicationofhyperthermiaisrestrictingtreatmenttodiseased

areasandavoidingdamagetohealthytissues.Heat-generatingNPsofferan

elegantsolutiontothisproblem,particularlyiftheNPscanbelocalisedwithin

tumourspriortoheatinduction.Localisationhasbeenachievedbydirect

injectionintotumourtissue,butincreasinglyantibodyfunctionalisationisbeing

utilisedtotargetNPstothetissueofinterest(Table5),asillustratedwiththe

examplesbelow.

21

Nanoparticle Externalactivatingfield

Antibodytarget

Setting CancerTreated

Reference

SuperparamagneticIron-oxide

nanoparticles(SPIONs)

Alternatingmagneticfield(AMF)

MembraneProtein

In-vivo Breast [114,115]

GoldNanoparticles(AuNPs)

Laserlight EGFR In-vitro OralSquamousCellcarcinoma

[116]

Mucin-7 In-vitro UrothelialCells [117]Near-Infrared(NIR)light

TROP-2 In-vitro CervicalCancer [118]EGFR In-vitro OralSquamous

Cellcarcinoma[119]

Short-waveradiofrequency(RF)energy

EGFR In-vivo Pancreatic [120,121]

CarbonNanotubes(CNTs)

NIRlight CD133 In-vitro Glioblastoma [122]HER-2&IGF1R

In-vitro Breast [123]

CD22/CD25 In-vitro BurkittsLymphoma

[124]

Table4.Ab-targetedNPsemployedforcancerhyperthermia.

SPIONs:ArethemostclinicallyadvancedNPsforheattreatmentduetotheir

historyofuseasapprovedMRIcontrastagents[55]andinpioneeringclinical

trials(untargeted)forheattreatmentofglioblastoma[57].Whenexposedtoan

alternatingmagneticfield(AMF)SPIONsconvertmagneticenergytothermal

energythroughBrownianandNeelrelaxation.SuperparamagneticNPs,unlike

largerferri-orferromagneticNPs,donotretainmagnetismwhenthefieldis

removedandcangenerateheatatlowermagneticfieldamplitudes,makingthem

moreattractiveforbiomedicalapplications[125,126].

AntibodytargetingofSPIONsforhyperthermiawasfirstachievedbyconjugating

an111InradiolabelledmAbagainstanintegralmembraneglycoprotein(highly

expressedonanumberofhumancancers)to20nmdextran-coatediron-oxide

nanoparticles[115].FollowingintravenousinjectionoftheNPsintoinathymic

micebearingHBT3477(breast)xenografttumours,micewereexposedto

variouslevelsofexternalAMF.Electronmicrographstakentwodaysfollowing

AMFtherapyshowedtumourcellnecrosisatallstrengthsofAMFapplied.

22

TumoursdidnotrespondtoeitherSPIONsorAMFalone,andtoxicitywasonly

seenatthehigheststrengthofAMFapplied.Subsequentstatisticallyvalidated

resultsshowedthattherapeuticresponsesweregeneratedwithoutnormal

tissuetoxicityandthattheheatingdosecorrelatedwellwithresponse[114].

Despitein-vivosuccess,subsequentstudieshavemetwithchallengesduetothe

rapidclearanceofSPIONsfromcirculationviathereticuloendothelialsystem

(RES)wheninjectedintravenously[127].Whilstthischaracteristiclendsitself

welltoSPIONuseascontrastagents,itisdetrimentaltoachievingsufficient

intratumouralSPIONconcentrationstogeneratetherapeuticheating.Anumber

ofsolutionshavebeenproposedtoovercomethis,includingtheuseofblocking

agentstoprolongSPIONcirculatorytime[128],tailoringtheNPsurface

chemistriesorthetargetingmoietiestooptimisecellularinteractionsofSPIONs

[41,129]ordirectintratumouralinjectionwithtargetingantibodiesfunctioning

toretainSPIONsattheinjectionsite.

AuNPs:Ab-targetedAuNPshavealsobeenexploitedasvectorsforphotothermal

therapy(PTT).Thisprocessreliesuponthegenerationofvibrationalheatenergy

followingtheexcitationofphotosensitisersthroughtheabsorptionofspecific

wavelengthsoflight;mostcommonlyinthenear-infrared(NIR)range.AuNPs

stronglyabsorbandscatterlight;thisabsorptioncanbetunedbymodifications

inthesizeandshapeoftheNPsinadditiontotheincorporationofother

materialssuchassilica[116,119].ThelightabsorbedbyAuNPsconvertsreadily

andrapidlyintoheatandthis,alongwiththeestablishedbiocompatibilitymake

AuNPsattractivephotothermalagents[116].ToavoidaccumulationofAuNPsin

healthytissues,anumberofpassiveandactivetargetingstrategieshavebeen

testedtotargetthemtotumourcells.ThesestrategiesincludePEGylation,

liposomeencapsulationandantibodyconjugation[130].Thiol-terminatedPEG

derivativesarecommonlyusedtocoatthesurfaceofAuNPsactingtoimprove

colloidalstability,avoidtheRESuptakeofAuNPsandprovidea‘linker’to

conjugateAuNPstobiomoleculessuchasantibodies[131].RecentAb-targets

investigatedincludetrophoblastcellsurfaceantigen2(TROP2),a

transmembraneglycoproteinoverexpressedinanumberofepithelialcancers

andassociatedwithpoorprognosisincervicalcancer[118].Inthisstudy,hollow

23

goldnanosphereswereconjugatedtoanti-TROP2mAbsusingathiol-terminated

PEGlinker,generatingfunctionalisedNPsabletoreducecellviability

significantlymorethannon-targetedcontrolsfollowingexposuretoNIRlaser

[118].Inanotherstudy,goldnanospheresweretargetedtourothelialcancer

cellsusingantibodiesagainstMucin-7;acommonlyusedtargetinbladdercancer

[117],andactivatedusinggreenlaserlight.

