calibration of partial safety factors ... - standard.no anlegg og eiendom/2015 eurokoder/6... ·...

Post on 22-Mar-2020

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

11.12.2015

Calibration of Partial Safety Factors

1

Calibration of Partial Safety

Factors

Jochen KöhlerNTNU

11.12.2015

Calibration of Partial Safety Factors

2

Outline and scope The generic design equation.

Calibration of design equations with one variable load.

Calibration of design equations with two variable loads.

Notional reliability and hidden safety.

11.12.2015

Calibration of Partial Safety Factors

3

Representation of a generic design situation

( )( )* * ** 1 m

G k Q kk

z G QRγ α γ α γ= + −( )( )

** * 1 k

G k Q km

z R G Qα γ α γγ

≥ + −

kG k Q k

m

z R G Qγ γγ

≥ +

( ) ( )* * * * 1 0g z R G Qξ α α= − − − ≤X

Design equation:

Different relations of 𝐺𝐺 and 𝑄𝑄

Generalization with normalized variables and G

G Qα =

+

Estimation of failure probability based on the limit state function:

( ) ( )( )Pr Pr 0F g= ≤X

11.12.2015

Calibration of Partial Safety Factors

4

Representation of a generic design situation Example Steel structure

Variable Distribution COV p.s.f.

yield strength lognormal 0.07 1.05

MU_steel lognormal 0.05 -

dead load normal 0.1 1.35

snow load Gumbel 0.6 1.5

( )( )* * ** 1 m

G k Q kk

z G QRγ α γ α γ= + −

( ) ( )* * * * 1 0g z R G Qξ α α= − − − ≤X

( ) ( )( )Pr Pr 0F g= ≤X

11.12.2015

Calibration of Partial Safety Factors

5

Representation of a generic design situation Example Steel structure

Variable Distribution COV p.s.f.

yield strength lognormal 0.07 1.05

MU_steel lognormal 0.05 -

dead load normal 0.1 1.35

snow load Gumbel 0.6 1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 12

2.5

3

3.5

4

4.5

5

5.5

6

Steel - NOT Calibrated

11.12.2015

Calibration of Partial Safety Factors

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 12

2.5

3

3.5

4

4.5

5

5.5

6

Steel - NOT Calibrated - target

ij -

target

Representation of a generic design situation Example Steel structure

Variable Distribution COV p.s.f.

yield strength lognormal 0.07 1.05

MU_steel lognormal 0.05 -

dead load normal 0.1 1.35

snow load Gumbel 0.6 1.5

( )2target i iMin w β β−∑

11.12.2015

Calibration of Partial Safety Factors

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 12

2.5

3

3.5

4

4.5

5

5.5

6

Steel - NOT Calibrated

Steel - Calibrated - target

ij -

target

Representation of a generic design situation Example Steel structure

Variable Distribution COV p.s.f. p.s.f. (cal., w=1)

yield strength lognormal 0.07 1.05 1.35

MU_steel lognormal 0.05 - -

dead load normal 0.1 1.35 1.11

snow load Gumbel 0.6 1.5 1.76

11.12.2015

Calibration of Partial Safety Factors

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 12

2.5

3

3.5

4

4.5

5

5.5

6

Steel - NOT Calibrated

Steel - Calibrated - target

ij -

target

Representation of a generic design situation Example Steel structure

Variable Distribution COV p.s.f. p.s.f. (cal., w=1) p.s.f. (cal., w=sp)

yield strength lognormal 0.07 1.05 1.35 1.06

MU_steel lognormal 0.05 - - -

dead load normal 0.1 1.35 1.11 0.97

snow load Gumbel 0.6 1.5 1.76 2.44

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 12

2.5

3

3.5

4

4.5

5

5.5

6

Steel - NOT Calibrated

Steel - Calibrated

- target

ij -

target

11.12.2015

Calibration of Partial Safety Factors

9

Representation of a generic design situation Example Steel, Concrete, Timber structure

Variable Distribution COV p.s.f.

yield strength lognormal 0.07 1.05

MU_steel lognormal 0.05 -

dead load normal 0.1 1.35

snow load Gumbel 0.6 1.5

concrete cap. lognormal 0.15 1.5

MU_concrete lognormal 0.1 -

timber cap. lognormal 0.3 1.3

MU_timber lognormal 0.1 -

11.12.2015

Calibration of Partial Safety Factors

10

Representation of a generic design situation Example Steel, Concrete, Timber structure

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 12

2.5

3

3.5

4

4.5

5

5.5

6

Steel - NOT Calibrated

Concrete - NOT Calibrated

Timber - NOT Calibrated

11.12.2015

Calibration of Partial Safety Factors

11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 12

2.5

3

3.5

4

4.5

5

5.5

6

Steel - Calibrated

Concrete - Calibrated

Timber - Calibrated

target

Representation of a generic design situation Example Steel, Concrete, Timber structure

