bildbenennung wortgenerierung(z.b. nennen sie m ö glichst viele tiere!) wortlesen (hund)

Post on 19-Jan-2016

38 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Analyse von 82 Hirnaktivierungsxperimenten mit vier verschiedenen Wortproduktionsaufgaben:. Bildbenennung Wortgenerierung(z.B. Nennen Sie m ö glichst viele Tiere!) Wortlesen (HUND) Pseudowortlesen(HUNG). Talairach & Tournoux (1988) Lateral and medial view of reference brain. - PowerPoint PPT Presentation

TRANSCRIPT

Bildbenennung

Wortgenerierung (z.B. Nennen Sie möglichst viele Tiere!)

Wortlesen (HUND)

Pseudowortlesen (HUNG)

Analyse von 82 Hirnaktivierungsxperimenten mit vier verschiedenenWortproduktionsaufgaben:

Talairach & Tournoux (1988) Lateral and medial view of reference brain

Reported at least onceReported at least once

Estimate of probability of overlap under the assumption of a random distribution of activated regions

number of regions: 110

mean number of activated regions: r

chance probability for a region to be reportedas activated in a single experiment (p1): r/110

chance probability for a region to be reported as activated in n1 out of n experiments:

21 n1

n1

21)p(1p!n!n

n!p (with n1 + n2 = n)

Reliability criterion: p < 0.1 cut-off point in binomial distribution

Example region 1

Number of experiments: 82

Mean number of reported regions: 12.4

Reliably activated: 12 or more experiments

Reliably not activated: 4 or less experiments

Example region 2

Number of experiments: 23

Mean number of reported regions: 10.4

Reliably activated: 5 or more experiments

Reliably not activated: -

Zuverlässig aktivierte (rot) und nicht aktivierte (blau) Hirngebiete (basierend auf allen 82 Studien)

TASK ANALYSIS

Many tasks were not just word production tasks; they involved other operations as well.

For instance, when you name the picture of a horse, you not only produce the word 'horse', but you also look at the picture and recognize it. Such additional 'lead-in' operations involve the activation of additional brain regions. These should be filtered out.

That requires a systematic task analysis, a distinction between 'lead-in' and 'core' operations of word production.

Responses during Verb Generation Task

BANANATROUSERSCHAIRGLASSESTRUMPETPENCILBUTTONBIRDEARDOOR

peel, slip on, eat up, plantput on, wash, mend, buy, warmsit, build, nail, sell, work, learnclean, put on, step on, buy, seeblow, make music, put away, hear, playsharpen, break, put away, drawtear off, close, openfly, eat up, singhear, pinchopen, close, kick against

Konzeptuelle Vorbereitung

lexikalische Selektion

lexikalisches Konzept

Lemma

Wortformzugriff

Wortform

Syllabifizierung

phonologisches Wort

phonetische Enkodierung

abstraktes Motorprogramm

Artikulation

gesprochenes Wort

visuelle Objekt-erkennung

Einleitungsprozesse KernprozesseAufgabe

Worterkennung Objektvorstellung Gedächtnis etc.

visuelle Worterkennung

Graphem/PhonemKonversion

Bildbenennung

Wortgenerierung

Wortlesen

Pseudowortlesen

Selb

stmo

nito

ring

aussprechen vs. Wort “denken”

Bildbenennung

Wortgenerierung

Bildbenennung (grün), Wortgenerierung (blau), gemeinsame Gebiete (rot)

Gemeinsame Aktivierungsgebiete von Bildbenennung und Wortgenerierung

Konzeptuelle Vorbereitung

lexikalische Selektion

lexikalisches Konzept

Lemma

Wortformzugriff

Wortform

Syllabifizierung

phonologisches Wort

phonetische Enkodierung

abstraktes Motorprogramm

Artikulation

gesprochenes Wort

visuelle Objekt-erkennung

Einleitungsprozesse KernprozesseAufgabe

Worterkennung Objektvorstellung Gedächtnis etc.

visuelle Worterkennung

Graphem/PhonemKonversion

Bildbenennung

Wortgenerierung

Wortlesen

Pseudowortlesen

Selb

stmo

nito

ring

aussprechen vs. Wort “denken”

Konzeptuelle Vorbereitung

lexikalische Selektion

lexikalisches Konzept

Lemma

Wortformzugriff

Wortform

Syllabifizierung

phonologisches Wort

phonetische Enkodierung

abstraktes Motorprogramm

Artikulation

gesprochenes Wort

visuelle Objekt-erkennung

Einleitungsprozesse KernprozesseAufgabe

Worterkennung Objektvorstellung Gedächtnis etc.

