antibody-targeted nanoparticles for cancer treatment · keywords: antibodies, nanoparticles,...

37
1 Antibody-Targeted Nanoparticles for Cancer Treatment Thomas Carter 1 , Paul Mulholland 1,2 , Kerry Chester 1 Abstract Nanoparticles are diverse and versatile with physical properties that can be employed for use in cancer medicine. Targeting nanoparticles using antibodies and antibody fragments could overcome some of the limitations seen with current targeted therapies. This review will discuss the role of antibody-targeted nanoparticles in the treatment of cancer: as delivery vehicles, targeted theranostic agents and in the evolving field of cancer hyperthermia. Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction As our understanding of cancer biology has evolved, so too has the appreciation that antibody targeted cancer treatment offers significant advantages over conventional therapy. A number of strategies have been successful in the clinic: most notably the use of monoclonal antibodies (mAbs) to target cancer-specific antigens [1], deliver cytotoxic chemotherapy in the form of antibody-drug conjugates (ADCs) [2], release brakes on the immune system [3] and to recruit cytotoxic T cells [4]. However, the successes of these targeted therapies are not without drawbacks, including dose-limiting toxicities. Advances in nanotechnology have enabled the creation of a vast array of devices, collectively referred to as nanoparticles (NPs), which possess unique physical, chemical and biological properties. The use of antibodies to target these nano- sized drug delivery vehicles offers new potential that can be harnessed for use in cancer medicine [5]. Indeed, a small number of targeted NPs have been already been successfully translated into early phase clinical trials using targeting ligands [6-8]. Antibodies (Abs) have become the most widely studied of these targeting ligands [9], due to their high specificity and the vital role they play in modern cancer therapeutics.

Upload: others

Post on 11-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

1

Antibody-TargetedNanoparticlesforCancerTreatmentThomasCarter1,PaulMulholland1,2,KerryChester1AbstractNanoparticlesarediverseandversatilewithphysicalpropertiesthatcanbe

employedforuseincancermedicine.Targetingnanoparticlesusingantibodies

andantibodyfragmentscouldovercomesomeofthelimitationsseenwith

currenttargetedtherapies.Thisreviewwilldiscusstheroleofantibody-targeted

nanoparticlesinthetreatmentofcancer:asdeliveryvehicles,targeted

theranosticagentsandintheevolvingfieldofcancerhyperthermia.

Keywords:Antibodies,nanoparticles,targeting,cancertreatment,clinicaltranslation,theranostics,hyperthermia1.0IntroductionAsourunderstandingofcancerbiologyhasevolved,sotoohastheappreciation

thatantibodytargetedcancertreatmentofferssignificantadvantagesover

conventionaltherapy.Anumberofstrategieshavebeensuccessfulintheclinic:

mostnotablytheuseofmonoclonalantibodies(mAbs)totargetcancer-specific

antigens[1],delivercytotoxicchemotherapyintheformofantibody-drug

conjugates(ADCs)[2],releasebrakesontheimmunesystem[3]andtorecruit

cytotoxicTcells[4].However,thesuccessesofthesetargetedtherapiesarenot

withoutdrawbacks,includingdose-limitingtoxicities.

Advancesinnanotechnologyhaveenabledthecreationofavastarrayofdevices,

collectivelyreferredtoasnanoparticles(NPs),whichpossessuniquephysical,

chemicalandbiologicalproperties.Theuseofantibodiestotargetthesenano-

sizeddrugdeliveryvehiclesoffersnewpotentialthatcanbeharnessedforusein

cancermedicine[5].Indeed,asmallnumberoftargetedNPshavebeenalready

beensuccessfullytranslatedintoearlyphaseclinicaltrialsusingtargeting

ligands[6-8].Antibodies(Abs)havebecomethemostwidelystudiedofthese

targetingligands[9],duetotheirhighspecificityandthevitalroletheyplayin

moderncancertherapeutics.

Page 2: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

2

ThemainchallengeforAb-targetedNPsisensuringthataswellas

demonstratingefficacytheNPhasanadequateplasmahalf-lifeandcan

specificallytargetcancercellswithatolerablesideeffectprofile.Thereare

controversiesoverwhichNPplatformscanbestoffertheseproperties,with

unansweredquestionsconcerningcellularinteractionanduptake,potential

toxicitiesandhowNPpropertiesaffectbehaviourbothin-vitroandin-vivo[10].A

robustunderstandingofthephysicalpropertiesofNPsisrequiredtoguide

researchintothecellularandphysiologicalinteractionsofNPs,generating

clinical-gradeproductsthatcouldbecomethenextgenerationofcancer

treatments.

ThisreviewaimstodefineandoutlinethedifferentNPplatformsthatare

currentlyusedinpre-clinicalandtranslationalcancermedicineandthe

challengesfacedintheAb-functionalisationofNPs.Researchregardingthe

variousapproachesandadvantagesofferedbyAb-targetedNPsincancer

therapywillalsobediscussed.

1.1.NanoparticlesNPsaredefinedbytheCommissionoftheEuropeanUnionasanynaturally

occurringormanufacturedparticulatematerialeitherunbound,asanaggregate

oragglomerate,whereatleasthalfoftheparticleshaveoneormoreexternal

dimensionsbetween1and100nminsize[11].However,thereremainsno

formalconsensusonthedefinition[12]andwhilstNPsareoftendefinedbytheir

sizeitisgenerallyconsideredimportanttoalsodefinethembypropertiesnot

sharedwithotherparticleswiththesamechemicalcomposition[13].For

examplehighmobilityinthefreestate,largesurfaceareatovolumeratioand,in

somecases,thenanosize-dependentexhibitionofquantumeffectswhichcontrol

physicalpropertiesandNPbehaviour[14].

Thiswideanddiverserangeoffunctionalpropertiesisfacilitatedbythevariety

ofmaterialsavailabletosynthesiseNPs.Theresultingversatilityoffersattractive

translationalpotentialforanumberofbiomedicalapplicationssuchastargeted

Page 3: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

3

deliveryoftreatment,innovativeimagingtechniquesandnoveltherapeuticsfor

hyperthermia.Table1showsthefavourablephysicalcharacteristicsoftheNP

treatmentplatformsdiscussedinthisreview.Giventhesecharacteristics,itisnot

surprisingthatoverthelastdecadenanoparticleshavereceivedincreasing

attentionfortheirexcitingpotentialinboththediagnosisandtreatmentof

cancer.

Page 4: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

4

Nanoparticle Size FavourablePhysicalCharacteristics

NATURALPOLYMERS*(Albumin)[15] 50-300nm

Biocompatible,biodegradable,non-toxicandnon-immunogenic.Straightforwardtocross-linkandchemicallymodify,drugsreadilyincorporatedintoalbuminpolymermatrix.

SYNTHETICPOLYMERS*(Poly-lacticoglycolicacid(PLGA)[16] 50-300nm

FDAapprovedsyntheticmaterialthatisnon-toxicandundergoeshydrolysisin-vivotoproducebiodegradablemetabolites.Drugseasilyincorporatedintothematrix.

LIPOSOMES*[17] 20–1000nm

Wellestablishedascancertherapeutics,canencapsulatehydrophilicandlipophillicdrugs,soluble,lowuptakebymacrophages,favourablestabilityin-vivo,andascolloids,protectdrugsfrombreakdown.

MICELLES*[18] 10-100nm

Uniquecore-shellarchitecture,hydrophobiccoreactsasnaturalcarrierenvironment,hydrophilicshellenablesstabilityinaqueoussolution,structuralmodificationscanfurtheraugmenttumourcelluptake

DENDRIMERS*[19,20] 5–20nm

Symmetricalbranchedpolymericmacromoleculeswithacentralcorealloweitherencapsulationorconjugationoftherapeuticagent.Self-assembling,polyvalent,chemicallystable,non-toxicandsoluble.

IRON-OXIDENANOPARTICLES*(Superparamagneticiron-oxidenanoparticles(SPIONs))[21] 10-100nm

Biocompatibleandbiodegradable,establishedclinicaluseasmagneticresonanceimaging(MRI)contrastagents,controllablebyanexternallyappliedmagneticfield,diverseformulationsallowfine-tuningofphysicochemicalproperties

SILICA(PorousSilicaNanoparticles(pSiNPs))[22] 50-1000nm

Goodchemicalandthermalstability,largesurfaceareaandporevolume.Canencapsulatelargeamountsofbioactivemoleculeandpromotecontrolleddrugrelease.Alsoofferssimplesurfacefunctionalisation

GOLDNANOPARTICLES*(Goldnanoparticles(AuNPs),Goldnanorods)[23] 1-100nm

Intenselightabsorptionandhighphotothermalconversionrate,andeaseofsynthesisinavarietyofshapesandsizes.Goodbiocompatibility,colloidalstabilityandsimpleligandconjugationchemistry.

CARBONNANOPARTICLES(Carbonnanotubes(CNTs))[24] 1-10nm

Highcarryingcapacity,andhighpropensitytotraversecellmembranesEasilychemicallymodifiedorfunctionalizedthroughformationofstablecovalentbonds.

QUANTUMDOTS(QDs)[25] 2-10nm

Broadabsorptionspectraandhighfluorescencequantumyield,highphotostability.Possibilityofmultiplexing(differentcoloursofQDsusedwithinoneassaywithasingleexcitationsource).CanbecombinedwithotherNPplatformsforcancertheranostics.

Page 5: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

5

Table1.PhysicalcharacteristicsofthecommonlyusedNPplatformsexploitedforclinicalapplications.NPslabelledwithanasterix(*)havebeenusedintheclinicforthediagnosisortreatmentofcancer[26].1.2.TargetingNanoparticlesforCancerTreatmentTheabnormalhyperpermeablevasculatureandimpairedlymphaticdrainage

foundwithintumours[27]canleadtopassiveaccumulationofNPswithin

malignanttissues.Thisprocessisknownasenhancedpermeabilityandretention

(EPR).EPRhasbeendemonstratedextensivelyinpre-clinicalresearchandinthe

clinicalsettingusingliposomaldrugssuchaspegylatedliposomaldoxorubicin

(PLD).ThesuccessofPLDliesinencapsulatingthetoxicanthracycline

doxorubicinwithin100nmliposomestolimitdruguptakeintosensitivehealthy

tissuessuchasthemyocardiumtherebyavoidingtheseveredose-limiting

cardiotoxicitycommonlyseenwithfreedoxorubicin[28].Oncelocalisedwithin

thetumour,liposomebreakdownreleasesthedoxorubicin,causinglocaltumour

celldeath.

WhilstEPRcanincreaseoveralltumouruptakeofNPs,specifictargetingofNPs

tocancercellscanbebestachievedthroughtheadditionofatargetingmoiety

[29],anumberofwhichhaveshownpromiseincludingproteins,nucleicacids

andsmallmolecules(Figure1).