AswellasabsorbingNIRorvisiblelight,Ab-targetedAuNPsalsoreleaseheat

followingabsorptionofshort-waveradiofrequency(RF)energy;behavingas

targetedradiofrequencyablation(RFA)agents.Short-waveRFfieldshavethe

advantageofpenetratingdeeperintotissuesthanNIRlight.Whentheanti-EGFR

antibodycetuximabwasconjugatedto20nmgoldnanorods,selectivetargeting

wasseenin-vitroand,followingexposuretoshort-waveRFfields,necrotic

cellularinjurywasachieved;similartotheeffectsofinvasiveRFAintheclinic

[120].WhenthesameNPsweretestedin-vivo,significantcelldeathwas

observed36hoursfollowingtreatmentofEGFRamplifiedpancreaticxenograft

tumours,withnodamageinselectedhealthytissuesincludingtheliver[121].

CNTs:NIRactivatedAb-targetedCNTshavealsobeenemployedtoinducePTT

in-vitro[132].ExamplesoftargetsinvestigatedincludeHER2andIGF1R,to

targetCNTstobreastcancercells[123],CD22andCD25totargetBurkitts

lymphoma[124]andCD133totargetglioma-likestemcellsinthetreatmentof

glioblastoma[122].Whilsttheseearlystudiesshowpromise,CNTsaccumulate

intheliver,arenon-biodegradable,andshowpoorsolubilitywithatendencyto

aggregate.Thesechallengesoftoxicitylimitthecurrentclinicaltranslationof

CNTs,andarebeingaddressed[133].

5.0Conclusions

ThisreviewhasillustratedthewaysinwhichthediversityandversatilityofNPs

canbefurtherexploitedbyAbtargeting.Awiderangeofpre-clinicalresearch

hasdemonstratedthatAb-targetedNPscanbeusedtodeliverycytotoxic

chemotherapydirectlytocancercells,resultinginefficacioustreatmentwith

24

reducedsideeffectsprofilescomparedtofreedrugs.Breakthroughshavealso

beenmadeinutilisingAb-NPstoaugmentradiotherapyandaidincancergene

therapy.CancertheranosticshasevolvedinparalleltoNPs,andanumberof

innovativeapproacheshaveshowcasedsingleagents,whichcancombinecancer

imagingandtherapy.Finally,theuseofhyperthermiainthetreatmentofcancers

hasbeenmadepossiblethankstotheinherentphysicalpropertiesofSPIONs,

AuNPsandCNTs.

Targetedtherapyremainsattheforefrontoftranslationalcancerresearchand

significantprogresshasbeenmadeintheclinicaltranslationofantibody-

targetedNPbasedcancertreatment,includingphaseIclinicaltrialsusing

antibodytargeteddrug-loadedliposomes.Thesepioneeringstudieshavebuilt

uponprevioussuccessesdevelopingNPs,refiningbio-conjugationstrategiesand

optimisingthebiocompatibilityandbioavailabilityoftheseproducts.

6.0FuturePerspectivesFutureresearchonAb-NPswilldependuponreliableandreproduciblebio-

conjugationstrategiesthatcanbescaleduptogoodmanufacturingpractice

(GMP)standardforclinicaltranslation[129].OtherNPssuchasmesoporous

silicaNPs(MSNs)(Table1)couldbeutilisedwhichofferimpressivedrug

carryingcapacity,andcanbeequippedwithtargetingligands[134].Inaddition,

multifunctionalhybridNPscanbegeneratedforuseincombinationtherapy

and/ortheranostics.

Theroleofimmunotherapyinthetreatmentofcancercontinuestoevolve.

WhilsttheuseofAb-targetedNPsincancerimmunotherapyisearlyin

development[135],recentbreakthroughsincludetheuseofPLGANPs

conjugatedtobothprotein-MHCcomplexesandanti-CD28mAbstoactas

syntheticantigenpresentingvehicleswhenadministeredin-vitro[136].Inthe

future,Ab-targetedNPscouldbeusedtoprimetheimmunesystemnotonlyto

recognisetumourantigensbutalsotostimulateanti-tumourimmunity.Whilst

Ab-targetedNPsareonlyjustreachingtheclinicalsetting,theirdiversepotential

25

foruseincancerdiagnosticsandtherapeuticspredictsanimportantroleinthe

futureofcancertreatment.

6.0ExecutiveSummaryIntroduction

• Targetedcancertreatmentofferssignificantadvantagesoverconventionaltherapybutcurrenttargetedtreatmentsareoftenlimitedbysystemictoxicity

• Nanoparticles(NPs)possessuniquephysical,chemicalandbiologicalpropertiesthatcouldovercometheselimitationsandbeharnessedforuseincancermedicine

Nanoparticles• NPsarenaturallyoccurringormanufacturedparticulatematerialeitherunbound,asan

aggregateoragglomeratewithonedimensionbetween1and100nminsize.• NPspossessinterrelatedproperties;highmobilityinthefreestate,largesurfaceareato

volumeratios,andsometimestheexhibitionofquantumeffects.• ThewideanddiverserangeoffunctionalpropertiesexhibitedbyNPsispossiblethanks

totheutilityofavarietyofmaterialstosynthesisethem.Targetingnanoparticlesforcancertreatment

• PassiveaccumulationofNPsoccurswithinmalignanttissuesinaprocessknownasenhancedpermeabilityandretention(EPR).

• SpecifictargetingofNPstocancercellscanbeachievedthroughtheadditionofatargetingmoiety,includingproteins,smallmoleculesandaptamers.

• Antibodies(Abs)arethemostpromisingtargetingligandsandcanbereadilygeneratedasintactIgGmoleculesorasfragments(ScFvs)indefined,recombinantform.

• AntibodytargetingiscomplementarytoEPRandenablesspecificreceptormediatedinternalizationoftheNP.

