can a combination of constrained-based and kinetic modeling bridge time scales in progressive...

Post on 14-Jun-2015

229 Views

Category:

Technology

3 Downloads

Preview:

Click to see full reader

DESCRIPTION

Lorentz workshop Multiscale Systems Biology of Cancer

TRANSCRIPT

Lorentz workshop Multiscale Systems Biology of Cancer

Leiden, NL, Nov. 16, 2012

Natal van Riel Dept. of Biomedical Engineering, n.a.w.v.riel@tue.nl

• Parameter Transition Analysis (PTA)

• Progressive adaptations in metabolism associated with diseases (or therapeutic intervention)

• Linking phenotypes • Integrate metabolome, proteome, transcriptome

• Indentifying and exploiting the structure of the parameter space

unidentifiability ↔ constraints paradox (?) • Quantifying and analyzing uncertainty in model and data

/ biomedical engineering PAGE 2 19-8-2013

Systems biology and metabolic diseases

• Changes in metabolism associated with multi-factorial, progressive diseases

/ biomedical engineering PAGE 3 19-8-2013

Kinetic modeling

• ATP metabolism in mitochondria

/ biomedical engineering PAGE 4 19-8-2013

Chance, Comput Biomed Res.1967;1:251-64.

Schmitz et al. PLoS ONE 2012, 7(3): e34118.

Kinetic modeling

/ biomedical engineering PAGE 5 19-8-2013

Chalhoub et al, 2007 AJP Endocrinol 93(6): E1676-

liver

skeletal muscle

Schmitz,et al. Am J Physiol Cell Physiol 2012 Oct 31

Constrained-based modeling

/ biomedical engineering PAGE 6 19-8-2013

• Genome-Scale Metabolic Modeling (GSMM) • Liver specific GSMM’s:

− Jerby, Shlomi and Ruppin 2010 Mol Sys Biol 6: 401 − Gille,…, Holzhutter 2010 Mol Syst Biol 6: 411

Constraints: • Physical-chemical: network topology,

conservation of mass, thermodynamics • Flux Balance Analysis (FBA)

• Data: • Shlomi,…, Ruppin 2008 Nat Biotech 26: 1003

• Inverse problems

• Numerical optimization

• Variability / Uncertainty analysis

/ biomedical engineering PAGE 7 19-8-2013

2

1

( )( )N

i id

i i

y dXσ=

∑ pp

( )ˆ arg min ( )dX=p

p p

( ) ( ( ), , )d t t tdt

=s Nv s p

=Nv 0subject to

i i ia v b< <

( )ˆ arg max ( )X=v

v v

Metabolic Syndrome (MetS)

• The characteristics of plasma lipoprotein profiles codetermine metabolic and cardiovascular disease risks

• Underlying molecular mechanisms are not fully understood • Multi-factorial and progressive

/ biomedical engineering PAGE 8 19-8-2013

• Preclinical research

• Cohort studies: cross-sectional e.g. BMI matched

• Patient-specific (VPH, ITFoM)

/ biomedical engineering PAGE 9 19-8-2013

/ biomedical engineering PAGE 10 19-8-2013

• Different diets • Genetic manipulation

• Pharmacological compounds

experiments phenotype A

experiments phenotype B

Identify adaptations

Modulate lipoprotein metabolism

• Activate Liver X Receptor (nuclear receptor) plays a central role in the control of cellular lipid and sterol metabolism

• Metabolic profiling

/ biomedical engineering PAGE 11 19-8-2013

0 10 200

100

200Hepatic TG

Time [days]

[um

ol/g

]

0 10 200

1

2

3Hepatic CE

Time [days]

[um

ol/g

]

0 10 200

2

4

6Hepatic FC

Time [days]

[um

ol/g

]

0 10 200

50

100Hepatic TG

Time [days]

[um

ol]

0 10 200

0.5

1

1.5Hepatic CE

Time [days]

[um

ol]

0 10 200

2

4Hepatic FC

Time [days]

[um

ol]