Page 6: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

6

Figure1.SchematicshowingthemostcommonlyusedligandstoactivelytargetNPsincludingDNAaptamers(A),antibodies;asbothwholeimmunoglobulinGmolecules(IgGs)(B)andfragmentssuchassinglechainvariablefragments(scFv)(C),non-immunoglobulinproteinssuchastransferrin(D)andsmallmoleculessuchasfolicacid(E).Figureadaptedfrom[30].Antibodies,themostwidelyusedligandsforNPtargeting,recogniseavastarray

ofantigens,duetotheiruniquespecificityconferredbythecomplementarity

determiningregions(CDRs)(Figure2).Antibodiescanbereadilygeneratedas

intactIgGsorasfragmentssuchassinglechainvariablefragments(scFvs)

(Figure2)indefined,recombinantform[31,32].Antibodytargetingappearsto

becomplementarytopassiveintratumouralaccumulationmediatedbyEPR[33-

35].Ab-NPsalsoshowimprovedefficacyandcytotoxicitycomparedwithnon-

targetedNPs[36].

Page 7: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

7

Figure2.ImmunoglobulinG(IgG)Structure:Theheavychain(blue)ismadeupofonevariableregion(VH)andthreeconstantregions(CH1,CH2,CH3).Thelightchain(green)hasonevariable(VL)andoneconstant(CL)region.Oneachvariablechaintherearethreecomplementaritydeterminingregions(CDRs),whichbestowthevastvariabilityinspecificantigenbindingcapacity.VHandVLtogetherwithCH1andCLareknownastheFab(fragment,antigenbinding),andtheremainderofthemoleculeisknownastheFcregion(fragment,crystallisable),whichconfersbiologicalactivityandhalf-life.Recombinantantibodyfragmentsincludesinglechainvariablefragments(scFvs),whicharemadeupoftheVHandVLsegmentsjoinedusingapeptidelinker.2.0Antibody-Nanoparticlebio-conjugationThechallengesinestablishingconjugationstrategiesthatpreservethe

functionalityofboththeantibodyandNPduringtheconjugationprocesscanbe

broadlydividedintothreemaincategories;controllability,stabilityand

reliability.Controllabilityrelatestothenumberofantibodiesconjugatedtoeach

NPandtheorientationofthisinteraction,bothofwhichcangreatlyaffectthe

subsequentfunctionalabilityofanAb-NPconjugate[37].Whilstitremains

difficulttopre-determinethenumberofAbsconjugatedtoeachNP,itispossible

tofractionatefunctionalisedNPsbasedonthenumberoflinkermoleculesonthe

NPsurface[38].Sophisticatedtechniqueshavealsobeendevelopedtocontrol

antibodyorientation[39,40],resultinginpreservationofAbbioactivity[41].

ThesenewtechniqueshavebeenreportedtoachieveAbbioactivityashighas

88%ofthenakedantibody[41,42].

Page 8: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

8

ItiscruciallyimportanttomaintainstabilityoftheNPandAbthroughoutthe

conjugationprocessandtoensurethatthefinalconjugatehasacceptable

stabilityin-vitroandin-vivo.Harshreactionconditionsshouldbeavoided,as

thesecantriggerantibodyunfoldingwhichimpairsantigenbinding[43].Itis

alsonecessarythattheattachmentofAbtoNPsurfacedoesnotleadtounfolding

fromunfavourableinteractionsoftheproteinsidechainswiththeNPsurface

[44].Thechoiceofconjugationstrategyhasalsobeenshowntoaffectlong-term

stability.Forexample,whilstthehighlyspecificinteractionbetweenstreptavidin

andbiotinadaptormolecules(engineeredontothenanoparticlesurfaceand

antibodyrespectively)successfullygenerateAb-NPconjugatescapableof

targetingtumourcellsin-vitro[45],theseconjugatesdidnotdemonstrate

acceptablelong-termcolloidalstability.However,byaddingareactivethiol

grouptotheAbandcovalentlycross-linkingitviaabifunctionallinkermolecule

tothenanoparticlesurfacehigherbindingefficiencyandimprovedstabilitywas

achievedwithequalin-vitrotargetingefficacy[46].

Reliable,reproducibleandwellvalidatedconjugationproceduresareessentialto

enableupscaledevelopmentforuseinclinicalapplications[47]andtodate,this

hasbeenmostsuccessfullyachievedbydirectcovalentconjugationvialinker

molecules.Establishedcovalentconjugationmethodsincludecarbodiimide

coupling,maleimidecouplingandclickchemistry(coppercatalysedalkyne-azide

cycloadditionreactions)[48],asshowninfigure3.InthecaseofAuNPsgold-

sulphurlinkagecanbeexploited,utilisingthehighaffinitywithwhichthiol

modifiedligandsbindtogoldsurfaces[49].Theadvantagesanddisadvantagesof

conjugationstrategiesaresummarisedintable2,andhavebeenreviewedin

depthbyMontenegroet.al.[50].

Page 9: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

9

Figure3.Establishedmethodsforthecovalentconjugationofantibodiesto

nanoparticles:(A)carbodiimidecoupling,(B)maleimidecouplingand(C)

Coppercatalysed‘click’cycloadditionreaction[48].

ConjugationStrategy

Advantages Disadvantages

PhysicalAdsorption(ionic,electrostatic,van-der-Waals)

• Simpleandstraightforward• UnnecessarytomodifyeithertheAbortheNP

• Electrostaticattractioncanorientatetheantibodies‘endon’preservingbindingability

• Reversible• HydrophobicinteractioncancausedenaturationofAb

• ElectrostaticattractionisweakandpHdependent

• Competitivedisplacementbyserumproteinscanoccur

CovalentConjugation(includingvialinkermolecules)

• Higherstabilityandimprovedreproducibility

• ModificationstoAbusuallynotrequired

• Orientedbindingpossible• Useoflinker-moleculecanavoidhostilereactionconditions

• Possibletocontrolvalency

• Reactionconditionsmayleadtoproteinunfolding/reduction

• Conditionscanaffectantigenbindingcapacity

• Choiceofbindingmoietiesorlinkercansignificantlyaffectfunction

Useofadaptormolecules(biotin/streptavidin)

• Usuallyorientatedbinding• Canresistharshreactionconditions

• Difficulttocontrolvalency• Expensivetechnique• Reversibleattachment

BispecificAntibodyConjugation[51]

• Noneedfordisruptivechemicalconjugation

• MinimalimpactuponNPstability

• Longtermstabilityunknown• Onlyoneantigenbindingsiteavailable

Table2.SomeadvantagesanddisadvantagesofAb-NPbio-conjugationstrategies.Tableadaptedfrom[50,51].

Page 10: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

10

3.0ClinicalApplicationsofNanoparticlesforCancerTherapyAnumberofuntargetedNPshaveenteredinearlyphaseclinicalcancertrials

[26].Theseincludecyclodextrin-polymercamptothecin-containingNPsfor

advancedovariancancer[52],micellesdeliveringpaclitaxeltopatientswith

advancedgastriccancer[53]andAuNPsdeliveringrecombinanthumanTNF-

alphatopatientswithadvancedsolidtumours[54].SuperparamagneticIron-

oxideNPs(SPIONs)havefoundclinicalapprovalforuseascontrastagentsin

cancerimaging[55,56]andhavealsobeensuccessfulinearlyphasetrialsin

cancerhyperthermia[57,58].SomeuntargetedNPshavebeenfullyapprovedfor

clinicaluseascancertherapeutics[26]includingtheliposomaldrugPLD[59],

andnanoparticlealbumin-boundpaclitaxel(nab-paclitaxel)[60].

Ab-targetedNPsintheclinicareshowingearlypromisebuthavebeensofar

beenrestrictedtoliposomes.Inonetrial,ascFvagainsttransferrinreceptorwas

usedtotargetliposomesbearingp53DNAinpatientswithavarietyofadvanced

solidtumours[61].Doserelatedaccumulationofthetransgenewasobservedin

tumoursbutnotinnormalskintissue.Furthermore,7outof11patientshad

stablediseaseafter6weeksoftreatmentwithtolerablesideeffects[61].PLDhas

alsobeentargetedtotheFDA-approvedchimericanti-epidermalgrowthfactor

receptor(EGFR)mAbcetuximabinaphaseIclinicaltrialwithsomeevidenceof

clinicalefficacy.Furthermore,thesideeffectsseenwerelessseverethanwould

beexpectedwitheitherfreedoxorubicinorcetuximab[6].Themostcommon

dose-limitingtoxicitywasmyelosuppression,whichcouldbemanaged

prophylacticallywithgranulocyte-colonystimulatingfactor(G-CSF)[6].

TargetedPLDhasalsobeeninvestigatedintheclinicusingananti-human

epidermalgrowthfactorreceptor2(HER-2)scFv[7].Theseearlyclinicaltrials

areencouragingandfurthertranslationofAb-targetedNPsisunderpinnedbya

numberofexcitingpreclinicalstudies.Theongoingpre-clinicaldevelopmentof

Ab-targetedNPsfordeliveryofcytotoxicdrugs,radiotherapyandnucleicacids

andtheirroleincancertheranosticsandcancerhyperthermiaisdiscussed

below.

Page 11: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

11

4.0PreclinicalDevelopmentofantibody-targetednanoparticlesforcancertherapy4.1DeliveryofcytotoxicagentsAbtargetedNPdrugdeliveryoffersanumberofbenefitsoversystemic

administrationoffreedrugs.Theseincludeimprovedintratumouraldrug

distribution,controlledreleaseofdrugswithinthetumourmicroenvironment,

superiorefficacyandmoretolerablesideeffects.Althoughantibody-targeted

liposomes(immunoliposomes)remainintheleadfordeliveryofcytotoxicagents

[62],otherinnovativeapproachesareclosebehindusingwholeAbsaswellasAb

fragments.Thisisillustratedbythevarietyofdrug-loadedNPsinpreclinical

development(Table3).

Page 12: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

12

Nanoparticle Antibody/Fragment

MolecularTarget

CytotoxicAgent

Stage Cancer Reference

PEGylatedPLGAPolymer

mAb DR-5 Camptothecin In-vivo Colorectal [63]

Liposome mAb GD2 Etoposide In-vitro Mixed(GD2expressing)

[64]

Lipid-PolymerHybrid

mAb EGFR Adriamycin In-vivo HepatocellularCarcinoma(HCC)

[65,66]

PLGAPolymer mAb EGFR Paclitaxel In-vivo Lung [36,67]PorousSilicaNPs(pSiNPs)

mAb p75(NTR),EGFR,CD20

Camptothecin In-vitro Glioblastoma,Neuroblastoma,B-celllymphoma

[68]

Polymericnano-micelles

mAb HIF-1α Paclitaxel In-vitro Gastric [69]

CarbonNanotube(CNT)

mAb CEA Doxorubicin In-vitro Colon [70]

AuNPs mAb EGFR Gemcitabine In-vitro Pancreatic [71]PLGA/MMTPolymer

mAb HER2 Paclitaxel In-vitro Breast [72]

SPIONs mAb HER2 Paclitaxel/Rapamicin

In-vitro Breast [73]

Liposome mAb 2C5 Doxorubicin In-vivo Glioma,Lung [74,75]PLAPolymer mAb SM5-1

bindingprotein

5-FU In-vivo HCC [76]

Lipid-PolymerHybrid(PLGA)

Half-Ab(hAb)

CEA Paclitaxel In-vitro Pancreatic [77]

Iron-Oxide(SPION) ScFv Endoglin Docetaxel In-vitro Ovarian [66]PEGylatedPolymer ScFv CD44v6 Arsenic

trioxideIn-vivo Pancreatic [67]

