collisionless shock experiments on the nif

Post on 02-Feb-2017

230 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Collisionless shock experiments on the NIF

Frederico Fiúza !

!

LLNL-PRES-645720F. Fiuza | February 9 | NIF/JLF User Meeting 2015

International collaboration on Astrophysical Collisionless Shock Experiments with Lasers (ACSEL)

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

Y. Sakawa Osaka U. PI, Lead in designing and providing scientific input

H-S Park LLNL Co-PI, Lead in designing, executing, analyzing, modeling experiments and scientific interpretation of the results

S. Ross, C. Huntington, D. Turnbull, B. Pollack

LLNL Lead experimentalists

G. Gregori, J. Meinecke, D Froula

Oxford U. LLE

Lead on magnetic field measurements and interpretation of FABS Faraday rotation data.

R. Petrasso, C. Li, H. Rinderknecht, A. Zylstra, M. Rosenberg

MIT Lead on proton imaging and proton spectrum data

F. Fiuza A. Spitkovsky, D. Caprioli, J. Park

SLAC/LLNL Princeton U.

Lead on PIC simulation

D. Ryutov, B. Remington R. P. Drake, C. Kuranz N. Woolsey H. Takabe T. Morita

LLNL U. Michigan York U. Osaka U. Kyushu U.

Scientific and theoretical support; interpretation of data

M. Koenig D. Lamb, P. Tzeferacos S. Weber

LULI U. Chicago LLNL

Radiation-hydrodynamics and radiation-MHD simulation support

❖ Names in blue are the post-docs and the graduate students

We acknowledge the NIF and Omega staffs, the OSIRIS consortium, and INCITE (ALCF) and LLNL Grand Challenge computational grants

Outline

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

Introduction/Motivation

Demonstration of Weibel instability on OMEGA

Development of experimental platform on NIF

Plans for collisionless shock studies on NIF

Conclusions and perspectives

Outline

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

Introduction/Motivation

Demonstration of Weibel instability on OMEGA

Development of experimental platform on NIF

Plans for collisionless shock studies on NIF

Conclusions and perspectives

Collisionless shocks are believed to be a dominant source of cosmic rays

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

ENERGY (ELECTRON VOLTS)N. Gehrels, L. Piro, and P.J.T. Leonard, Scientific American (2002) R. Blandford & D. Eichler, Physics Reports 154, 1 (1987)

Upstream waves

Vu

Downstream turbulence

Vd dN/dE ∝ E-α

SN1006 Tycho

Weibel instability is seen as a leading mechanism for shock formation

Ion density

B-field

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

Weibel instability is seen as a leading mechanism for shock formation

Ion density

B-field

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

Weibel instability is seen as a leading mechanism for shock formation

Ion density

B-field

γ-2.41000 ωpi-1

2000 ωpi-1

3000 ωpi-1

5000 ωpi-14000 ωpi-1

100 101 102Energy [GeV]

E-2.4

e- spectrum

0.2 TeV

OSIRIS Simulations | F. Fiuza 2014 F. Fiuza | February 9 | NIF/JLF User Meeting 2015

Outline

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

Introduction/Motivation

Demonstration of Weibel instability on OMEGA

Development of experimental platform on NIF

Plans for collisionless shock studies on NIF

Conclusions and perspectives

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

High Mach # plasma flows can be created by laser ablation

v ~ 1000-2000 km/s Te ~ Ti ~ 1 keV ne = 5x1018 cm-3 L = 0.8 cm λmfp > 7 cm

J.S. Ross et al, Phys. Plasmas (2012); C. Huntington et al. Nat. Physics (2015)

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

Ab initio simulations predict generation of strong Weibel B-fields

flow 1 flow 2 flow 1 flow 2

Plasma density Magnetic field

On axis slice from 3D simulation using 128,000 cores

t = 2-5 ns

ne = 5x1018 cm-3 v = 1000-2000 km/s

N. Kugland et al., Nature Physics (2012); D. Ryutov et al., PoP (2013): Biermann Battery B-fields lead to magnetic plates

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

Ab initio simulations predict generation of strong Weibel B-fields

flow 1 flow 2 flow 1 flow 2

Plasma density Magnetic field

On axis slice from 3D simulation using 128,000 cores

t = 2-5 ns

ne = 5x1018 cm-3 v = 1000-2000 km/s

N. Kugland et al., Nature Physics (2012); D. Ryutov et al., PoP (2013): Biermann Battery B-fields lead to magnetic plates

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

Radiography demonstrates generation of filamentary Weibel B-fields

1 mm

3.2 ns 4.2 ns 5.2 ns

Experimental data

3 MeV

protonsExperim

ental data 14.7 M

eV protons

PIC Sim

ulation 14.7 M

eV protons

Proton deflection at 3 MeV vs. 14.7 MeV indicates magnetic fields

C. Huntington, F. Fiuza, J. S. Ross, et al. Nature Physics (2015)

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

Our measurements show non-linear development of instability

Early time interaction

Bulk flow interpenetration Development of Weibel instability

3.2 ns

4.2 ns

5.2 ns

Non-linear development of Weibel instability Time [ns]

400!