0 10 200

1000

2000

3000Plasma CE

Time [days]

[um

ol/L

]

0 10 200

1000

2000

3000HDL-CE

Time [days]

[um

ol/L

]

0 10 200

500

1000

1500Plasma TG

Time [days]

[um

ol/L

]

0 10 206

8

10

12VLDL clearance

Time [days]

[-]

0 10 20100

200

300

400ratio TG/CE

Time [days]

[-]

0 10 200

5

10

15VLDL diameter

Time [days]

[nm

]

0 10 200

1

2

3VLDL-TG production

Time [days]

[um

ol/h

]

0 10 201

2

3Hepatic mass

Time [days]

[gra

m]

0 10 200

0.2

0.4DNL

Time [days]

[-]

• Computational model

Grefhorst et al. Atherosclerosis, 2012, 222: 382– 389 Tiemann et al. BMC Systems Biology, 2011, 5:174

Control, 1, 2, 4, 7, 14, 21 days

Phenotype snapshots

• Observed:

• Unobserved:

• Metabolic network topology is invariant

• Adaptations in metabolism: - metabolic control - interaction with proteome and transcriptome

Metabolic parameters (e.g. Vmax) can change

/ biomedical engineering PAGE 12 19-8-2013

Metabolome

Proteome

Transcriptome

Parameter Trajectory Analysis (PTA)

• Algorithm: nesting of simulation and parameter estimation

/ biomedical engineering PAGE 13 19-8-2013

Progressive disease / Treatment intervention

Phenotype data at different stages

Monte Carlo sampling of data interpolants

Estimation of parameter and flux trajectories

Analysis

A priori information

Metabolic network topology & Reaction kinetics

Differential Equation model with time-dependent parameters

( ) ( ( ), , )d t t tdt

=s Nv s p

( ) ( ( ) ,( ), )d t t tdt

t=s Nv s p

2

1

( )( )N

i id

i i

y dXσ=

∑ pp

( )( )

ˆ ( ) arg min ( ( )dt

t X t=p

p p

Parameterization

• Sampling parameter space

• Single phenotype snapshot

/ biomedical engineering PAGE 14 19-8-2013

100

101

10210

2

103

104

TG formation (ER)

CE

form

atio

n (E

R)

LXR activation

reference

• Connecting phenotypes

• Numerical results • ensemble

• Visualization • 2D historgram

/ biomedical engineering PAGE 15 19-8-2013

Monte Carlo approach to assess different dynamic behavior

• To account for uncertainty in the data

/ biomedical engineering PAGE 16 19-8-2013

/ biomedical engineering PAGE 17 19-8-2013

Input

Output

From adaptations in metabolome…

• … to predict changes in proteome / transcriptome

/ biomedical engineering PAGE 18 8/19/2013

T0901317

LXR

model development

predict changes

Metabolome

Proteome

Transcriptome

enzyme parameter gene/protein HDL-CE synthesis ABCA1 HDL-CE uptake SR-B1 FC production ABCG5 … …

Fas, Abcg5, Abcg8, Cyp7a1, Lpl, Pltp, Cd36

Effects of LXR activation

• Increased cholesterol efflux from periphery to HDL particles • Accumulation of hepatic TG (hepatic steatosis) • Metabolic adaptation: decreased

hepatic capacity to clear cholesterol • Predicts a decrease in SR-B1

/ biomedical engineering PAGE 19 19-8-2013

• Experimental validation

Tiemann et al, submitted

The hepatic HDL-C uptake capacity is reduced upon LXR activation

/ biomedical engineering PAGE 20 19-8-2013

• The hepatic HDL-C uptake flux is increased (steatosis): • increase in plasma HDL-C (metabolic control) • transcriptional control (SR-B1) counteracts hepatic overloading

• Increase in plasma HDL-C is due to only a small imbalance in uptake vs efflux in the beginning of the intervention

VLDL synthesis flux to plasma decreases

• VLDL-TG production is increased • TG and CE content per VLDL particle increases 10 fold

/ biomedical engineering PAGE 21 19-8-2013

Activation of LXR by pharmaceutical compound T0901317

• Beneficial effect: • increased excretion of cholesterol

from the body • large, anti-atherogenic HDL

• Side effects: • hepatic steatosis • triglyceride-rich VLDL

• Model analysis predicts how side effects could be prevented

/ biomedical engineering PAGE 22 19-8-2013

Liver section of mice treated 4 days with LXR agonist T0901317

Oil-Red-O staining for neutral fat

hepatic steatosis

VLDL

HDL

T0901317

Is this possible with less data?