PLGAPolymer ScFv SM5-1bindingprotein

Paclitaxel In-vitro HCC [78]

Liposome ScFv HER-2 Doxorubicin PhaseIClinicalTrial

Breast [7]

Liposome ScFv c-Met Doxorubicin In-vivo Lung [79]PLGA Fab HER2 Pseudomonas

ExotoxinA(PE38KDEL)

In-vivo Breast [80]

Liposome Fab EGFR Doxorubicin PhaseIClinicalTrial

Mixed(EGFRexpressing)TumourTypes

[6,71]

Table3.Drug-loadedNPstargetedusingantibodiesorantibodyfragments.WholeAbs:ThemajorityofwholeAbtargetedNPshavebeendirectedtoEGFRor

HER2;bothofwhichhaveillustratedtheprospectofNP-mediatedintracellular

drugdeliverythroughreceptormediatedinternalisation.Oneexampleused

cetuximabtotargetgemcitabine-loadedAuNPs[71].Intheseexperiments,the

authorsdemonstratedspecifictargetingoftheNPstoEGFRexpressing

pancreaticcelllinesin-vitroandadditionalantibody-mediatedcytotoxicity

Page 13: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

13

comparedtonon-targetedcounterparts[71].TargetingEGFRhasalsoshownin-

vivoefficacyinarangeofmodels.Forexample,indeliveryofpaclitaxel-loaded

polymericNPstolungtumours[36],camptothecinloadedporoussilicaNPstoa

rangeofEGFRover-expressingtumoursincludingglioblastoma[68]and

adriamycinencapsulatedpolymer-lipidNPstohepatocellularcarcinoma[65].In

thisfinalexample,therewasalsoevidencesuggestingthatboththeantibodyand

adriamycinwerecontributingtotheobservedcytotoxicity[65].HER2targeting

usingtrastuzumabhasbeenshowntobeeffectiveusingpaclitaxelandrapamicin

partitionedwithinpolymercoatedSPIONs;In-vitroefficacywasover7times

higherthanthenon-targetedcounterparts[73].Inanotherstudy,HER2-targeted

polymericNPsdeliveringpaclitaxelshowedsustaineddrugreleasein-vitro[72].

PolymericNPshavealsobeensuccessfullytargetedtothepro-apoptoticcell

surfacedeath-receptor,DR5[63].Intheseexperiments,theDR5-targeted

polymericNPswereshowntoinitiateapoptosisin-vitroand,whencaptothecin

wasencapsulated,theNPwasabletoovercometheresistancecommonlyseen

withsingleagentanti-DR5therapyin-vivo.Inanotherexample,hypoxia

induciblefactor1α(HIF-1α),anextracellularproteinoverexpressedina

numberofhumancancersinresponsetolocalhypoxia,wassuccessfullytargeted

withanti-HIF-1αAbfunctionalisedpaclitaxelloadedpolymericNPs[69].The

NPswereshowntoselectivelyinternaliseincellsoverexpressingHIF-1αand

paclitaxelmediatedcytotoxicitywasshowntobespecifictowardsHIF-1α

expressingcells.Othertargetsinvestigatedforcontrolleddeliveryofdrug-loaded

NPsincludethecellsurfaceglycoproteinandtumourmarkercarcinoembryonic

antigen(CEA)andthep75neurotrophinreceptor(NTR)[68].NTRisamember

ofthetumournecrosisfactor(TNF)superfamily,whichhasaroleincelldeath

andisoverexpressedinanumberofmalignanciesincludingsarcomaand

malignantmelanoma[81].Drug-loadedNPshavealsobeentargetedusingSM5-

1,amouse-humanchimericantibodywhichishighlyspecifictotheSM5-1

bindingprotein,atargetknowntobeoverexpressedinanumberofcancers

includinghepatocellularcarcinoma(HCC),melanomaandbreastcancer.Binding

oftheSM5-1Abtoitstargetproteininhibitscellgrowthandinducesapoptosisin

cancercellsinacaspasedependentmanner[82].PolymericNPsloadedwith5-

Page 14: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

14

Flurouracil(5-FU)havebeensuccessfullytargetedusinghumanisedSM5-1inits

wholeAbform,demonstratingsustaineddrugreleaseandfavourableanti-

tumouractivityagainstsubcutaneousandorthotopicHCCxenografts[76].

PLDhasbeenshowntoexhibitenhancedtumourretention,Abdependent

endocytosisandincreasedcytotoxicitywhentargetedusingtheanti-nucleosome

mAb2C5inorthotopicgliomatumoursin-vivo[74].The2C5Abspecifically

recognisesextracellularandtumour-cellboundnucleosomesthatarisefrom

apoptotictumourcellsin-vivo[75].Evenwhenusedatsubtherapeuticquantities,

2C5isaneffectivetumourtargetingmoietyforPLD,alsoshowingefficacy

againstprimaryandmetastaticlungtumoursinmice[75].Centralnervous

system(CNS)tumourspresentauniquechallengetotreatmentduetothe

presenceofthebloodbrainbarrier(BBB);auniquephysiologicalbarrierwhich

functionstoprotectthebrainbutalsolimitsdrugdeliverytotheCNS[83].To

facilitatemovementpasttheBBB,polymeric,2C5-targetedNPshavealsobeen

co-targetedusingananti-transferrinreceptor(TfR)Ab.In-vivointratumoural

localisationwasfoundtobesignificantlyhigherforthedualtargetedNPthan

thatseenforNPstargetedwitheachantibodyalone[84].Morerecently,

transferrinreceptorbispecificantibodyplatformshavebeenshownto

successfullycrossandtargetpasttheBBB[85],andthesebispecificAbscould

equipdrugloadedNPstomoreeffectivelytargetCNStumours.These

experimentssuggestthatAbtargetedNPscouldofferanovelsolutiontodeliver

treatmentpasttheBBB.

AbFragments:Abfragmentsareconsideredtomakeattractivetargetingagents

thankstoasmallersizeandpotentiallyreducedimmunogenicitycomparedwith

wholeAbs[86].Themostcommonlyusedfragments,scFvs,arereadily

generatedusingrecombinantantibodytechnologyandhavebeensuccessfully

appliedinthefollowingexamples.ScFvshavebeensuccessfullyexploitedto

targetarsenicloadedpolymericnanoparticlestargetedtoCD44v6,a

transmembraneglycoproteinoverexpressedonpancreaticadenocarcinoma

cells.Accumulationandretentionwithinthetumourwassignificantlyhigherfor

CD44v6-targetedNPsthanforthenon-targetedcontrols.Furthermore,the

targetedNPsinhibitedtumourgrowthsignificantlymorethanthenon-targeted

Page 15: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

15

NPsorfreearsenic[67].Inanotherexample,phagedisplaytechnologywasused

toobtainacell-internalisingscFvtotargetc-Met;atyrosinekinasereceptor

expressedonbothtumourandendothelialcells[79].Whenthisanti-c-MetscFv

wasusedtotargetPLDtolungtumours,significantdisruptionofthetumour

vasculaturewasobservedinadditiontodirecttumourcellcytotoxicity[79].

Duetotheirmagneticproperties,ithaslongbeenproposedthatSPIONscouldbe

targetedusinganexternallyappliedmagneticfield[87].However,following

successfulinitialin-vivostudies,problemswithbloodvesselembolisationledto

thedevelopmentofalternativemethodsoftargeting,includingAbs[88].More

recently,thepossibilityofmagnetictargetinghasbeenrevisitedincombination

withanscFvtargetedtoendoglin,acellsurfaceglycoproteinoverexpressedon

ovariancancerendothelialcells[66].ThescFvswereconjugatedtothesurfaceof

ironoxidenanoparticlespre-loadedwithβ-cyclodextrinencapsulateddocetaxel

tocreatedrug-loaded,endoglintargetedSPIONs.In-vitrostudiesshowedthatthe

scFvdirectedspecificbindingontoendoglinpositivecellsandalsothatthe

majorityoftheSPIONswerelocalisedwithinthemagneticfield[66].

ProgresshasalsobeenmadeusingFab-targetedNPs.Forexample,Fab

fragmentsderivedfromahumanisedanti-HER2mAbhavebeensuccessfully

usedtotargetpseudomonasexotoxinA(PE)encapsulatedwithinPLGANPs[80].

PEisapotentimmunotoxinwithsignificanttoxicity,whichhassofarlimitedits

useasananti-cancerdrugdespiteevidenceofimpressiveanti-tumouractivity

[89].Theresultsfromtheseexperimentsdemonstratedimprovedanti-tumour

activityandreducedsystemictoxicitywhencomparedtothenon-encapsulated

anti-HER2-PEAb-drugconjugate(ADC).

4.2DeliveryofradiationtreatmentRadiationistheprimarytreatmentmodalityinthemanagementofmany

cancers.Themainchallengeinradiotherapyishowtoachieveadequate

radiationexposuretothetumourwhilstavoidingdamagetosurrounding

healthyareas,especiallyinsensitivetissuessuchasthebrain.Ab-targetedNPs

haveshownpromiseinaddressingthischallengeforexamplebyfacilitating

Page 16: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

16

neutroncapturetherapy(NCT);atechniquewhichreliesontheintratumoural

injectionofanon-radioactiveisotope,mostcommonlyBoron-10(10B),which

actsasacaptureagentandreleaseslocalisedionisingradiation[90].In-vitro

studieshavetargeted10B-loadedliposomestoEGFR-expressinggliomacellsin-

vitro[91],raisingthepossibilitythatAb-targetedNPscouldovercomethe

barrierofdirectintratumouralinjectionofcaptureagents.Inasecondexample,

cetuximab-conjugatedSPIONswerefoundtosensitiseradioresistantgliomasto

theeffectsofradiation,possiblythroughproductionofreactiveoxygenspecies

andtheinhibitionofDNAdamagerepair[92].

4.3.Deliveryofnucleicacids

Ab-targetedNPdeliveryvectorssuchaspolymericNPs[93],AuNPs[94]and

liposomesarealsobeginningtofindaroleindeliveryofnucleicacidsforcancer

therapy.ThisprovidesopportunityforthedeliveryofDNAtoinduceexpression

oftherapeutictumoursuppressorgenes,ordeliveryofsmallinterferingRNA

(siRNA)oranti-senseDNAsequenceswhichcandisruptthetranslationof

oncogenes[95].EncapsulationofnucleicacidinNPsaimstoovercomebarriers

suchasphysiologicalinstability,poorintracellulardeliveryandoff-targeteffects

[96].Forexample,inonestudy,polyethyleniminewasusedtocondenseand

compactDNAencodingthep53gene[97]generatingpolymer-DNANPswhich

werethentargetedusingJ591,ananti-PSMAmAb.TheresultantJ591targeted

NPsshowedefficienttransfectioninvariousprostatecancercelllinesin-vitro

andeffectivePSMAspecifictargetingwhentestedin-vivoinprostatecancer

xenografts[97].J591isparticularlyfavourableforclinicaltranslationduetoits

previoususeinaphaseIIclinicaltrial[98].