Antibody-Nanoparticlebio-conjugationstrategies• Challengesinbio-conjugationcanbebroadlydividedintothreemaincategories;(i)

controllability,(ii)stability,and(iii)reliability.• Sophisticatedconjugationtechniquesenablethecontrolofantibodyorientationsto

ensuretargetbindingandpreserveAbbioactivity• Whilstbothbifunctionallinkermoleculesandadaptormoleculescangeneratefunctional

conjugates,covalentlinkermoleculesdemonstratesuperiorlongtermstability.• Establishedcovalentconjugationstrategiesincludecarbodiimidecoupling,maleimide

couplingandclickchemistry(coppercatalyzedalkyne-azidecycloadditionreactions).ClinicalApplicationsofNanoparticlesforCancerTherapy

• NPbaseddrug-deliverysystemssuccessfullytranslatedintoearlyphaseclinicaltrialsincludeliposomes,polymericNPs,dendrimers,micellesandgoldNPs(AuNPs).

• SuperparamagneticIron-oxideNPs(SPIONs)havebeenclinicallyapprovedforuseascontrastagentsincancerimagingandhavebeensuccessfulinearlyphasetrialsforcancerhyperthermia

• Antibody-targetedliposomes(immunoliposomes)havebeenusedinthreeearlyphaseclinicaltrials.

PreclinicalDevelopmentofantibody-targetednanoparticlesforcancertherapy• ChemotherapyloadedAb-NPscanofferimprovedintratumouraldrugdelivery,superior

efficacycomparedwithfreedrugs,andcontrolledreleaseofdrugswithintumourcells.• Targetingpastthebloodbrainbarrier(BBB)totargetcentralnervoussystem(CNS)

tumoursmaybepossiblethroughdualtargetingoftransferrinreceptorandcancerspecifictargets.

• Ab-targetedpolymericNPs,AuNPsandliposomescanbeusedtostabilisenucleicacidsanddeliverthemdirectlytocancercellsforgenetherapy.

• SPIONsbecombinedwithotherNPsincludingpolymersandquantumdotstoproducemulti-functionaltheranosticNPsthatcanimagetumoursanddeliverycytotoxicdrugsincombination

• SPIONs,AuNPsandCNTsareabletogenerateheatfromwithinthetissueofinterestwhenactivatedbyexternallyappliedalternatingmagneticfields(SPIONs)ornear-infraredfields(AuNPs/CNTs).

26

• SPIONshavebeentargetedusingAbsinthepre-clinicalsettingwithsuccesslimitedbyrapiduptakebythereticuloendothelialsystemandclearancein-vivo.Strategiesarebeinginvestigatedtoreducethisuptake.

Conclusions• Ab-targetedNPsofferaversatileplatformforthedevelopmentofthenextgenerationof

cancertherapeutics• Progresshasbeenmadeintheclinicaltranslationofantibody-targetedNPbasedcancer

treatmentsFuturePerspectives

• Reliableandreproduciblebio-conjugationstrategiesthatcanbescaleduptogoodmanufacturingpractice(GMP)standardwillfacilitateclinicaltranslationofAb-targetedNPs.

• Ab-targetedNPsmayhaveafutureroleincancerimmunotherapy,includinginthedevelopmentofsyntheticantigen-presentingvehicles.

Financial&competinginterestsdisclosureTheauthorsaregratefulforthesupportreceivedfromtheSeventhFrameworkProgramme(FP7)forDARPintargetedmagnetichyperthermictherapyforglioblastoma(DartrixECGRANT:278580),andfromtheDepartmentofHealthandCancerResearchUKExperimentalCancerMedicineCentre(ECMC).Theauthorshavenootherrelevantaffiliationsoffinancialinvolvementwithanyorganizationorentitywithfinancialinterestinorfinancialconflictwiththesubjectmatterormaterialsdiscussedinthemanuscriptapartfromthosedisclosed.Thefundershadnoroleinstudydesign,datacollectionandanalysis,decisiontopublish,orpreparationofthemanuscriptNowritingassistancewasutilisedintheproductionofthismanuscript.Bibliography1. JarboeJ,GuptaA,SaifW.Therapeutichumanmonoclonalantibodies

againstcancer.In:HumanMonoclonalAntibodies,(Ed.^(Eds).Springer61-77(2014).

2. LealM,SapraP,HurvitzSAetal.Antibody–drugconjugates:anemergingmodalityforthetreatmentofcancer.Ann.N.Y.Acad.Sci.1321(1),41-54(2014).

3. HoneychurchJ,CheadleEJ,DovediSJ,IllidgeTM.Immuno-regulatoryantibodiesforthetreatmentofcancer.ExpertOpin.Biol.Ther.(0),1-15(2015).

4. HuehlsAM,CoupetTA,SentmanCL.BispecificT-cellengagersforcancerimmunotherapy.Immunol.Cell.Biol.(2014).

5. FayF,ScottCJ.Antibody-targetednanoparticlesforcancertherapy.Immunotherapy3(3),381-394(2011).

6. MamotC,RitschardR,WickiAetal.Tolerability,safety,pharmacokinetics,andefficacyofdoxorubicin-loadedanti-EGFRimmunoliposomesinadvancedsolidtumours:aphase1dose-escalationstudy.LancetOncol.13(12),1234-1241(2012).

27

*AphaseIclinicaltrialofanantibody-targetedliposome

7. MunsterPN,MillerK,KropIEetal.APhaseIstudyofMM-302,aHER2-targetedliposomaldoxorubicin,inpatientswithadvanced,HER2-positive(HER2+)breastcancer.Presentedat:ASCOAnnualMeeting.Chicago,IL,USA.2012.

8. HrkachJ,VonHoffD,AliMMetal.PreclinicaldevelopmentandclinicaltranslationofaPSMA-targeteddocetaxelnanoparticlewithadifferentiatedpharmacologicalprofile.Sci.Transl.Med.4(128),128ra139-128ra139(2012).

9. BertrandN,WuJ,XuX,KamalyN,FarokhzadOC.Cancernanotechnology:Theimpactofpassiveandactivetargetingintheeraofmoderncancerbiology.Adv.DrugDeliv.Rev.662-25(2014).