11.12.2015

Calibration of Partial Safety Factors

12

Representation of a generic design situation Example Steel, Concrete, Timber structure

Variable Distribution COV p.s.f. p.s.f. calibr.

yield strength lognormal 0.07 1.05 1.17

MU_steel lognormal 0.05 - -

dead load normal 0.1 1.35 1.33

snow load Gumbel 0.6 1.5 1.91

concrete cap. lognormal 0.15 1.5 1.33

MU_concrete lognormal 0.1 - -

timber cap. lognormal 0.3 1.3 1.63

MU_timber lognormal 0.1 - -

11.12.2015

Calibration of Partial Safety Factors

13

Representation of a generic design situation Two variable loads

(Eq. 6.10)

11.12.2015

Calibration of Partial Safety Factors

14

Representation of a generic design situation Example Steel, Concrete, Timber structure, two var. loads

Variable Distribution COV p.s.f.

yield strength lognormal 0.07 1.05

MU_steel lognormal 0.05 -

dead load normal 0.1 1.35

snow load Gumbel 0.6 1.5

wind load Gumbel 0.6 1.5

concrete cap. lognormal 0.15 1.5

MU_concrete lognormal 0.1 -

timber cap. lognormal 0.3 1.3

MU_timber lognormal 0.1 -

11.12.2015

Calibration of Partial Safety Factors

15

Representation of a generic design situation Example Steel, Concrete, Timber structure, two var. loads

1

Steel - NOT Calibrated

Q

0.500

0.5

G

2

4

6

1

Concrete - NOT Calibrated

1

Q

0.500

0.5

G

2

4

6

11

Timber - NOT Calibrated

Q

0.500

0.5

G

2

4

6

1

11.12.2015

Calibration of Partial Safety Factors

16

1

Q

Steel - Calibrated

0.500

0.5

G

2

4

6

11

Concrete - Calibrated

Q

0.500

0.5

G

6

2

4

11

Timber - Calibrated

Q

0.500

0.5

G

2

4

6

1

Representation of a generic design situation Example Steel, Concrete, Timber structure, two var. loads

11.12.2015

Calibration of Partial Safety Factors

17

Representation of a generic design situation Example Steel, Concrete, Timber structure, two var. loads

Variable Distribution COV p.s.f. p.s.f. calibr.

yield strength lognormal 0.07 1.05 1.20

MU_steel lognormal 0.05 - -

dead load normal 0.1 1.35 1.28

snow load Gumbel 0.6 1.5 1.49

wind load Gumbel 0.6 1.5 1.49

concrete cap. lognormal 0.15 1.5 1.37

MU_concrete lognormal 0.1 - -

timber cap. lognormal 0.3 1.3 1.67

MU_timber lognormal 0.1 - -

11.12.2015

Calibration of Partial Safety Factors

18

Representation of a generic design situation Two variable loads

(Eq. 6.10a,b)

{ }

( ) ( )( )( ) ( )( )( )

3 4 5

3 01 1 02 2

4 1 02 2 1

5

max , ,

1 Q 1 (Eq. 6.10a)

1 1 Q (Eq. 6.10b with Q leading)

1

mG G k G Q Q k Q Q k

k

mG G k G Q Q k Q Q k

k

mG G k G Q

k

z z z z

z G QR

z G QR

z GR

γ α γ α α γ ψ α γ ψ

γ α ξ γ α α γ α γ ψ

γ α ξ γ α α γ

=

= + − + −

= + − + −

= + − ( )( )01 1 2 2 Q 1 (Eq. 6.10b with Q leading)Q k Q Q kQψ α γ + −

11.12.2015

Calibration of Partial Safety Factors

19

Representation of a generic design situation Two variable loads

G

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 12

2.5

3

3.5

4

4.5

5

5.5

6Steel - Comparison Eq. 6.10a&b with &6.10

Eq. 6.10a

Eq. 6.10b

Eq. 6.10

11.12.2015

Calibration of Partial Safety Factors

20

Representation of a generic design situation Example Steel, Concrete, Timber structure

Variable Distribution COV p.s.f. p.s.f. calibr.(Eq. 6.10a&b)

yield strength lognormal 0.07 1.05 1.18

MU_steel lognormal 0.05 - -

dead load normal 0.1 1.35 1.33

snow load Gumbel 0.6 1.5 1.67

Wind load Gumbel 0.6 1.5 1.67

concrete cap. lognormal 0.15 1.5 1.37

MU_concrete lognormal 0.1 - -

timber cap. lognormal 0.3 1.3 1.67

MU_timber lognormal 0.1 - -

11.12.2015

Calibration of Partial Safety Factors

21

Summary and Discussion Partial safety factors can be calibrated in order to reach

target reliability “as best as possible” for generalized design equations.

The results are conditional on the assumptions. Caution is necessary, since engineering models contain a

multitude of conservative assumptions.

All considerations are only valid for linear design equations.

top related