Fordeliveryofanti-senseDNA,AuNPshavebeencoatedwithahighlyorganised

anti-sensenucleicacidlayerdesignedtobindHER2mRNA.Correspondingsense

DNAsequenceswerefunctionalisedviaclickchemistrytoanti-HER2Absand

hybridisedtotheanti-senseDNAontheNPsurface.TheseNPshadsuperior

uptakeintoHER2positivecellsin-vitrocomparedtonon-targetedcounterparts.

Inaddition,aconcentrationof1nManti-HER2NPswassufficienttocompletely

Page 17: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

17

blockexpressionofHER2intargetcellswhilstcontrolNPseithercontaining

scrambledanti-sensenucleicacidsorfunctionalisedusinganoff-targetAb

controlwereunabletoinhibitanyexpression[99].Asimilarapproachwas

undertakenusingclickchemistrytoconjugatechemicallystabilisedantisense

nucleicacidsandtrastuzumabtothesurfaceofpolymericmicelles.Thesedual

functionalisedpolymericNPsdemonstratedHER2targeteddeliveryandefficient

geneknockdowninHER2positivecellsin-vitrowhencomparedwithnon-

targeted,non-stabilisedcontrols[100].

Anotherexampleofefficientnucleicaciddeliveryutilisedaliposomal

formulationofantisensenucleicacidsagainstBCL2,anantiapoptoticgene

overexpressedinthemajorityofacuteleukaemias.Inthisstudy,theliposome

wastargetedusingtheanti-CD20mAbrituximab[101].Thetargetedliposomes

demonstratedeffectivereductionsofBcl-2proteinwithincancercells.Further

in-vivostudiesusinghumanBurkitt’slymphomaxenograftsshowedsignificant

reductionsintumourgrowth.Furthertothis,theliposomeswerefoundtobe

stableforover1yearinstoragewhetherasasuspensionorlyophilisedpowder,

highlightingfeasibilityforclinicaltranslation[101].

4.4.Antibody-conjugatednanoparticlesastheranosticagents:

NPsofferanattractiveplatformfordevelopmentofso-calledtheranosticagents,

whichcombinetherapyanddiagnosiswiththeaimofreducingtheneedfor

multi-stepproceduresandavoidingtreatmentdelays[102].Antibodytargeting

hasamajorroletoplayinthisfield(Figure4),andSPIONshavebecomethe

mostadvancedtheranosticNPsusingarangeofinnovativeapproaches.One

successfulexampleofAb-SPIONtheranosisusedthecommercialanti-EGFRmAb

cetuximab,conjugatedtoPEG-polymercoatedSPIONsthroughcarbodiimide

chemistry,totargetEGFRandthemutantvariantEGFRvIIIexpressingorthotopic

gliomatumours.ThemAb-functionalisedSPIONstriggeredapoptosisinhuman

gliomacellsin-vitroandconferredasignificantsurvivaladvantageoverboth

cetuximabandSPIONsalonewheninfusedintoorthotopichumanGBMmodels

[103].Intheseinnovativestudies,thechallengeofcrossingtheBBBtoachieve

Page 18: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

18

adequateintratumouraldistributionwasaddressedusingconvection-enhanced

delivery(CED).PotentinhibitionofEGFRphosphorylationandincreasedlevels

ofcaspasecleavagewereobservedalongwithconsistentcontrastenhancement

oftheSPIONsonT2-weightedMR.Inadditiontothispromisingexperimental

data,toxicityexperimentsinhealthymiceshowednoevidenceofdamageto

normalbraintissues[103].

Targetingchemotherapyincombinationwithimagingagentsdemonstrates

anothertheranosticapproachthathasbeenexemplifiedusinghybrid

superparamagneticiron-platinumNPs(SIPPs)targetedtotheprostatecancer

targetPMSA.TheSIPPswereencapsulatedwithpaclitaxelinsidephospholipid

micellesandthenconjugatedusingstreptavidin/biotinadaptormoleculesto

anti-PMSAAbs.Theresultinghybrid-NPswereshowntotargetPMSApositive

prostatecells,inducecytotoxicitysimilartofreepaclitaxelin-vitroandfunction

asMRIcontrastagentsin-vivo[104].

Iron-oxidemagneticnano-crystals(MNCs)havealsobeeninvestigatedfor

theranosticpotential.TheseparticlesretaintheimagingabilitiesofSPIONsbut

aresmalleranddonothavesurfacecoatings.Assuch,theyhavetheadvantageof

beingreadilyincorporatedintothestructureoforganicpolymericNPsto

generatemultifunctionalNPs.Inoneexample,doxorubicinandMNCloaded

PLGApolymernanoparticleswereconjugatedviacarbodiimidecouplingtothe

anti-HER2mAbtrastuzumabformingNPswiththepotentialtobothdetectand

treatmalignantbreastcancercells.In-vitroresultswiththeseNPsdemonstrated

excellentefficacyasMRprobeswithspecificityforHER2positivecells.Aswellas

this,theNPsshowedsustainedreleaseofdoxorubicin[105].IronoxideMNCs

havealsobeensuccessfullyemployedastheimagingcomponentofdocetaxel

loadedPLGANPstargetedusingascFvagainstprostatestemcellantigen(PSCA).

PSCApositivecellsincubatedwiththetargetedNPsappeareddarkeronT2-

weightedMRimagingcomparedwithnon-targetedequivalents[106].Unusually

inthisstudy,drugreleaseshowedinitialrapiddesorptionofdrugfromthe

particlesurface,followedbymoresustainedreleaseduringdegradationofthe

polymermatrix.In-vitroefficacystudiesindicatedthatthedocetaxel-loadedNPs

Page 19: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

19

wereeffectiveatalowerdosethanfreedocetaxel.PolymericPLGAnanoparticles

havealsobeenusedtoprovideavehiclefortheranosisbycombining

doxorubicinwithindocyaninegreen(ICG);aheat-generatingnear-infrared(NIR)

dye[107].Whenconjugatedtoanti-HER-2Absusingcarbodiimidechemistry,

theNPsdemonstratedtargetedcelluptake.Furthermore,NIRlaserexcitationof

theICGreleasedcytotoxicheatin-vitro.Theseresultsshowcaseasingle

theranosticNPwithtriplefunctionsin(i)imaging,(ii)deliveryofchemotherapy,

and(iii)inductionoflocalhyperthermia[107].

TheranosticAb-targetedlipidbasedNPshavealsobeencreatedusingquantum

dots(QDs)astheimagingcomponent,rapamycinfortherapyandtrastuzumab

fortargeting.TheresultingNPstargetedandimagedHER2positivecellsin-vitro,

showninboth2Dand3Dmodelsusingconfocalmicroscopy.Inthisstudy,lipid-

encapsulationaloneappearedtoimparta2foldincreaseineffectivenessover

freerapamycin,whilsttheadditionofaHER2targetingAbimpartedafurther5

foldincreaseinefficacyinHER2positivecells[108].

Multi-walledcarbonnanotubes(CNTs)offernewpotentialascancer

theranostics,duetotheirhighcarryingcapacityandhyperechogenicity

(increasedultrasoundcontrast).Preliminaryresultsinvestigatingthe

theranosticapplicationofCNTsconjugatedwithAbagainstPSCAhavebeen

encouraging.WhenfunctionalisedwithAbs,theCNTsshowedefficacyas

contrastagentsandenhanceduptakeintoPSCA-expressingcells.Moreover,after

loadingwithdoxorubicin,theAb-functionalisedCNTsaccumulatedwithin

tumourtissuesandinhibitedtumourgrowthin-vivo[109].

Page 20: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

20

Figure4.Schematicillustratingthe4majorcomponentsofanAb-targetedtheranosticNP:(1)Deliveryvehicle,(2)Imagingagent,(3)Therapeuticcomponentand(4)TargetingAb.Figureadaptedfrom[110].4.5.CancerhyperthermiaAlmost50yearsagoitwasshownthattemperaturesofjust42°Ccouldinduce

cancercelldamagewithinarelativelyshorttimeframewhilstnon-malignant

cellswereabletowithstandthisriseintemperature[111].Morerecentwork

hasshownthatthehypoxictumourmicroenvironmentandtheincreasedmitotic

rateofmalignantcellspredisposemalignantcellstotemperaturesensitivity

[112],andthathyperthermiatreatmentshowssynergismwithconventional

therapies[113].Whilstpotentiallyaneffectivetreatment,themajorchallenge

fortherapeuticapplicationofhyperthermiaisrestrictingtreatmenttodiseased

areasandavoidingdamagetohealthytissues.Heat-generatingNPsofferan

elegantsolutiontothisproblem,particularlyiftheNPscanbelocalisedwithin

tumourspriortoheatinduction.Localisationhasbeenachievedbydirect

injectionintotumourtissue,butincreasinglyantibodyfunctionalisationisbeing

utilisedtotargetNPstothetissueofinterest(Table5),asillustratedwiththe

examplesbelow.

Page 21: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

21

Nanoparticle Externalactivatingfield

Antibodytarget

Setting CancerTreated

Reference

SuperparamagneticIron-oxide

nanoparticles(SPIONs)

Alternatingmagneticfield(AMF)

MembraneProtein

In-vivo Breast [114,115]

GoldNanoparticles(AuNPs)

Laserlight EGFR In-vitro OralSquamousCellcarcinoma

[116]

Mucin-7 In-vitro UrothelialCells [117]Near-Infrared(NIR)light

TROP-2 In-vitro CervicalCancer [118]EGFR In-vitro OralSquamous

Cellcarcinoma[119]

Short-waveradiofrequency(RF)energy

EGFR In-vivo Pancreatic [120,121]

CarbonNanotubes(CNTs)

NIRlight CD133 In-vitro Glioblastoma [122]HER-2&IGF1R

In-vitro Breast [123]

CD22/CD25 In-vitro BurkittsLymphoma

[124]

Table4.Ab-targetedNPsemployedforcancerhyperthermia.

SPIONs:ArethemostclinicallyadvancedNPsforheattreatmentduetotheir

historyofuseasapprovedMRIcontrastagents[55]andinpioneeringclinical

trials(untargeted)forheattreatmentofglioblastoma[57].Whenexposedtoan

alternatingmagneticfield(AMF)SPIONsconvertmagneticenergytothermal

energythroughBrownianandNeelrelaxation.SuperparamagneticNPs,unlike

largerferri-orferromagneticNPs,donotretainmagnetismwhenthefieldis

removedandcangenerateheatatlowermagneticfieldamplitudes,makingthem

moreattractiveforbiomedicalapplications[125,126].

AntibodytargetingofSPIONsforhyperthermiawasfirstachievedbyconjugating

an111InradiolabelledmAbagainstanintegralmembraneglycoprotein(highly

expressedonanumberofhumancancers)to20nmdextran-coatediron-oxide

nanoparticles[115].FollowingintravenousinjectionoftheNPsintoinathymic

micebearingHBT3477(breast)xenografttumours,micewereexposedto

variouslevelsofexternalAMF.Electronmicrographstakentwodaysfollowing

AMFtherapyshowedtumourcellnecrosisatallstrengthsofAMFapplied.

Page 22: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

22

TumoursdidnotrespondtoeitherSPIONsorAMFalone,andtoxicitywasonly

seenatthehigheststrengthofAMFapplied.Subsequentstatisticallyvalidated

resultsshowedthattherapeuticresponsesweregeneratedwithoutnormal

tissuetoxicityandthattheheatingdosecorrelatedwellwithresponse[114].