*Recentreviewcoveringcancertargeting

10. ChouL,MingK,ChanW.Strategiesfortheintracellulardeliveryofnanoparticles.Chem.Soc.Rev.40(1),233(2011).

11. BleekerEaJ,DeJongWH,GeertsmaREetal.ConsiderationsontheEUdefinitionofananomaterial:Sciencetosupportpolicymaking.Regul.Toxicol.Pharmacol.65(1),119-125(2013).

12. KreylingWG,Semmler-BehnkeM,ChaudhryQ.Acomplementarydefinitionofnanomaterial.NanoToday5(3),165-168(2010).

13. AuffanM,RoseJ,BotteroJ-Y,LowryGV,JolivetJ-P,WiesnerMR.Towardsadefinitionofinorganicnanoparticlesfromanenvironmental,healthandsafetyperspective.Nat.Nanotechnol.4(10),634-641(2009).

14. DobsonP,Jarvie,H.,King,S.,.Nanoparticle.EncyclopediaBritannicahttp://www.britannica.com/science/nanoparticle(2015).

15. ElzoghbyAO,SamyWM,ElgindyNA.Albumin-basednanoparticlesaspotentialcontrolledreleasedrugdeliverysystems.J.Control.Release157(2),168-182(2012).

16. KumariA,YadavSK,YadavSC.Biodegradablepolymericnanoparticlesbaseddrugdeliverysystems.ColloidsSurf.,B75(1),1-18(2010).

17. GargT,KGoyalA.Liposomes:targetedandcontrolleddeliverysystem.DrugDeliv.Lett.4(1),62-71(2014).

18. MohamedS,ParayathNN,TaurinS,GreishK.Polymericnano-micelles:versatileplatformfortargeteddeliveryincancer.Ther.Deliv.5(10),1101-1121(2014).

19. AbbasiE,AvalSF,AkbarzadehAetal.Dendrimers:synthesis,applications,andproperties.NanoscaleRes.Lett.9(1),1-10(2014).

28

20. KaminskasLM,BoydBJ,PorterCJ.Dendrimerpharmacokinetics:theeffectofsize,structureandsurfacecharacteristicsonADMEproperties.Nanomedicine6(6),1063-1084(2011).

21. MokH,ZhangM.SuperparamagneticIronOxideNanoparticle-BasedDeliverySystemsforBiotherapeutics.ExpertOpin.DrugDeliv.10(1),73-87(2013).

22. RosenholmJM,MamaevaV,SahlgrenC,LindénM.Nanoparticlesintargetedcancertherapy:mesoporoussilicananoparticlesenteringpreclinicaldevelopmentstage.Nanomedicine7(1),111-120(2012).

23. CabralRM,BaptistaPV.Anti-cancerprecisiontheranostics:afocusonmultifunctionalgoldnanoparticles.ExpertRev.Mol.Diagn.14(8),1041-1052(2014).

24. RastogiV,YadavP,BhattacharyaSSetal.CarbonNanotubes:AnEmergingDrugCarrierforTargetingCancerCells.J.DrugDeliv.2014670815(2014).

25. ValizadehA,MikaeiliH,SamieiMetal.Quantumdots:synthesis,bioapplications,andtoxicity.NanoscaleRes.Lett.7(1),1-14(2012).

26. SunT,ZhangYS,PangB,HyunDC,YangM,XiaY.Engineerednanoparticlesfordrugdeliveryincancertherapy.Angew.Chem.Int.Ed.53(46),12320-12364(2014).

27. GreishK.Enhancedpermeabilityandretention(EPR)effectforanticancernanomedicinedrugtargeting.In:CancerNanotechnol.,(Ed.^(Eds).Springer25-37(2010).

28. YeH,KarimAA,LohXJ.Currenttreatmentoptionsanddrugdeliverysystemsaspotentialtherapeuticagentsforovariancancer:Areview.Mat.Sci.Eng.CMater.Biol.Appl.45(0),609-619(2014).

29. BaeYH,ParkK.Targeteddrugdeliverytotumors:myths,realityandpossibility.J.Control.Release153(3),198(2011).

30. BazakR,HouriM,ElAchyS,KamelS,RefaatT.Canceractivetargetingbynanoparticles:acomprehensivereviewofliterature.J.CancerRes.Clin.Oncol.doi:10.1007/s00432-014-1767-31-16(2014).

31. MccaffertyJ,SchofieldD.Identificationofoptimalproteinbindersthroughtheuseoflargegeneticallyencodeddisplaylibraries.Curr.Opin.Chem.Biol2616-24(2015).

32. WeinerLM,SuranaR,WangS.Monoclonalantibodies:versatileplatformsforcancerimmunotherapy.Nat.Rev.Immunol.10(5),317-327(2010).

33. LiuP,LiZ,ZhuMetal.PreparationofEGFRmonoclonalantibodyconjugatednanoparticlesandtargetingtohepatocellularcarcinoma.J.Mater.Sci.Mater.Med.21(2),551-556(2010).

29

34. KirpotinDB,DrummondDC,ShaoYetal.AntibodyTargetingofLong-CirculatingLipidicNanoparticlesDoesNotIncreaseTumorLocalizationbutDoesIncreaseInternalizationinAnimalModels.CancerRes.66(13),6732-6740(2006).

35. MaregaR,KarmaniL,FlamantLetal.Antibody-functionalizedpolymer-coatedgoldnanoparticlestargetingcancercells:aninvitroandinvivostudy.J.Mater.Chem.22(39),21305-21312(2012).

36. KarraN,NassarT,RipinAN,SchwobO,BorlakJ,BenitaS.AntibodyConjugatedPLGANanoparticlesforTargetedDeliveryofPaclitaxelPalmitate:EfficacyandBiofateinaLungCancerMouseModel.Small9(24),4221-4236(2013).

37. PuertasS,MorosM,Fernández-PachecoR,IbarraM,GrazúV,DeLaFuenteJ.Designingnovelnano-immunoassays:antibodyorientationversussensitivity.J.Phys.D:Appl.Phys.43(47),474012(2010).