350!

300!

250!

200!

150!

100!

50Fi

lam

ent s

paci

ng [µ

m]

3 3.5 4 4.5 5 5.5

Synthetic D3He images!D3He data

Simulations and experimental measurements indicate magnetization of 1%, consistent with astrophysical shocks

C. Huntington, F. Fiuza, J. S. Ross, et al. Nature Physics (2015)

Shock formation requires larger interpenetration regions/higher density flows

Outline

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

Introduction/Motivation

Demonstration of Weibel instability on OMEGA

Development of experimental platform on NIF

Plans for collisionless shock studies on NIF

Conclusions and perspectives

shock 1

shock 2

flow 1

flow 2

Density

B-field

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

Large interpenetration region (~500 c/ωpi) is needed for shock formation

ne = 2x1020 cm-3 v = 2000 km/s

shock 1

shock 2

flow 1

flow 2

Density

B-field

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

Large interpenetration region (~500 c/ωpi) is needed for shock formation

ne = 2x1020 cm-3 v = 2000 km/s

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

Initial set of experiments on NIF to develop collisionless shocks platform

150 - 250 kJ per target 6 mm apart

Fe/Ni (0.1%) doped CD/CH foils

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

150 - 250 kJ per target 6 mm apart

Fe/Ni (0.1%) doped CD/CH foils

E (keV)

Flux

(J/n

s/ke

V/s

r)

X-ray spectrum (Te)

Tim

e

Shock imaging

Distance

self-emission

Initial set of experiments on NIF to develop collisionless shocks platform

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

150 - 250 kJ per target 6 mm apart

Fe/Ni (0.1%) doped CD/CH foils

E (keV)

Flux

(J/n

s/ke

V/s

r)

X-ray spectrum (Te)

λ (nm)

Tim

e (n

s)

ne (cm-3)

Raman backscatter (ne) Neutrons Yn (DD)

Time at detector (ns)

Sign

al

nTOF

Tim

e

Shock imaging

Distance

self-emission

Initial set of experiments on NIF to develop collisionless shocks platform

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

150 - 250 kJ per target 6 mm apart

Fe/Ni (0.1%) doped CD/CH foils

E (keV)

Flux

(J/n

s/ke

V/s

r)

X-ray spectrum (Te)

λ (nm)

Tim

e (n

s)

ne (cm-3)

Raman backscatter (ne) Neutrons Yn (DD)

Time at detector (ns)

Sign

al

nTOFSelf-generated protons

CR39

pinhole

Tim

e

Shock imaging

Distance

self-emission

Initial set of experiments on NIF to develop collisionless shocks platform

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

High-quality data hints at shock formation

Strong heating and proton emission from central region

650 km/s

750 km/s

1000 km/s

6.0

1.5

Tim

e (n

s)

1.93-1.93Distance (mm)

0.0

Counts

Yn = 5e10 Bang = 5.51 ns Burn = 2.94 ns

Time at detector (ns)

Neu

tron

sig

nal

Self-emission from interaction region

Foils

Overlayed protons & x-rays

Stagnation and neutron yield hint at shock formation

pTOF

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

Inferred plasma density per flow ne ~ 2x1020 cm-3

317 318 316 315

Probe Beam Pulse Shape

Pow

er/B

eam

(TW

)

0

0.1

0.1

0.2

0.2

Time (ns)0 3.5 7 10.5 14

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

N140729 150 kJ/foil

N141021-002 250 kJ/foil

N141022-001 250 kJ/foil

N141022-002 250 kJ/foil

Target CD/CD CD/CD CD/CH CD

Yn (DD) 3.0e10 4.4e10 5.8e9 4.4e8

Yp (DD) 1.1e10 3.0e10 4.1e9 -

Tion 7.1 keV 8.3 keV 7.3 keV 1.5 keV

vflow - 750 ± 200 km/s 750 ± 200 km/s -

ne - 7e20 cm 7e20 cm -

Discrepancy between Yn & Yp suggests strong B-fields

Difference in Yn for CD/CD, CD/CH, and CD shows that thermalization/shock formation occurs in interaction region