Despitein-vivosuccess,subsequentstudieshavemetwithchallengesduetothe

rapidclearanceofSPIONsfromcirculationviathereticuloendothelialsystem

(RES)wheninjectedintravenously[127].Whilstthischaracteristiclendsitself

welltoSPIONuseascontrastagents,itisdetrimentaltoachievingsufficient

intratumouralSPIONconcentrationstogeneratetherapeuticheating.Anumber

ofsolutionshavebeenproposedtoovercomethis,includingtheuseofblocking

agentstoprolongSPIONcirculatorytime[128],tailoringtheNPsurface

chemistriesorthetargetingmoietiestooptimisecellularinteractionsofSPIONs

[41,129]ordirectintratumouralinjectionwithtargetingantibodiesfunctioning

toretainSPIONsattheinjectionsite.

AuNPs:Ab-targetedAuNPshavealsobeenexploitedasvectorsforphotothermal

therapy(PTT).Thisprocessreliesuponthegenerationofvibrationalheatenergy

followingtheexcitationofphotosensitisersthroughtheabsorptionofspecific

wavelengthsoflight;mostcommonlyinthenear-infrared(NIR)range.AuNPs

stronglyabsorbandscatterlight;thisabsorptioncanbetunedbymodifications

inthesizeandshapeoftheNPsinadditiontotheincorporationofother

materialssuchassilica[116,119].ThelightabsorbedbyAuNPsconvertsreadily

andrapidlyintoheatandthis,alongwiththeestablishedbiocompatibilitymake

AuNPsattractivephotothermalagents[116].ToavoidaccumulationofAuNPsin

healthytissues,anumberofpassiveandactivetargetingstrategieshavebeen

testedtotargetthemtotumourcells.ThesestrategiesincludePEGylation,

liposomeencapsulationandantibodyconjugation[130].Thiol-terminatedPEG

derivativesarecommonlyusedtocoatthesurfaceofAuNPsactingtoimprove

colloidalstability,avoidtheRESuptakeofAuNPsandprovidea‘linker’to

conjugateAuNPstobiomoleculessuchasantibodies[131].RecentAb-targets

investigatedincludetrophoblastcellsurfaceantigen2(TROP2),a

transmembraneglycoproteinoverexpressedinanumberofepithelialcancers

andassociatedwithpoorprognosisincervicalcancer[118].Inthisstudy,hollow

Page 23: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

23

goldnanosphereswereconjugatedtoanti-TROP2mAbsusingathiol-terminated

PEGlinker,generatingfunctionalisedNPsabletoreducecellviability

significantlymorethannon-targetedcontrolsfollowingexposuretoNIRlaser

[118].Inanotherstudy,goldnanospheresweretargetedtourothelialcancer

cellsusingantibodiesagainstMucin-7;acommonlyusedtargetinbladdercancer

[117],andactivatedusinggreenlaserlight.

AswellasabsorbingNIRorvisiblelight,Ab-targetedAuNPsalsoreleaseheat

followingabsorptionofshort-waveradiofrequency(RF)energy;behavingas

targetedradiofrequencyablation(RFA)agents.Short-waveRFfieldshavethe

advantageofpenetratingdeeperintotissuesthanNIRlight.Whentheanti-EGFR

antibodycetuximabwasconjugatedto20nmgoldnanorods,selectivetargeting

wasseenin-vitroand,followingexposuretoshort-waveRFfields,necrotic

cellularinjurywasachieved;similartotheeffectsofinvasiveRFAintheclinic

[120].WhenthesameNPsweretestedin-vivo,significantcelldeathwas

observed36hoursfollowingtreatmentofEGFRamplifiedpancreaticxenograft

tumours,withnodamageinselectedhealthytissuesincludingtheliver[121].

CNTs:NIRactivatedAb-targetedCNTshavealsobeenemployedtoinducePTT

in-vitro[132].ExamplesoftargetsinvestigatedincludeHER2andIGF1R,to

targetCNTstobreastcancercells[123],CD22andCD25totargetBurkitts

lymphoma[124]andCD133totargetglioma-likestemcellsinthetreatmentof

glioblastoma[122].Whilsttheseearlystudiesshowpromise,CNTsaccumulate

intheliver,arenon-biodegradable,andshowpoorsolubilitywithatendencyto

aggregate.Thesechallengesoftoxicitylimitthecurrentclinicaltranslationof

CNTs,andarebeingaddressed[133].

5.0Conclusions

ThisreviewhasillustratedthewaysinwhichthediversityandversatilityofNPs

canbefurtherexploitedbyAbtargeting.Awiderangeofpre-clinicalresearch

hasdemonstratedthatAb-targetedNPscanbeusedtodeliverycytotoxic

chemotherapydirectlytocancercells,resultinginefficacioustreatmentwith

Page 24: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

24

reducedsideeffectsprofilescomparedtofreedrugs.Breakthroughshavealso

beenmadeinutilisingAb-NPstoaugmentradiotherapyandaidincancergene

therapy.CancertheranosticshasevolvedinparalleltoNPs,andanumberof

innovativeapproacheshaveshowcasedsingleagents,whichcancombinecancer

imagingandtherapy.Finally,theuseofhyperthermiainthetreatmentofcancers

hasbeenmadepossiblethankstotheinherentphysicalpropertiesofSPIONs,

AuNPsandCNTs.

Targetedtherapyremainsattheforefrontoftranslationalcancerresearchand

significantprogresshasbeenmadeintheclinicaltranslationofantibody-

targetedNPbasedcancertreatment,includingphaseIclinicaltrialsusing

antibodytargeteddrug-loadedliposomes.Thesepioneeringstudieshavebuilt

uponprevioussuccessesdevelopingNPs,refiningbio-conjugationstrategiesand

optimisingthebiocompatibilityandbioavailabilityoftheseproducts.

6.0FuturePerspectivesFutureresearchonAb-NPswilldependuponreliableandreproduciblebio-

conjugationstrategiesthatcanbescaleduptogoodmanufacturingpractice

(GMP)standardforclinicaltranslation[129].OtherNPssuchasmesoporous

silicaNPs(MSNs)(Table1)couldbeutilisedwhichofferimpressivedrug

carryingcapacity,andcanbeequippedwithtargetingligands[134].Inaddition,

multifunctionalhybridNPscanbegeneratedforuseincombinationtherapy

and/ortheranostics.

Theroleofimmunotherapyinthetreatmentofcancercontinuestoevolve.

WhilsttheuseofAb-targetedNPsincancerimmunotherapyisearlyin

development[135],recentbreakthroughsincludetheuseofPLGANPs

conjugatedtobothprotein-MHCcomplexesandanti-CD28mAbstoactas

syntheticantigenpresentingvehicleswhenadministeredin-vitro[136].Inthe

future,Ab-targetedNPscouldbeusedtoprimetheimmunesystemnotonlyto

recognisetumourantigensbutalsotostimulateanti-tumourimmunity.Whilst

Ab-targetedNPsareonlyjustreachingtheclinicalsetting,theirdiversepotential

Page 25: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

25

foruseincancerdiagnosticsandtherapeuticspredictsanimportantroleinthe

futureofcancertreatment.

6.0ExecutiveSummaryIntroduction

• Targetedcancertreatmentofferssignificantadvantagesoverconventionaltherapybutcurrenttargetedtreatmentsareoftenlimitedbysystemictoxicity

• Nanoparticles(NPs)possessuniquephysical,chemicalandbiologicalpropertiesthatcouldovercometheselimitationsandbeharnessedforuseincancermedicine

Nanoparticles• NPsarenaturallyoccurringormanufacturedparticulatematerialeitherunbound,asan

aggregateoragglomeratewithonedimensionbetween1and100nminsize.• NPspossessinterrelatedproperties;highmobilityinthefreestate,largesurfaceareato

volumeratios,andsometimestheexhibitionofquantumeffects.• ThewideanddiverserangeoffunctionalpropertiesexhibitedbyNPsispossiblethanks

totheutilityofavarietyofmaterialstosynthesisethem.Targetingnanoparticlesforcancertreatment

• PassiveaccumulationofNPsoccurswithinmalignanttissuesinaprocessknownasenhancedpermeabilityandretention(EPR).

• SpecifictargetingofNPstocancercellscanbeachievedthroughtheadditionofatargetingmoiety,includingproteins,smallmoleculesandaptamers.

• Antibodies(Abs)arethemostpromisingtargetingligandsandcanbereadilygeneratedasintactIgGmoleculesorasfragments(ScFvs)indefined,recombinantform.

• AntibodytargetingiscomplementarytoEPRandenablesspecificreceptormediatedinternalizationoftheNP.

Antibody-Nanoparticlebio-conjugationstrategies• Challengesinbio-conjugationcanbebroadlydividedintothreemaincategories;(i)

controllability,(ii)stability,and(iii)reliability.• Sophisticatedconjugationtechniquesenablethecontrolofantibodyorientationsto

ensuretargetbindingandpreserveAbbioactivity• Whilstbothbifunctionallinkermoleculesandadaptormoleculescangeneratefunctional

conjugates,covalentlinkermoleculesdemonstratesuperiorlongtermstability.• Establishedcovalentconjugationstrategiesincludecarbodiimidecoupling,maleimide

couplingandclickchemistry(coppercatalyzedalkyne-azidecycloadditionreactions).ClinicalApplicationsofNanoparticlesforCancerTherapy

• NPbaseddrug-deliverysystemssuccessfullytranslatedintoearlyphaseclinicaltrialsincludeliposomes,polymericNPs,dendrimers,micellesandgoldNPs(AuNPs).

• SuperparamagneticIron-oxideNPs(SPIONs)havebeenclinicallyapprovedforuseascontrastagentsincancerimagingandhavebeensuccessfulinearlyphasetrialsforcancerhyperthermia

• Antibody-targetedliposomes(immunoliposomes)havebeenusedinthreeearlyphaseclinicaltrials.

PreclinicalDevelopmentofantibody-targetednanoparticlesforcancertherapy• ChemotherapyloadedAb-NPscanofferimprovedintratumouraldrugdelivery,superior

efficacycomparedwithfreedrugs,andcontrolledreleaseofdrugswithintumourcells.• Targetingpastthebloodbrainbarrier(BBB)totargetcentralnervoussystem(CNS)

tumoursmaybepossiblethroughdualtargetingoftransferrinreceptorandcancerspecifictargets.

• Ab-targetedpolymericNPs,AuNPsandliposomescanbeusedtostabilisenucleicacidsanddeliverthemdirectlytocancercellsforgenetherapy.

• SPIONsbecombinedwithotherNPsincludingpolymersandquantumdotstoproducemulti-functionaltheranosticNPsthatcanimagetumoursanddeliverycytotoxicdrugsincombination

• SPIONs,AuNPsandCNTsareabletogenerateheatfromwithinthetissueofinterestwhenactivatedbyexternallyappliedalternatingmagneticfields(SPIONs)ornear-infraredfields(AuNPs/CNTs).

Page 26: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

26

• SPIONshavebeentargetedusingAbsinthepre-clinicalsettingwithsuccesslimitedbyrapiduptakebythereticuloendothelialsystemandclearancein-vivo.Strategiesarebeinginvestigatedtoreducethisuptake.