38. SperlingRA,PellegrinoT,LiJK,ChangWH,ParakWJ.Electrophoreticseparationofnanoparticleswithadiscretenumberoffunctionalgroups.Adv.Funct.Mater.16(7),943-948(2006).

39. LinP-C,ChenS-H,WangK-Yetal.Fabricationoforientedantibody-conjugatedmagneticnanoprobesandtheirimmunoaffinityapplication.Anal.Chem.81(21),8774-8782(2009).

40. KumarS,AaronJ,SokolovK.Directionalconjugationofantibodiestonanoparticlesforsynthesisofmultiplexedopticalcontrastagentswithbothdeliveryandtargetingmoieties.Nat.Protoc.3(2),314-320(2008).

41. GrüttnerC,MüllerK,TellerJ,WestphalF.Synthesisandfunctionalisationofmagneticnanoparticlesforhyperthermiaapplications.Int.J.Hyperthermia29(8),777-789(2013).

42. GrüttnerC,MüllerK,TellerJ,WestphalF,ForemanA,IvkovR.Synthesisandantibodyconjugationofmagneticnanoparticleswithimprovedspecificpowerabsorptionratesforalternatingmagneticfieldcancertherapy.J.Magn.Magn.Mater.311(1),181-186(2007).

43. PathakS,DavidsonMC,SilvaGA.Characterizationofthefunctionalbindingpropertiesofantibodyconjugatedquantumdots.NanoLett.7(7),1839-1845(2007).

44. Aubin-TamM-E,Hamad-SchifferliK.Structureandfunctionofnanoparticle–proteinconjugates.Biomed.Mater.3(3),034001(2008).

45. WartlickH,MichaelisK,BalthasarS,StrebhardtK,KreuterJ,LangerK.HighlySpecificHER2-mediatedCellularUptakeofAntibody-modifiedNanoparticlesinTumourCells.J.DrugTarget.12(7),461-471(2004).

30

46. SteinhauserI,SpänkuchB,StrebhardtK,LangerK.Trastuzumab-modifiednanoparticles:Optimisationofpreparationanduptakeincancercells.Biomaterials27(28),4975-4983(2006).

47. VeisehO,GunnJW,ZhangM.Designandfabricationofmagneticnanoparticlesfortargeteddrugdeliveryandimaging.Adv.DrugDeliv.Rev.62(3),284-304(2010).

48. ThanhNT,GreenLA.Functionalisationofnanoparticlesforbiomedicalapplications.NanoToday5(3),213-230(2010).

49. GhoshP,HanG,DeM,KimCK,RotelloVM.Goldnanoparticlesindeliveryapplications.Adv.DrugDeliv.Rev.60(11),1307-1315(2008).

50. MontenegroJ-M,GrazuV,SukhanovaAetal.Controlledantibody/(bio-)conjugationofinorganicnanoparticlesfortargeteddelivery.Adv.DrugDeliv.Rev.65(5),677-688(2013).

*Reviewonthechallengesandtechniquesinbio-conjugationofantibodiesandnanoparticles

51. KaoC-H,WangJ-Y,ChuangK-Hetal.One-stepmixingwithhumanizedanti-mPEGbispecificantibodyenhancestumoraccumulationandtherapeuticefficacyofmPEGylatednanoparticles.Biomaterials35(37),9930-9940(2014).

52. PhamE,BirrerMJ,EliasofSetal.Translationalimpactofnanoparticle–drugconjugateCRLX101withorwithoutbevacizumabinadvancedovariancancer.Clin.CancerRes.21(4),808-818(2015).

53. KatoK,ChinK,YoshikawaTetal.PhaseIIstudyofNK105,apaclitaxel-incorporatingmicellarnanoparticle,forpreviouslytreatedadvancedorrecurrentgastriccancer.Invest.NewDrugs30(4),1621-1627(2012).

54. LibuttiSK,PaciottiGF,ByrnesAAetal.PhaseIandpharmacokineticstudiesofCYT-6091,anovelPEGylatedcolloidalgold-rhTNFnanomedicine.Clin.CancerRes.16(24),6139-6149(2010).

55. ReimerP,BalzerT.Ferucarbotran(Resovist):anewclinicallyapprovedRES-specificcontrastagentforcontrast-enhancedMRIoftheliver:properties,clinicaldevelopment,andapplications.Eur.Radiol.13(6),1266-1276(2003).

56. WangY-XJ.SuperparamagneticironoxidebasedMRIcontrastagents:Currentstatusofclinicalapplication.Quant.ImagingMed.Surg.y1(1),35-40(2011).

57. Maier-HauffK,UlrichF,NestlerDetal.Efficacyandsafetyofintratumoralthermotherapyusingmagneticiron-oxidenanoparticlescombinedwithexternalbeamradiotherapyon

31

patientswithrecurrentglioblastomamultiforme.J.Neurooncol.103(2),317-324(2011).

*PhaseIIclinicaltrialofnon-targetedSPIONmediatedmagnetichyperthermiaincombinationwithextrenalbeamradiation

58. Maier-HauffK,RotheR,ScholzRetal.IntracranialThermotherapyusingMagneticNanoparticlesCombinedwithExternalBeamRadiotherapy:ResultsofaFeasibilityStudyonPatientswithGlioblastomaMultiforme.J.Neurooncol.81(1),53-60(2007).

59. AllenTM,CullisPR.Liposomaldrugdeliverysystems:fromconcepttoclinicalapplications.Adv.DrugDeliv.Rev.65(1),36-48(2013).

60. VonHoffDD,ErvinT,ArenaFPetal.Increasedsurvivalinpancreaticcancerwithnab-paclitaxelplusgemcitabine.N.Engl.J.Med.369(18),1691-1703(2013).

61. SenzerN,NemunaitisJ,NemunaitisDetal.PhaseIstudyofasystemicallydeliveredp53nanoparticleinadvancedsolidtumors.Mol.Ther.21(5),1096-1103(2013).