• A subset of the data (cross-sectional data) • Only day 0 and day 4

/ biomedical engineering PAGE 23 19-8-2013

Flux trajectories for acceptable parameter sets

/ biomedical engineering PAGE 24 19-8-2013

[mM]

[mM/h]

4 days after LXR activation

reference

Analysis of under-constrained trajectories

• Some show a clear pattern (positive correlation between HDL-CE synthesis and HDL-CE uptake by the liver), others just ‘clouds’ of solutions

• Can the ‘structure’ in one cross-section of the parameter space be used to interpret other flux adaptations?

/ biomedical engineering PAGE 25 19-8-2013

Predictions about changes in gene/ protein expression

• Clustering of scenarios - testable hypotheses

• Also here SR-B1 is predicted to be decreased • Measuring ABCG5, but especially ABCA1 is predicted to be

discriminative

/ biomedical engineering PAGE 26 19-8-2013

fluxes parameters

Trajectories can be used for many analyses

• Analysis of the cascade of induced adaptations • Sensitivity and control analyses • Optimal experiment design

which additional measurement (which metabolite, when) is most effective in reducing the uncertainty in a prediction of interest and tradeoff with the ‘cost’

• …

/ biomedical engineering PAGE 27 19-8-2013

A theoretical study

• Insight in the approach • Test and optimize computational methods • Identify possibilities for further improvements

/ biomedical engineering PAGE 28 19-8-2013

R1

u2

u1 1 S1

S3S2S4

3

4 5

2

7

6

1 2 3 4 5 0

0.5

1

1.5

2 S 1

1 2 3 4 5 0 0.1 0.2 0.3 0.4 0.5

S 2

1 2 3 4 5 0 0.2 0.4 0.6 0.8

1 S3

1 2 3 4 5 0

0.2

0.4

0.6

0.8 S 4

u2

u1 1 S1

S3S2S4

3

4 5

2

Van Riel et al, submitted

Outlook: including other omics

• Transcriptomics

• Proteomics

• Trajectories correlating with gene expression data are more likely than parameter changes that do not correlate

‘A transparent black box’ / biomedical engineering PAGE 29 19-8-2013

Metabolome

Proteome

Transcriptome2 2

1 1

( )( )N M

i i id

i ii i

y d d dtdRNA dt

θ θχ θ λσ= =

−+

∑ ∑

Acknowledgement

Collaborators • Computational Biology (TU/e)

• Ceylan Çölmekçi Öncü • Christian Tiemann • Joep Schmitz • Joep Vanlier • Huili Yuan • Peter Hilbers • Marijke Dermois • Gijs Hendriks • Fianne Sips • Sandra van Tienhoven • Robbin van den Eijnde • Bram Wijnen • Sjanneke Zwaan

Funding • Netherlands Genomics Initiative

Netherlands Consortium for Systems Biology

• AstraZeneca

• Univ. Medical Centre Groningen (NL) • Aldo Grefhorst • Maaike Oosterveer • Jan Albert Kuivenhoven • Barbara Bakker • Bert Groen

• Biomedical NMR (TU/e)

• Klaas Nicolay • Jeanine Prompers

• Ko Willems-van Dijk, Leiden University Medical Center, Netherlands

• FP7-HEALTH.2012.2.1.2-2: Systems medicine: Applying systems biology approaches for understanding multifactorial human diseases and their co-morbidities, starting in 2013

top related