Conclusions• Ab-targetedNPsofferaversatileplatformforthedevelopmentofthenextgenerationof

cancertherapeutics• Progresshasbeenmadeintheclinicaltranslationofantibody-targetedNPbasedcancer

treatmentsFuturePerspectives

• Reliableandreproduciblebio-conjugationstrategiesthatcanbescaleduptogoodmanufacturingpractice(GMP)standardwillfacilitateclinicaltranslationofAb-targetedNPs.

• Ab-targetedNPsmayhaveafutureroleincancerimmunotherapy,includinginthedevelopmentofsyntheticantigen-presentingvehicles.

Financial&competinginterestsdisclosureTheauthorsaregratefulforthesupportreceivedfromtheSeventhFrameworkProgramme(FP7)forDARPintargetedmagnetichyperthermictherapyforglioblastoma(DartrixECGRANT:278580),andfromtheDepartmentofHealthandCancerResearchUKExperimentalCancerMedicineCentre(ECMC).Theauthorshavenootherrelevantaffiliationsoffinancialinvolvementwithanyorganizationorentitywithfinancialinterestinorfinancialconflictwiththesubjectmatterormaterialsdiscussedinthemanuscriptapartfromthosedisclosed.Thefundershadnoroleinstudydesign,datacollectionandanalysis,decisiontopublish,orpreparationofthemanuscriptNowritingassistancewasutilisedintheproductionofthismanuscript.Bibliography1. JarboeJ,GuptaA,SaifW.Therapeutichumanmonoclonalantibodies

againstcancer.In:HumanMonoclonalAntibodies,(Ed.^(Eds).Springer61-77(2014).

2. LealM,SapraP,HurvitzSAetal.Antibody–drugconjugates:anemergingmodalityforthetreatmentofcancer.Ann.N.Y.Acad.Sci.1321(1),41-54(2014).

3. HoneychurchJ,CheadleEJ,DovediSJ,IllidgeTM.Immuno-regulatoryantibodiesforthetreatmentofcancer.ExpertOpin.Biol.Ther.(0),1-15(2015).

4. HuehlsAM,CoupetTA,SentmanCL.BispecificT-cellengagersforcancerimmunotherapy.Immunol.Cell.Biol.(2014).

5. FayF,ScottCJ.Antibody-targetednanoparticlesforcancertherapy.Immunotherapy3(3),381-394(2011).

6. MamotC,RitschardR,WickiAetal.Tolerability,safety,pharmacokinetics,andefficacyofdoxorubicin-loadedanti-EGFRimmunoliposomesinadvancedsolidtumours:aphase1dose-escalationstudy.LancetOncol.13(12),1234-1241(2012).

Page 27: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

27

*AphaseIclinicaltrialofanantibody-targetedliposome

7. MunsterPN,MillerK,KropIEetal.APhaseIstudyofMM-302,aHER2-targetedliposomaldoxorubicin,inpatientswithadvanced,HER2-positive(HER2+)breastcancer.Presentedat:ASCOAnnualMeeting.Chicago,IL,USA.2012.

8. HrkachJ,VonHoffD,AliMMetal.PreclinicaldevelopmentandclinicaltranslationofaPSMA-targeteddocetaxelnanoparticlewithadifferentiatedpharmacologicalprofile.Sci.Transl.Med.4(128),128ra139-128ra139(2012).

9. BertrandN,WuJ,XuX,KamalyN,FarokhzadOC.Cancernanotechnology:Theimpactofpassiveandactivetargetingintheeraofmoderncancerbiology.Adv.DrugDeliv.Rev.662-25(2014).

*Recentreviewcoveringcancertargeting

10. ChouL,MingK,ChanW.Strategiesfortheintracellulardeliveryofnanoparticles.Chem.Soc.Rev.40(1),233(2011).

11. BleekerEaJ,DeJongWH,GeertsmaREetal.ConsiderationsontheEUdefinitionofananomaterial:Sciencetosupportpolicymaking.Regul.Toxicol.Pharmacol.65(1),119-125(2013).

12. KreylingWG,Semmler-BehnkeM,ChaudhryQ.Acomplementarydefinitionofnanomaterial.NanoToday5(3),165-168(2010).

13. AuffanM,RoseJ,BotteroJ-Y,LowryGV,JolivetJ-P,WiesnerMR.Towardsadefinitionofinorganicnanoparticlesfromanenvironmental,healthandsafetyperspective.Nat.Nanotechnol.4(10),634-641(2009).

14. DobsonP,Jarvie,H.,King,S.,.Nanoparticle.EncyclopediaBritannicahttp://www.britannica.com/science/nanoparticle(2015).

15. ElzoghbyAO,SamyWM,ElgindyNA.Albumin-basednanoparticlesaspotentialcontrolledreleasedrugdeliverysystems.J.Control.Release157(2),168-182(2012).

16. KumariA,YadavSK,YadavSC.Biodegradablepolymericnanoparticlesbaseddrugdeliverysystems.ColloidsSurf.,B75(1),1-18(2010).

17. GargT,KGoyalA.Liposomes:targetedandcontrolleddeliverysystem.DrugDeliv.Lett.4(1),62-71(2014).

18. MohamedS,ParayathNN,TaurinS,GreishK.Polymericnano-micelles:versatileplatformfortargeteddeliveryincancer.Ther.Deliv.5(10),1101-1121(2014).

19. AbbasiE,AvalSF,AkbarzadehAetal.Dendrimers:synthesis,applications,andproperties.NanoscaleRes.Lett.9(1),1-10(2014).

Page 28: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

28

20. KaminskasLM,BoydBJ,PorterCJ.Dendrimerpharmacokinetics:theeffectofsize,structureandsurfacecharacteristicsonADMEproperties.Nanomedicine6(6),1063-1084(2011).

21. MokH,ZhangM.SuperparamagneticIronOxideNanoparticle-BasedDeliverySystemsforBiotherapeutics.ExpertOpin.DrugDeliv.10(1),73-87(2013).

22. RosenholmJM,MamaevaV,SahlgrenC,LindénM.Nanoparticlesintargetedcancertherapy:mesoporoussilicananoparticlesenteringpreclinicaldevelopmentstage.Nanomedicine7(1),111-120(2012).

23. CabralRM,BaptistaPV.Anti-cancerprecisiontheranostics:afocusonmultifunctionalgoldnanoparticles.ExpertRev.Mol.Diagn.14(8),1041-1052(2014).

24. RastogiV,YadavP,BhattacharyaSSetal.CarbonNanotubes:AnEmergingDrugCarrierforTargetingCancerCells.J.DrugDeliv.2014670815(2014).

25. ValizadehA,MikaeiliH,SamieiMetal.Quantumdots:synthesis,bioapplications,andtoxicity.NanoscaleRes.Lett.7(1),1-14(2012).

26. SunT,ZhangYS,PangB,HyunDC,YangM,XiaY.Engineerednanoparticlesfordrugdeliveryincancertherapy.Angew.Chem.Int.Ed.53(46),12320-12364(2014).

27. GreishK.Enhancedpermeabilityandretention(EPR)effectforanticancernanomedicinedrugtargeting.In:CancerNanotechnol.,(Ed.^(Eds).Springer25-37(2010).

28. YeH,KarimAA,LohXJ.Currenttreatmentoptionsanddrugdeliverysystemsaspotentialtherapeuticagentsforovariancancer:Areview.Mat.Sci.Eng.CMater.Biol.Appl.45(0),609-619(2014).

29. BaeYH,ParkK.Targeteddrugdeliverytotumors:myths,realityandpossibility.J.Control.Release153(3),198(2011).

30. BazakR,HouriM,ElAchyS,KamelS,RefaatT.Canceractivetargetingbynanoparticles:acomprehensivereviewofliterature.J.CancerRes.Clin.Oncol.doi:10.1007/s00432-014-1767-31-16(2014).

31. MccaffertyJ,SchofieldD.Identificationofoptimalproteinbindersthroughtheuseoflargegeneticallyencodeddisplaylibraries.Curr.Opin.Chem.Biol2616-24(2015).

32. WeinerLM,SuranaR,WangS.Monoclonalantibodies:versatileplatformsforcancerimmunotherapy.Nat.Rev.Immunol.10(5),317-327(2010).

33. LiuP,LiZ,ZhuMetal.PreparationofEGFRmonoclonalantibodyconjugatednanoparticlesandtargetingtohepatocellularcarcinoma.J.Mater.Sci.Mater.Med.21(2),551-556(2010).

Page 29: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

29

34. KirpotinDB,DrummondDC,ShaoYetal.AntibodyTargetingofLong-CirculatingLipidicNanoparticlesDoesNotIncreaseTumorLocalizationbutDoesIncreaseInternalizationinAnimalModels.CancerRes.66(13),6732-6740(2006).

35. MaregaR,KarmaniL,FlamantLetal.Antibody-functionalizedpolymer-coatedgoldnanoparticlestargetingcancercells:aninvitroandinvivostudy.J.Mater.Chem.22(39),21305-21312(2012).

36. KarraN,NassarT,RipinAN,SchwobO,BorlakJ,BenitaS.AntibodyConjugatedPLGANanoparticlesforTargetedDeliveryofPaclitaxelPalmitate:EfficacyandBiofateinaLungCancerMouseModel.Small9(24),4221-4236(2013).

37. PuertasS,MorosM,Fernández-PachecoR,IbarraM,GrazúV,DeLaFuenteJ.Designingnovelnano-immunoassays:antibodyorientationversussensitivity.J.Phys.D:Appl.Phys.43(47),474012(2010).

38. SperlingRA,PellegrinoT,LiJK,ChangWH,ParakWJ.Electrophoreticseparationofnanoparticleswithadiscretenumberoffunctionalgroups.Adv.Funct.Mater.16(7),943-948(2006).

39. LinP-C,ChenS-H,WangK-Yetal.Fabricationoforientedantibody-conjugatedmagneticnanoprobesandtheirimmunoaffinityapplication.Anal.Chem.81(21),8774-8782(2009).

40. KumarS,AaronJ,SokolovK.Directionalconjugationofantibodiestonanoparticlesforsynthesisofmultiplexedopticalcontrastagentswithbothdeliveryandtargetingmoieties.Nat.Protoc.3(2),314-320(2008).

41. GrüttnerC,MüllerK,TellerJ,WestphalF.Synthesisandfunctionalisationofmagneticnanoparticlesforhyperthermiaapplications.Int.J.Hyperthermia29(8),777-789(2013).

42. GrüttnerC,MüllerK,TellerJ,WestphalF,ForemanA,IvkovR.Synthesisandantibodyconjugationofmagneticnanoparticleswithimprovedspecificpowerabsorptionratesforalternatingmagneticfieldcancertherapy.J.Magn.Magn.Mater.311(1),181-186(2007).

43. PathakS,DavidsonMC,SilvaGA.Characterizationofthefunctionalbindingpropertiesofantibodyconjugatedquantumdots.NanoLett.7(7),1839-1845(2007).