62. PaszkoE,SengeM.Immunoliposomes.Curr.Med.Chem.19(31),5239-5277(2012).

63. SchmidD,FayF,SmallDMetal.EfficientDrugDeliveryandInductionofApoptosisinColorectalTumorsUsingaDeathReceptor5-TargetedNanomedicine.Mol.Ther.22(12),2083-2092(2014).

64. BrownBS,PatanamT,MobliKetal.Etoposide-loadedimmunoliposomesasactivetargetingagentsforGD2-positivemalignancies.CancerBiol.Ther.15(7),851-861(2014).

65. GaoJ,XiaY,ChenHetal.Polymer–lipidhybridnanoparticlesconjugatedwithanti-EGFreceptorantibodyfortargeteddrugdeliverytohepatocellularcarcinoma.Nanomedicine9(2),279-293(2013).

66. HuangX,YiC,FanYetal.MagneticFe3O4nanoparticlesgraftedwithsingle-chainantibody(scFv)anddocetaxelloadedβ-cyclodextrinpotentialforovariancancerdual-targetingtherapy.Mater.Sci.Eng.,C42(0),325-332(2014).

67. QianC,WangY,ChenYetal.Suppressionofpancreatictumorgrowthbytargetedarsenicdeliverywithanti-CD44v6singlechainantibodyconjugatednanoparticles.Biomaterials34(26),6175-6184(2013).

68. SecretE,SmithK,DubljevicVetal.Antibody‐FunctionalizedPorousSiliconNanoparticlesforVectorizationofHydrophobicDrugs.Adv.Healthc.Mater.2(5),718-727(2013).

32

69. SongH,HeR,WangKetal.Anti-HIF-1αantibody-conjugatedpluronictriblockcopolymersencapsulatedwithPaclitaxelfortumortargetingtherapy.Biomaterials31(8),2302-2312(2010).

70. HeisterE,NevesV,TîlmaciuCetal.Triplefunctionalisationofsingle-walledcarbonnanotubeswithdoxorubicin,amonoclonalantibody,andafluorescentmarkerfortargetedcancertherapy.Carbon47(9),2152-2160(2009).

71. PatraCR,BhattacharyaR,WangEetal.Targeteddeliveryofgemcitabinetopancreaticadenocarcinomausingcetuximabasatargetingagent.CancerRes.68(6),1970-1978(2008).

72. SunB,RanganathanB,FengS-S.Multifunctionalpoly(D,L-lactide-co-glycolide)/montmorillonite(PLGA/MMT)nanoparticlesdecoratedbyTrastuzumabfortargetedchemotherapyofbreastcancer.Biomaterials29(4),475-486(2008).

73. DilnawazF,SinghA,MohantyC,SahooSK.Dualdrugloadedsuperparamagneticironoxidenanoparticlesfortargetedcancertherapy.Biomaterials31(13),3694-3706(2010).

74. GuptaB,TorchilinVP.Monoclonalantibody2C5-modifieddoxorubicin-loadedliposomeswithsignificantlyenhancedtherapeuticactivityagainstintracranialhumanbrainU-87MGtumorxenograftsinnudemice.CancerImmunol.Immunother.56(8),1215-1223(2007).

75. ElbayoumiTA,TorchilinVP.Tumor-specificanti-nucleosomeantibodyimprovestherapeuticefficacyofdoxorubicin-loadedlong-circulatingliposomesagainstprimaryandmetastatictumorinmice.Mol.Pharm.6(1),246-254(2008).

76. MaX,ChengZ,JinYetal.SM5-1-conjugatedPLAnanoparticlesloadedwith5-fluorouracilfortargetedhepatocellularcarcinomaimagingandtherapy.Biomaterials35(9),2878-2889(2014).

77. HuC-MJ,KaushalS,CaoHSTetal.Half-antibodyfunctionalizedlipid−polymerhybridnanoparticlesfortargeteddrugdeliverytocarcinoembryonicantigenpresentingpancreaticcancercells.Mol.Pharm.7(3),914-920(2010).

78. KouG,GaoJ,WangHetal.Preparationandcharacterizationofpaclitaxel-loadedPLGAnanoparticlescoatedwithcationicSM5-1single-chainantibody.J.Biochem.Mol.Biol.40(5),731-739(2007).

79. LuR-M,ChangY-L,ChenM-S,WuH-C.Singlechainanti-c-Metantibodyconjugatednanoparticlesforinvivotumor-targetedimaginganddrugdelivery.Biomaterials32(12),3265-3274(2011).

33

80. GaoJ,KouG,WangHetal.PE38KDEL-loadedanti-HER2nanoparticlesinhibitbreasttumorprogressionwithreducedtoxicityandimmunogenicity.BreastCancerRes.Treat.115(1),29-41(2009).

81. DanP.TheRoleofNeurotrophinReceptorp75NTRinCancer.

82. DaiJ,JinJ,LiBetal.AchimericSM5-1antibodyinhibitshepatocellularcarcinomacellgrowthandinducescaspase-dependentapoptosis.CancerLett.258(2),208-214(2007).

83. ChenY,LiuL.Modernmethodsfordeliveryofdrugsacrosstheblood–brainbarrier.Adv.DrugDeliv.Rev.64(7),640-665(2012).

84. FujitaM,LeeB-S,KhazenzonNMetal.Braintumortandemtargetingusingacombinationofmonoclonalantibodiesattachedtobiopoly(β-L-malicacid).J.Control.Release122(3),356-363(2007).

85. YuYJ,AtwalJK,ZhangYetal.Therapeuticbispecificantibodiescrosstheblood-brainbarrierinnonhumanprimates.Sci.Transl.Med.6(261),261ra154-261ra154(2014).

86. HolligerP,HudsonPJ.Engineeredantibodyfragmentsandtheriseofsingledomains.Naturebiotechnol.23(9),1126-1136(2005).

87. WidderKJ,SenyeiAE,ScarpelliDG.MagneticMicrospheres:AModelSystemforSiteSpecificDrugDeliveryinVivo.Exp.Biol.Med.158(2),141-146(1978).