visuelle Worterkennung

Graphem/PhonemKonversion

Bildbenennung

Wortgenerierung

Wortlesen

Pseudowortlesen

Selb

stmo

nito

ring

aussprechen vs. Wort “denken”

Gemeinsame Aktivierungsgebiete von Bildbenennung, Wortgenerierung und Wortlesen

Konzeptuelle Vorbereitung

lexikalische Selektion

lexikalisches Konzept

Lemma

Wortformzugriff

Wortform

Syllabifizierung

phonologisches Wort

phonetische Enkodierung

abstraktes Motorprogramm

Artikulation

gesprochenes Wort

visuelle Objekt-erkennung

Einleitungsprozesse KernprozesseAufgabe

Worterkennung Objektvorstellung Gedächtnis etc.

visuelle Worterkennung

Graphem/PhonemKonversion

Bildbenennung

Wortgenerierung

Wortlesen

Pseudowortlesen

Selb

stmo

nito

ring

aussprechen vs. Wort “denken”

Gemeinsame Aktivierungsgebiete aller Aufgaben

Aussprechen im Vergleich zu Wort “denken”

Schematische Darstellung des Ergebnisses der Meta-Analyse von 82 Hirnaktivierungsstudien

Indefrey, P. and Levelt, W.J.M. (2004) Cognition

The cognitive architecture of listening to language

speech signal

interpretation

decoding

segmenting

speech code

phonemes, syllables

phonological processing

word recognition

syntactic analysis

thematic analysis

integration with other knowledge sources

Tekst Sereno

Speech signal

Then once you have examined the city you can get a uh nice contrast to the surrounding country side - uh a very unique country side which contrasts the distinction between the the mountains to the uh low land of the coastal regions where there is a lot more uh fishing.

snelheid proposities (rate of propositions)10 2 3 4 5 6 7 8 9 10

seconds

snelheid lexical access (rate of words)

snelheid klanken (rate of phonemes)