44. Aubin-TamM-E,Hamad-SchifferliK.Structureandfunctionofnanoparticle–proteinconjugates.Biomed.Mater.3(3),034001(2008).

45. WartlickH,MichaelisK,BalthasarS,StrebhardtK,KreuterJ,LangerK.HighlySpecificHER2-mediatedCellularUptakeofAntibody-modifiedNanoparticlesinTumourCells.J.DrugTarget.12(7),461-471(2004).

Page 30: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

30

46. SteinhauserI,SpänkuchB,StrebhardtK,LangerK.Trastuzumab-modifiednanoparticles:Optimisationofpreparationanduptakeincancercells.Biomaterials27(28),4975-4983(2006).

47. VeisehO,GunnJW,ZhangM.Designandfabricationofmagneticnanoparticlesfortargeteddrugdeliveryandimaging.Adv.DrugDeliv.Rev.62(3),284-304(2010).

48. ThanhNT,GreenLA.Functionalisationofnanoparticlesforbiomedicalapplications.NanoToday5(3),213-230(2010).

49. GhoshP,HanG,DeM,KimCK,RotelloVM.Goldnanoparticlesindeliveryapplications.Adv.DrugDeliv.Rev.60(11),1307-1315(2008).

50. MontenegroJ-M,GrazuV,SukhanovaAetal.Controlledantibody/(bio-)conjugationofinorganicnanoparticlesfortargeteddelivery.Adv.DrugDeliv.Rev.65(5),677-688(2013).

*Reviewonthechallengesandtechniquesinbio-conjugationofantibodiesandnanoparticles

51. KaoC-H,WangJ-Y,ChuangK-Hetal.One-stepmixingwithhumanizedanti-mPEGbispecificantibodyenhancestumoraccumulationandtherapeuticefficacyofmPEGylatednanoparticles.Biomaterials35(37),9930-9940(2014).

52. PhamE,BirrerMJ,EliasofSetal.Translationalimpactofnanoparticle–drugconjugateCRLX101withorwithoutbevacizumabinadvancedovariancancer.Clin.CancerRes.21(4),808-818(2015).

53. KatoK,ChinK,YoshikawaTetal.PhaseIIstudyofNK105,apaclitaxel-incorporatingmicellarnanoparticle,forpreviouslytreatedadvancedorrecurrentgastriccancer.Invest.NewDrugs30(4),1621-1627(2012).

54. LibuttiSK,PaciottiGF,ByrnesAAetal.PhaseIandpharmacokineticstudiesofCYT-6091,anovelPEGylatedcolloidalgold-rhTNFnanomedicine.Clin.CancerRes.16(24),6139-6149(2010).

55. ReimerP,BalzerT.Ferucarbotran(Resovist):anewclinicallyapprovedRES-specificcontrastagentforcontrast-enhancedMRIoftheliver:properties,clinicaldevelopment,andapplications.Eur.Radiol.13(6),1266-1276(2003).

56. WangY-XJ.SuperparamagneticironoxidebasedMRIcontrastagents:Currentstatusofclinicalapplication.Quant.ImagingMed.Surg.y1(1),35-40(2011).

57. Maier-HauffK,UlrichF,NestlerDetal.Efficacyandsafetyofintratumoralthermotherapyusingmagneticiron-oxidenanoparticlescombinedwithexternalbeamradiotherapyon

Page 31: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

31

patientswithrecurrentglioblastomamultiforme.J.Neurooncol.103(2),317-324(2011).

*PhaseIIclinicaltrialofnon-targetedSPIONmediatedmagnetichyperthermiaincombinationwithextrenalbeamradiation

58. Maier-HauffK,RotheR,ScholzRetal.IntracranialThermotherapyusingMagneticNanoparticlesCombinedwithExternalBeamRadiotherapy:ResultsofaFeasibilityStudyonPatientswithGlioblastomaMultiforme.J.Neurooncol.81(1),53-60(2007).

59. AllenTM,CullisPR.Liposomaldrugdeliverysystems:fromconcepttoclinicalapplications.Adv.DrugDeliv.Rev.65(1),36-48(2013).

60. VonHoffDD,ErvinT,ArenaFPetal.Increasedsurvivalinpancreaticcancerwithnab-paclitaxelplusgemcitabine.N.Engl.J.Med.369(18),1691-1703(2013).

61. SenzerN,NemunaitisJ,NemunaitisDetal.PhaseIstudyofasystemicallydeliveredp53nanoparticleinadvancedsolidtumors.Mol.Ther.21(5),1096-1103(2013).

62. PaszkoE,SengeM.Immunoliposomes.Curr.Med.Chem.19(31),5239-5277(2012).

63. SchmidD,FayF,SmallDMetal.EfficientDrugDeliveryandInductionofApoptosisinColorectalTumorsUsingaDeathReceptor5-TargetedNanomedicine.Mol.Ther.22(12),2083-2092(2014).

64. BrownBS,PatanamT,MobliKetal.Etoposide-loadedimmunoliposomesasactivetargetingagentsforGD2-positivemalignancies.CancerBiol.Ther.15(7),851-861(2014).

65. GaoJ,XiaY,ChenHetal.Polymer–lipidhybridnanoparticlesconjugatedwithanti-EGFreceptorantibodyfortargeteddrugdeliverytohepatocellularcarcinoma.Nanomedicine9(2),279-293(2013).

66. HuangX,YiC,FanYetal.MagneticFe3O4nanoparticlesgraftedwithsingle-chainantibody(scFv)anddocetaxelloadedβ-cyclodextrinpotentialforovariancancerdual-targetingtherapy.Mater.Sci.Eng.,C42(0),325-332(2014).

67. QianC,WangY,ChenYetal.Suppressionofpancreatictumorgrowthbytargetedarsenicdeliverywithanti-CD44v6singlechainantibodyconjugatednanoparticles.Biomaterials34(26),6175-6184(2013).

68. SecretE,SmithK,DubljevicVetal.Antibody‐FunctionalizedPorousSiliconNanoparticlesforVectorizationofHydrophobicDrugs.Adv.Healthc.Mater.2(5),718-727(2013).

Page 32: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

32

69. SongH,HeR,WangKetal.Anti-HIF-1αantibody-conjugatedpluronictriblockcopolymersencapsulatedwithPaclitaxelfortumortargetingtherapy.Biomaterials31(8),2302-2312(2010).

70. HeisterE,NevesV,TîlmaciuCetal.Triplefunctionalisationofsingle-walledcarbonnanotubeswithdoxorubicin,amonoclonalantibody,andafluorescentmarkerfortargetedcancertherapy.Carbon47(9),2152-2160(2009).

71. PatraCR,BhattacharyaR,WangEetal.Targeteddeliveryofgemcitabinetopancreaticadenocarcinomausingcetuximabasatargetingagent.CancerRes.68(6),1970-1978(2008).

72. SunB,RanganathanB,FengS-S.Multifunctionalpoly(D,L-lactide-co-glycolide)/montmorillonite(PLGA/MMT)nanoparticlesdecoratedbyTrastuzumabfortargetedchemotherapyofbreastcancer.Biomaterials29(4),475-486(2008).

73. DilnawazF,SinghA,MohantyC,SahooSK.Dualdrugloadedsuperparamagneticironoxidenanoparticlesfortargetedcancertherapy.Biomaterials31(13),3694-3706(2010).

74. GuptaB,TorchilinVP.Monoclonalantibody2C5-modifieddoxorubicin-loadedliposomeswithsignificantlyenhancedtherapeuticactivityagainstintracranialhumanbrainU-87MGtumorxenograftsinnudemice.CancerImmunol.Immunother.56(8),1215-1223(2007).

75. ElbayoumiTA,TorchilinVP.Tumor-specificanti-nucleosomeantibodyimprovestherapeuticefficacyofdoxorubicin-loadedlong-circulatingliposomesagainstprimaryandmetastatictumorinmice.Mol.Pharm.6(1),246-254(2008).

76. MaX,ChengZ,JinYetal.SM5-1-conjugatedPLAnanoparticlesloadedwith5-fluorouracilfortargetedhepatocellularcarcinomaimagingandtherapy.Biomaterials35(9),2878-2889(2014).

77. HuC-MJ,KaushalS,CaoHSTetal.Half-antibodyfunctionalizedlipid−polymerhybridnanoparticlesfortargeteddrugdeliverytocarcinoembryonicantigenpresentingpancreaticcancercells.Mol.Pharm.7(3),914-920(2010).

78. KouG,GaoJ,WangHetal.Preparationandcharacterizationofpaclitaxel-loadedPLGAnanoparticlescoatedwithcationicSM5-1single-chainantibody.J.Biochem.Mol.Biol.40(5),731-739(2007).

79. LuR-M,ChangY-L,ChenM-S,WuH-C.Singlechainanti-c-Metantibodyconjugatednanoparticlesforinvivotumor-targetedimaginganddrugdelivery.Biomaterials32(12),3265-3274(2011).

Page 33: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

33

80. GaoJ,KouG,WangHetal.PE38KDEL-loadedanti-HER2nanoparticlesinhibitbreasttumorprogressionwithreducedtoxicityandimmunogenicity.BreastCancerRes.Treat.115(1),29-41(2009).

81. DanP.TheRoleofNeurotrophinReceptorp75NTRinCancer.

82. DaiJ,JinJ,LiBetal.AchimericSM5-1antibodyinhibitshepatocellularcarcinomacellgrowthandinducescaspase-dependentapoptosis.CancerLett.258(2),208-214(2007).

83. ChenY,LiuL.Modernmethodsfordeliveryofdrugsacrosstheblood–brainbarrier.Adv.DrugDeliv.Rev.64(7),640-665(2012).

84. FujitaM,LeeB-S,KhazenzonNMetal.Braintumortandemtargetingusingacombinationofmonoclonalantibodiesattachedtobiopoly(β-L-malicacid).J.Control.Release122(3),356-363(2007).

85. YuYJ,AtwalJK,ZhangYetal.Therapeuticbispecificantibodiescrosstheblood-brainbarrierinnonhumanprimates.Sci.Transl.Med.6(261),261ra154-261ra154(2014).

86. HolligerP,HudsonPJ.Engineeredantibodyfragmentsandtheriseofsingledomains.Naturebiotechnol.23(9),1126-1136(2005).

87. WidderKJ,SenyeiAE,ScarpelliDG.MagneticMicrospheres:AModelSystemforSiteSpecificDrugDeliveryinVivo.Exp.Biol.Med.158(2),141-146(1978).

88. PankhurstQA,ConnollyJ,JonesS,DobsonJ.Applicationsofmagneticnanoparticlesinbiomedicine.J.PhysD:Appl.Phys.36(13),R167(2003).

89. PastanI,HassanR,FitzgeraldDJ,KreitmanRJ.Immunotoxintreatmentofcancer*.Annu.Rev.Med.58221-237(2007).

90. BarthRF,VicenteM,HarlingOKetal.Currentstatusofboronneutroncapturetherapyofhighgradegliomasandrecurrentheadandneckcancer.Radiat.Oncol.7(146),1-21(2012).

91. PanX,WuG,YangW,BarthRF,TjarksW,LeeRJ.Synthesisofcetuximab-immunoliposomesviaacholesterol-basedmembraneanchorfortargetingofEGFR.BioconjugateChem.18(1),101-108(2007).