88. PankhurstQA,ConnollyJ,JonesS,DobsonJ.Applicationsofmagneticnanoparticlesinbiomedicine.J.PhysD:Appl.Phys.36(13),R167(2003).

89. PastanI,HassanR,FitzgeraldDJ,KreitmanRJ.Immunotoxintreatmentofcancer*.Annu.Rev.Med.58221-237(2007).

90. BarthRF,VicenteM,HarlingOKetal.Currentstatusofboronneutroncapturetherapyofhighgradegliomasandrecurrentheadandneckcancer.Radiat.Oncol.7(146),1-21(2012).

91. PanX,WuG,YangW,BarthRF,TjarksW,LeeRJ.Synthesisofcetuximab-immunoliposomesviaacholesterol-basedmembraneanchorfortargetingofEGFR.BioconjugateChem.18(1),101-108(2007).

92. BourasA,KaluzovaM,HadjipanayisCG.Radiosensitivityenhancementofradioresistantglioblastomabyepidermalgrowthfactorreceptorantibody-conjugatediron-oxidenanoparticles.J.Neurooncol.1-10(2015).

93. KimJ,WilsonDR,ZamboniCG,GreenJJ.Targetedpolymericnanoparticlesforcancergenetherapy.J.DrugTarget.23(7-8),627-641(2015).

94. DingY,JiangZ,SahaKetal.Goldnanoparticlesfornucleicaciddelivery.Mol.Ther.22(6),1075-1083(2014).

34

95. WaltherW,SchlagPM.Currentstatusofgenetherapyforcancer.Curr.Opin.Oncol.25(6),659-664(2013).

96. XuC-F,WangJ.DeliverysystemsforsiRNAdrugdevelopmentincancertherapy.AsianJ.PharmaceuticalSci.10(1),1-12(2015).

97. MoffattS,PapasakelariouC,WiehleS,CristianoR.Successfulinvivotumortargetingofprostate-specificmembraneantigenwithahighlyefficientJ591/PEI/DNAmolecularconjugate.GeneTher.13(9),761-772(2006).

98. TagawaST,MilowskyMI,MorrisMetal.PhaseIIStudyofLutetium-177–LabeledAnti-Prostate-SpecificMembraneAntigenMonoclonalAntibodyJ591forMetastaticCastration-ResistantProstateCancer.Clin.CancerRes.19(18),5182-5191(2013).

99. ZhangK,HaoL,HurstSJ,MirkinCA.Antibody-linkedsphericalnucleicacidsforcellulartargeting.J.Am.Chem.Soc.134(40),16488-16491(2012).

100. ChanDP,DeleaveyGF,OwenSC,DamhaMJ,ShoichetMS.Clickconjugatedpolymericimmuno-nanoparticlesfortargetedsiRNAandantisenseoligonucleotidedelivery.Biomaterials34(33),8408-8415(2013).

101. MeissnerJM,ToporkiewiczM,CzogallaA,MatusewiczL,KuliczkowskiK,SikorskiAF.Novelantisensetherapeuticsdeliverysystems:Invitroandinvivostudiesofliposomestargetedwithanti-CD20antibody.J.Control.Release220515-528(2015).

102. ShanbhagPP,JogSV,ChogaleMM,GaikwadSS.Theranosticsforcancertherapy.Curr.DrugDeliv.10(3),357-362(2013).

103. KaluzovaM,BourasA,MachaidzeR,HadjipanayisC.Targetedtherapyofglioblastomastem-likecellsandtumornon-stemcellsusingcetuximab-conjugatediron-oxidenanoparticles.Oncotarget6(11),8788-8806(2015).

*PioneeringstudyinfusingEGFR-targetedSPIONsintotumoursusingconvectionenhanceddeliveryfortheranosticapplication

104. TaylorRM,SillerudLO.Paclitaxel-loadedironplatinumstealthimmunomicellesarepotentMRIimagingagentsthatpreventprostatecancergrowthinaPSMA-dependentmanner.Int.J.Nanomedicine74341(2012).

105. YangJ,LeeC-H,ParkJetal.AntibodyconjugatedmagneticPLGAnanoparticlesfordiagnosisandtreatmentofbreastcancer.J.Mater.Chem.17(26),2695-2699(2007).

35

106. LingY,WeiK,LuoY,GaoX,ZhongS.Dualdocetaxel/superparamagneticironoxideloadednanoparticlesforbothtargetingmagneticresonanceimagingandcancertherapy.Biomaterials32(29),7139-7150(2011).

107. SrinivasanS,ManchandaR,LeiT,NagesettiA,Fernandez-FernandezA,McgoronAJ.Targetednanoparticlesforsimultaneousdeliveryofchemotherapeuticandhyperthermiaagents–Aninvitrostudy.J.Photochem.Photobiol.B.136(0),81-90(2014).

108. ParhiP,SahooSK.Trastuzumabguidednanotheranostics:Alipidbasedmultifunctionalnanoformulationfortargeteddrugdeliveryandimaginginbreastcancertherapy.J.ColloidInterfaceSci.451198-211(2015).

109. WuH,ShiH,ZhangHetal.Prostatestemcellantigenantibody-conjugatedmultiwalledcarbonnanotubesfortargetedultrasoundimaginganddrugdelivery.Biomaterials35(20),5369-5380(2014).

110. MenonJU,JadejaP,TambeP,VuK,YuanB,NguyenKT.Nanomaterialsforphoto-baseddiagnosticandtherapeuticapplications.Theranostics3(3),152-166(2013).

111. CavaliereR,CiocattoEC,GiovanellaBCetal.Selectiveheatsensitivityofcancercells.Biochemicalandclinicalstudies.Cancer20(9),1351-1381(1967).

112. HildebrandtB,WustP,AhlersOetal.Thecellularandmolecularbasisofhyperthermia.Crit.Rev.Oncol.Hematol.43(1),33-56(2002).

113. HurwitzM,StaufferP.Hyperthermia,radiationandchemotherapy:theroleofheatinmultidisciplinarycancercare.Presentedat:Semin.Oncol.2014.