mixing van alle vier

speech signal

rate of propositions

rate of words

rate of phonemes

Reversed speech versus silence

Word lists versus silence

Study Stimulus #

Belin 1998 200ms frequency transition, 60/min 1

Belin 1998 40ms frequency transition, 60/min 2

Belin 1999 synthetic diphthong, 6/min 3

Binder 2000 tones, different frequencies, 90/min 4

Bookheimer 1998 pseudowords, 9/min 5

Celsis 1999 syllables, 180/min 6

Celsis 1999 tones, 500 + 700Hz, 180/min 7

di Salle 2001 tones, 1000Hz, 6/min 8

Engelien 1995 environmental sounds, 10/min 9

Fiez 1996 pseudowords, 60/min 10

Fiez 1996 words, 60/min 11

Giraud 2000 vowels vs. expecting vowels, 120/min 12

Holcomb 1998 tones, 1500Hz + lower tones, 30/min 13

Jäncke 1999 tones, 1000Hz, 60/min 14

Lockwood 1999 tones, 500 + 4000Hz, 60/min 15

Mellet 1996 words, 30/min 16

Mirz 1999 music 17

Mirz 1999 sentences 18

Study Stimulus #

Mirz 1999 tones, 1000Hz 19

Mirz 1999 tones, 1000 + 4000Hz 20

Mirz 1999 words 21

Müller 1997 sentences, 12/min 22

Petersen 1988 words, 60/min 23

Price 1996 words, 40/min 24

Price 1996 words, different rates 25

Suzuki 2002a words, 60/min 26

Suzuki 2002b tones, 1000Hz, 60/min 27

Thivard 2000tones with spectral maxima, 60/min

28

Warburton 1996 words, 4/min 29

Wise 1991 pseudowords, 40 or 60/min 30

Wong 1999 reversed sentences, 30/min 31

Wong 1999 sentences, 30/min 32

Wong 1999 words, 30/min 33

Wong 2002 reversed words, 15/min 34

Wong 2002 sentences, 12/min 35

Wong 2002 words, 15/min 36

Indefrey & Cutler, 2004

Studies comparing auditory stimuli to silent baseline conditions

Study Stimulus vs. control stimulus #

Benson 2001 CVC > CV > V 1

Binder 1996 words vs. tones 2

Binder 2000 pseudo vs. tones 3

Binder 2000 reversed words vs. tones 4

Binder 2000 words vs. tones 5

Giraud 2000 amplitude modulated noise vs. noise 6

Giraud 2000 sentences vs. vowels 7

Giraud 2000 words vs. vowels 8

Hall 2002 frequency modulated vs. static tone 9

Hall 2002 harmonic vs. single tone 10

Jäncke 2002 syllables vs. 350 ms white noise bursts 11

Jäncke 2002 syllables vs. steady state portion of vowel 12

Jäncke 2002 syllables vs. tones 13

Müller 2002 90% 1000Hz + 10% 500Hz vs. 1000Hz 14

Mummery 1999 words vs. signal correlated noise 15

Price 1996 words vs. reversed words 16

Schlosser 1998 sentences vs. unknown language 17

Scott 2000 sentences vs. rotated sentences 18

Thivard 2000 frequency transition vs. stationary tone 19

Indefrey & Cutler, 2004

Studies comparing auditory stimuli to simpler auditory stimuli

Talairach & Tournoux (1988) Lateral and medial view of reference brain

Silent control

Silent control

Silent control

Silent control

Silent control

Silent control

Silent control

Silent control

Silent control

Silent control

Listening to speech without an additional task induces extensive bilateral temporal activation but no reliable activation of Broca’s area.

Summary

With increasing linguistic complexity of stimuli, the distance of activation maxima from the primary auditory cortex increases; particularly in the left hemisphere.

It seems to be the highest linguistic processing level that leads to the most significant activation difference compared to a silent control.

Summary

The left hemisphere shows a clearer stimulus-specific differentiation of activation maxima.

Areas that seem to be especially related to (post-) lexical and sentence level processing can be identified.

Summary

bilateral posterior STG: phonology

left posterior STS: lexical phonology

left anterior STS: possibly lexical and sentential prosody, possibly lexical and sentential meaning

Summary

Hagoort & Indefrey, in press

Neuroimaging studies on sentence processing

Hagoort & Indefrey, in press

Haller, Klarhöfer, Radue, Schwarzbach, & Indefrey (2007) Eur. J. Neuroscience

Stimuli

Condition Stimulus Task Graphemic /

phonological

Lexical

semantic Syntactic

SIMPLE xxx xxxx bright xx

xx xxx dark xxxxxx xx

Opposite meaning ?

YES or NO + +

MEDIUM The room is bright

The room is green

Opposite meaning ?

YES or NO ++ ++ +

COMPLEX The dog chases the cat in the garden

In the garden, the dog chases the cat

Same meaning?

YES or NO +++ +++ ++

Haller, Klarhöfer, Radue, Schwarzbach, & Indefrey (2007) Eur. J. Neuroscience

Bookheimer (2002), Fig. 2

Haller, Klarhöfer, Radue, Schwarzbach, & Indefrey (2007) Eur. J. Neuroscience

wegstossen-Animation(1)

wegstossen-Animation(2)

Condition1: Sentences

Der rote Kreis stößt die grüne Ellipse weg.

(The red circle pushes the green ellipse away.)

Condition 2: Noun phrases

roter Kreis, grüne Ellipse, wegstoßen

(red circle, green ellipse, push away)

Condition 3: Single words

Kreis, rot, Ellipse, grün, wegstoßen

(circle, red, ellipse, green, push away)

All conditions at slow (6/min) and fast (8/min) rate.

Sentences vs. Single Words

Activation maximum at -60,14,12

Indefrey et al. (2004) Brain & Language

Activation maximum at -54,6,10

Indefrey et al. (2001) PNAS

S and NP production vs. control (W)

Indefrey, Hellwig, Herzog, Seitz & Hagoort (2004) Brain & Language

Conclusions (1)

The left posterior IFG and the left posterior temporal lobe subserve syntactic comprehension.

Neural activation in syntactic comprehension depends on the need for syntactic analysis.

The two areas do not subserve the same function, because the temporal area does not seem to respond to syntactic errors and is not found in syntactic production.

Aufgabe vom 14.5.10

Finden Sie eine neue Studie (ab 2006) in der mit FMRI, PET, oder NIRS entweder Wortproduktion oder Wortverstehen oder Satzverstehen untersucht wurde.

Vergleichen Sie die Ergebnisse mit der entsprechenden Meta-analyse.

Wodurch könnten Unterschiede zustande gekommen sein?

73

top related