92. BourasA,KaluzovaM,HadjipanayisCG.Radiosensitivityenhancementofradioresistantglioblastomabyepidermalgrowthfactorreceptorantibody-conjugatediron-oxidenanoparticles.J.Neurooncol.1-10(2015).

93. KimJ,WilsonDR,ZamboniCG,GreenJJ.Targetedpolymericnanoparticlesforcancergenetherapy.J.DrugTarget.23(7-8),627-641(2015).

94. DingY,JiangZ,SahaKetal.Goldnanoparticlesfornucleicaciddelivery.Mol.Ther.22(6),1075-1083(2014).

Page 34: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

34

95. WaltherW,SchlagPM.Currentstatusofgenetherapyforcancer.Curr.Opin.Oncol.25(6),659-664(2013).

96. XuC-F,WangJ.DeliverysystemsforsiRNAdrugdevelopmentincancertherapy.AsianJ.PharmaceuticalSci.10(1),1-12(2015).

97. MoffattS,PapasakelariouC,WiehleS,CristianoR.Successfulinvivotumortargetingofprostate-specificmembraneantigenwithahighlyefficientJ591/PEI/DNAmolecularconjugate.GeneTher.13(9),761-772(2006).

98. TagawaST,MilowskyMI,MorrisMetal.PhaseIIStudyofLutetium-177–LabeledAnti-Prostate-SpecificMembraneAntigenMonoclonalAntibodyJ591forMetastaticCastration-ResistantProstateCancer.Clin.CancerRes.19(18),5182-5191(2013).

99. ZhangK,HaoL,HurstSJ,MirkinCA.Antibody-linkedsphericalnucleicacidsforcellulartargeting.J.Am.Chem.Soc.134(40),16488-16491(2012).

100. ChanDP,DeleaveyGF,OwenSC,DamhaMJ,ShoichetMS.Clickconjugatedpolymericimmuno-nanoparticlesfortargetedsiRNAandantisenseoligonucleotidedelivery.Biomaterials34(33),8408-8415(2013).

101. MeissnerJM,ToporkiewiczM,CzogallaA,MatusewiczL,KuliczkowskiK,SikorskiAF.Novelantisensetherapeuticsdeliverysystems:Invitroandinvivostudiesofliposomestargetedwithanti-CD20antibody.J.Control.Release220515-528(2015).

102. ShanbhagPP,JogSV,ChogaleMM,GaikwadSS.Theranosticsforcancertherapy.Curr.DrugDeliv.10(3),357-362(2013).

103. KaluzovaM,BourasA,MachaidzeR,HadjipanayisC.Targetedtherapyofglioblastomastem-likecellsandtumornon-stemcellsusingcetuximab-conjugatediron-oxidenanoparticles.Oncotarget6(11),8788-8806(2015).

*PioneeringstudyinfusingEGFR-targetedSPIONsintotumoursusingconvectionenhanceddeliveryfortheranosticapplication

104. TaylorRM,SillerudLO.Paclitaxel-loadedironplatinumstealthimmunomicellesarepotentMRIimagingagentsthatpreventprostatecancergrowthinaPSMA-dependentmanner.Int.J.Nanomedicine74341(2012).

105. YangJ,LeeC-H,ParkJetal.AntibodyconjugatedmagneticPLGAnanoparticlesfordiagnosisandtreatmentofbreastcancer.J.Mater.Chem.17(26),2695-2699(2007).

Page 35: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

35

106. LingY,WeiK,LuoY,GaoX,ZhongS.Dualdocetaxel/superparamagneticironoxideloadednanoparticlesforbothtargetingmagneticresonanceimagingandcancertherapy.Biomaterials32(29),7139-7150(2011).

107. SrinivasanS,ManchandaR,LeiT,NagesettiA,Fernandez-FernandezA,McgoronAJ.Targetednanoparticlesforsimultaneousdeliveryofchemotherapeuticandhyperthermiaagents–Aninvitrostudy.J.Photochem.Photobiol.B.136(0),81-90(2014).

108. ParhiP,SahooSK.Trastuzumabguidednanotheranostics:Alipidbasedmultifunctionalnanoformulationfortargeteddrugdeliveryandimaginginbreastcancertherapy.J.ColloidInterfaceSci.451198-211(2015).

109. WuH,ShiH,ZhangHetal.Prostatestemcellantigenantibody-conjugatedmultiwalledcarbonnanotubesfortargetedultrasoundimaginganddrugdelivery.Biomaterials35(20),5369-5380(2014).

110. MenonJU,JadejaP,TambeP,VuK,YuanB,NguyenKT.Nanomaterialsforphoto-baseddiagnosticandtherapeuticapplications.Theranostics3(3),152-166(2013).

111. CavaliereR,CiocattoEC,GiovanellaBCetal.Selectiveheatsensitivityofcancercells.Biochemicalandclinicalstudies.Cancer20(9),1351-1381(1967).

112. HildebrandtB,WustP,AhlersOetal.Thecellularandmolecularbasisofhyperthermia.Crit.Rev.Oncol.Hematol.43(1),33-56(2002).

113. HurwitzM,StaufferP.Hyperthermia,radiationandchemotherapy:theroleofheatinmultidisciplinarycancercare.Presentedat:Semin.Oncol.2014.

114. DenardoSJ,DenardoGL,NatarajanAetal.Thermaldosimetrypredictiveofefficacyof111In-ChL6nanoparticleAMF–inducedthermoablativetherapyforhumanbreastcancerinmice.J.Nucl.Med.48(3),437-444(2007).

115. DenardoSJ,DenardoGL,MiersLAetal.DevelopmentofTumorTargetingBioprobes(111In-ChimericL6MonoclonalAntibodyNanoparticles)forAlternatingMagneticFieldCancerTherapy.Clin.CancerRes.11(19),7087s-7092s(2005).

116. El-SayedIH,HuangX,El-SayedMA.Selectivelaserphoto-thermaltherapyofepithelialcarcinomausinganti-EGFRantibodyconjugatedgoldnanoparticles.CancerLett.239(1),129-135(2006).

117. ChenCH,WuY-J,ChenJ-J.GoldNanotheranostics:PhotothermalTherapyandImagingofMucin7ConjugatedAntibodyNanoparticlesforUrothelialCancer.BioMedRes.Int.(2014).

Page 36: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

36

118. LiuT,TianJ,ChenZetal.Anti-TROP2conjugatedhollowgoldnanospheresasanovelnanostructurefortargetedphotothermaldestructionofcervicalcancercells.Nanotechnology25(34),345103(2014).

119. HuangX,El-SayedIH,QianW,El-SayedMA.Cancercellimagingandphotothermaltherapyinthenear-infraredregionbyusinggoldnanorods.J.Am.Chem.Soc.128(6),2115-2120(2006).

120. GlazerES,MasseyKL,ZhuC,CurleySA.Pancreaticcarcinomacellsaresusceptibletononinvasiveradiofrequencyfieldsaftertreatmentwithtargetedgoldnanoparticles.Surgery148(2),319-324(2010).

121. GlazerES,ZhuC,MasseyKLetal.Noninvasiveradiofrequencyfielddestructionofpancreaticadenocarcinomaxenograftstreatedwithtargetedgoldnanoparticles.Clin.CancerRes.16(23),5712-5721(2010).

122. WangC-H,ChiouS-H,ChouC-P,ChenY-C,HuangY-J,PengC-A.Photothermolysisofglioblastomastem-likecellstargetedbycarbonnanotubesconjugatedwithCD133monoclonalantibody.Nanomed.Nanotech.Biol.Med.7(1),69-79(2011).

123. ShaoN,LuS,WickstromE,PanchapakesanB.IntegratedmoleculartargetingofIGF1RandHER2surfacereceptorsanddestructionofbreastcancercellsusingsinglewallcarbonnanotubes.Nanotechnology18(31),315101(2007).

124. MarchesR,ChakravartyP,MusselmanIHetal.Specificthermalablationoftumorcellsusingsingle‐walledcarbonnanotubestargetedbycovalently‐coupledmonoclonalantibodies.Int.J.Cancer125(12),2970-2977(2009).

125. HuberDL.Synthesis,Properties,andApplicationsofIronNanoparticles.Small1(5),482-501(2005).

126. HervaultA,ThanhNNTK.Magneticnanoparticle-basedtherapeuticagentsforthermo-chemotherapytreatmentofcancer.Nanoscaledoi:10.1039/c4nr03482a(2014).

*Recentin-depthreviewonmagneticnanoparticlehyperthermia

127. SimbergD,ParkJ-H,KarmaliPPetal.Differentialproteomicsanalysisofthesurfaceheterogeneityofdextranironoxidenanoparticlesandtheimplicationsfortheirinvivoclearance.Biomaterials30(23),3926-3933(2009).

128. AbdollahMR,KalberT,TolnerBetal.ProlongingthecirculatoryretentionofSPIONsusingdextransulfate:invivotrackingachievedbyfunctionalisationwithnear-infrareddyes.Farad.Discuss.175(41),(2014).

Page 37: Antibody-Targeted Nanoparticles for Cancer Treatment · Keywords: Antibodies, nanoparticles, targeting, cancer treatment, clinical translation, theranostics, hyperthermia 1.0 Introduction

37

129. BaiuDC,ArtzNS,McelreathMRetal.Highspecificitytargetinganddetectionofhumanneuroblastomausingmultifunctionalanti-GD2iron-oxidenanoparticles.Nanomedicine10(19),2973-2988(2015).

*RecentstudyhighlightingthatmodificationoftheNPsurfaceofthetargetingAbcanreducenon-specificuptakeandclearance,andthatproductionofAb-targetedNPscanbeupscaledtoGMPstandards.

130. DreadenEC,AustinLA,MackeyMA,El-SayedMA.Sizematters:goldnanoparticlesintargetedcancerdrugdelivery.Ther.Deliv.3(4),457-478(2012).

131. MansonJ,KumarD,MeenanBJ,DixonD.Polyethyleneglycolfunctionalizedgoldnanoparticles:theinfluenceofcappingdensityonstabilityinvariousmedia.GoldBull.44(2),99-105(2011).

132. FabbroC,Ali-BoucettaH,DaRosT,KostarelosK,BiancoA,PratoM.Targetingcarbonnanotubesagainstcancer.Chem.Commun.48(33),3911-3926(2012).

133. KesharwaniPK,MishraV,JainNK.Validatingtheanticancerpotentialofcarbonnanotube-basedtherapeuticsthroughcelllinetesting.DrugDiscov.Today(2015).

134. MackowiakSA,SchmidtA,WeissVetal.Targeteddrugdeliveryincancercellswithred-lightphotoactivatedmesoporoussilicananoparticles.NanoLett.13(6),2576-2583(2013).

135. ShaoK,SinghaS,Clemente-CasaresX,TsaiS,YangY,SantamariaP.Nanoparticle-BasedImmunotherapyforCancer.ACSnano(2014).

*Reviewontheevolvingroleofnanoparticlesincancerimmunotherapy

136. SteenblockER,FadelT,LabowskyM,PoberJS,FahmyTM.Anartificialantigen-presentingcellwithparacrinedeliveryofIL-2impactsthemagnitudeanddirectionoftheTcellresponse.J.Biol.Chem.286(40),34883-34892(2011).