114. DenardoSJ,DenardoGL,NatarajanAetal.Thermaldosimetrypredictiveofefficacyof111In-ChL6nanoparticleAMF–inducedthermoablativetherapyforhumanbreastcancerinmice.J.Nucl.Med.48(3),437-444(2007).

115. DenardoSJ,DenardoGL,MiersLAetal.DevelopmentofTumorTargetingBioprobes(111In-ChimericL6MonoclonalAntibodyNanoparticles)forAlternatingMagneticFieldCancerTherapy.Clin.CancerRes.11(19),7087s-7092s(2005).

116. El-SayedIH,HuangX,El-SayedMA.Selectivelaserphoto-thermaltherapyofepithelialcarcinomausinganti-EGFRantibodyconjugatedgoldnanoparticles.CancerLett.239(1),129-135(2006).

117. ChenCH,WuY-J,ChenJ-J.GoldNanotheranostics:PhotothermalTherapyandImagingofMucin7ConjugatedAntibodyNanoparticlesforUrothelialCancer.BioMedRes.Int.(2014).

36

118. LiuT,TianJ,ChenZetal.Anti-TROP2conjugatedhollowgoldnanospheresasanovelnanostructurefortargetedphotothermaldestructionofcervicalcancercells.Nanotechnology25(34),345103(2014).

119. HuangX,El-SayedIH,QianW,El-SayedMA.Cancercellimagingandphotothermaltherapyinthenear-infraredregionbyusinggoldnanorods.J.Am.Chem.Soc.128(6),2115-2120(2006).

120. GlazerES,MasseyKL,ZhuC,CurleySA.Pancreaticcarcinomacellsaresusceptibletononinvasiveradiofrequencyfieldsaftertreatmentwithtargetedgoldnanoparticles.Surgery148(2),319-324(2010).

121. GlazerES,ZhuC,MasseyKLetal.Noninvasiveradiofrequencyfielddestructionofpancreaticadenocarcinomaxenograftstreatedwithtargetedgoldnanoparticles.Clin.CancerRes.16(23),5712-5721(2010).

122. WangC-H,ChiouS-H,ChouC-P,ChenY-C,HuangY-J,PengC-A.Photothermolysisofglioblastomastem-likecellstargetedbycarbonnanotubesconjugatedwithCD133monoclonalantibody.Nanomed.Nanotech.Biol.Med.7(1),69-79(2011).

123. ShaoN,LuS,WickstromE,PanchapakesanB.IntegratedmoleculartargetingofIGF1RandHER2surfacereceptorsanddestructionofbreastcancercellsusingsinglewallcarbonnanotubes.Nanotechnology18(31),315101(2007).

124. MarchesR,ChakravartyP,MusselmanIHetal.Specificthermalablationoftumorcellsusingsingle‐walledcarbonnanotubestargetedbycovalently‐coupledmonoclonalantibodies.Int.J.Cancer125(12),2970-2977(2009).

125. HuberDL.Synthesis,Properties,andApplicationsofIronNanoparticles.Small1(5),482-501(2005).

126. HervaultA,ThanhNNTK.Magneticnanoparticle-basedtherapeuticagentsforthermo-chemotherapytreatmentofcancer.Nanoscaledoi:10.1039/c4nr03482a(2014).

*Recentin-depthreviewonmagneticnanoparticlehyperthermia

127. SimbergD,ParkJ-H,KarmaliPPetal.Differentialproteomicsanalysisofthesurfaceheterogeneityofdextranironoxidenanoparticlesandtheimplicationsfortheirinvivoclearance.Biomaterials30(23),3926-3933(2009).

128. AbdollahMR,KalberT,TolnerBetal.ProlongingthecirculatoryretentionofSPIONsusingdextransulfate:invivotrackingachievedbyfunctionalisationwithnear-infrareddyes.Farad.Discuss.175(41),(2014).

37

129. BaiuDC,ArtzNS,McelreathMRetal.Highspecificitytargetinganddetectionofhumanneuroblastomausingmultifunctionalanti-GD2iron-oxidenanoparticles.Nanomedicine10(19),2973-2988(2015).

*RecentstudyhighlightingthatmodificationoftheNPsurfaceofthetargetingAbcanreducenon-specificuptakeandclearance,andthatproductionofAb-targetedNPscanbeupscaledtoGMPstandards.

130. DreadenEC,AustinLA,MackeyMA,El-SayedMA.Sizematters:goldnanoparticlesintargetedcancerdrugdelivery.Ther.Deliv.3(4),457-478(2012).

131. MansonJ,KumarD,MeenanBJ,DixonD.Polyethyleneglycolfunctionalizedgoldnanoparticles:theinfluenceofcappingdensityonstabilityinvariousmedia.GoldBull.44(2),99-105(2011).

132. FabbroC,Ali-BoucettaH,DaRosT,KostarelosK,BiancoA,PratoM.Targetingcarbonnanotubesagainstcancer.Chem.Commun.48(33),3911-3926(2012).

133. KesharwaniPK,MishraV,JainNK.Validatingtheanticancerpotentialofcarbonnanotube-basedtherapeuticsthroughcelllinetesting.DrugDiscov.Today(2015).

134. MackowiakSA,SchmidtA,WeissVetal.Targeteddrugdeliveryincancercellswithred-lightphotoactivatedmesoporoussilicananoparticles.NanoLett.13(6),2576-2583(2013).

135. ShaoK,SinghaS,Clemente-CasaresX,TsaiS,YangY,SantamariaP.Nanoparticle-BasedImmunotherapyforCancer.ACSnano(2014).

*Reviewontheevolvingroleofnanoparticlesincancerimmunotherapy

136. SteenblockER,FadelT,LabowskyM,PoberJS,FahmyTM.Anartificialantigen-presentingcellwithparacrinedeliveryofIL-2impactsthemagnitudeanddirectionoftheTcellresponse.J.Biol.Chem.286(40),34883-34892(2011).

top related