Relatively low velocities and high densities suggest collisional effects are important (λmfp ~ 0.5 mm)

Yp is ~50% less than Yn indicating that strong B-fields are present in interaction region (> 5 T)

1.5!!0.0!!-1.5

B 3 [M

G]

3!!0!!-3

B 3 [M

G]

Simulations show presence of B-fields in collisional/collisionless transition

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

flow 1 flow 2v = 2000 km/s | ne = 2x1020 cm-3

v = 1000 km/s | ne = 2x1020 cm-3

Ion density

B-field

Ion density

B-field

0 1 2 3 4 5 6

Col

lisio

nles

s sh

ock

Col

lisio

nal s

hock

Outline

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

Introduction/Motivation

Demonstration of Weibel instability on OMEGA

Development of experimental platform on NIF

Plans for collisionless shock studies on NIF

Conclusions and perspectives

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

Discovery Science Proposal - 2016/2017

X-ray spectroscopy

Tim

e

Polarimetry

Proton backlighter

D3He

ne

no

ne

no

CCD imaging camera

PIs: Y. Sakawa / H. S. Park Shot RI: D. Turnbull / J. S. Ross / C. Huntington Designers: F. Fiuza / D. Ryutov / S. Weber

Campaign objectives: Measure evolution and structure of magnetic fields Observed formation of purely collisionless shocks

New diagnostics: Polarimetry (B-fields) Proton backlighter (B-fields) X-ray spectroscopy with Mn/Co doped target (Te)

Shot plan

Day1 2 shots at 300 kJ/foil with D

Day2 2 shots at 300 kJ/foil with Done time

Day3 2 shots at 500 kJ/foil to study effect of stronger B-fields

NXS

DISC

CIVS fiducial

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

Radiography allows characterization of shock B-fields

[Spitkovsky]

t=3.0ns

t=4.7ns

[Fiuza]

14.7 MeV proton radiography

flow 1flow 2

shock 1

shock 2

B-field evolution of NIF experiment

t =2.3ns

t = 3ns

t = 4.7ns

t =2.3ns

t = 3ns

t = 4.7ns

Filamentary B fields from Weibel

Magnetic turbulence downstream of shock

Shocked region

HED laboratory astrophysics can shed light into fundamental long-standing problems: collisionless shocks, life cycle of magnetic fields, cosmic ray acceleration

We have demonstrated generation of Weibel instability and 1% magnetization on Omega experiments

We have successfully developed an experimental and modeling platform to study the physics of collisionless shocks on NIF

Upcoming NIF experiments can answer critical open questions:

Conditions for formation of collisionless shocks

Generation of magnetic field turbulence in shocks

Particle acceleration

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

Conclusions

12

NIF experiment on Oct 22, 2014!

Extra slides

Frederico Fiúza !

!

LLNL-PRES-645720F. Fiuza | February 9 | NIF/JLF User Meeting 2015

0.0 0.5 1.0 1.5 2.0 2.5 3.01¥10-4

2¥10-4

5¥10-4

0.001

0.002

0.005

0.010

0.020

σ

time [ns] 0.5 1.0 1.5 2.0 2.5 3.0

10-2!

10-3!

10-40.0

Bx, By

Bz

Btotal

theory

w/ BB fieldsw/o BB fields

Dispersion relation for plasma with several ion components

0 5 10 15

Γ

k [ωpi/c]

1.0!

0.5!

0.0

CH2 0.1 keV

2 keV 1 keV

0.5 keV

C 1keV

v/c ωpi

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

Good agreement between theory and simulations

D. D. Ryutov et al., Physics of Plasmas (2014)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0010

0.0100

0.0050

0.0020

0.0200

0.0030

0.0015

0.0150

0.0070

time [ns] 0.5 1.0 1.5 2.0 2.5 3.0

10-2!

10-3

0.0

h�i

NIF

Omega

h�i�peak = 2.5 %

= 1.0 %

h�i�peak = 4.7 %

= 1.7 %

For a supernova remnant shock (v ~ 0.1 c , n = 1 cm-3) our results show that B-fields as high as 4 mG are generated

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

Magnetization levels >1% are reached

F. Fiuza | February 9 | NIF/JLF User Meeting 2015

SRF and mag-p TOF will be used to measure proton spectrum

SRF 90-78-1

pTOF

CR39WRF (3x)

Magnet

PTOF

SnoutDD-proton signalTa filters

90-78-1

5 µm

15 µm

10 µm

Bkgd

10 µm

19 µm

14 µm

Bkgd23 µm

20µm

90-78-3

Step Range Filter (SRF) Mag-pTOF

top related