combining insar, levelling and gnss for the estimation of...

Post on 05-Jun-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

0 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

(1) Karlsruhe Institute of Technology, (2) Netherlands Organisation for Applied Scientific Research (TNO), (3) Delft University of Technology

Combining InSAR, Levelling and GNSS for the Estimation of3D Surface Displacements

Thomas Fuhrmann (1), Miguel Caro Cuenca (2), Freek van Leijen (3), Malte Westerhaus (1), RamonHanssen (3), Bernhard Heck (1)

KIT – University of the State of Baden-Wuerttemberg andNational Research Center of the Helmholtz Association www.kit.edu

Motivation

1 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Major drawbacks of SAR-Interferometry

• 1-dimensional measurements along the LOSdirection• Decomposition into horizontal and vertical

components not possible

• Accuracy of estimated displacement/ratenot easily accessible (filtering)

• Results relative to a reference point/area

3D velocity field

Realistic accuracy information

Reference frame

Motivation

1 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Major drawbacks of SAR-Interferometry

• 1-dimensional measurements along the LOSdirection• Decomposition into horizontal and vertical

components not possible

• Accuracy of estimated displacement/ratenot easily accessible (filtering)

• Results relative to a reference point/area

3D velocity field

Realistic accuracy information

Reference frame

Research objectives

2 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Levelling InSARGNSS

3D velocity field

Derivation of horizontal and vertical surface displacements

Robust combination of InSAR, levelling and GNSS

Focus on linear movements (displacement rates)

Realistic information on the accuracies of the estimates

Area of interest: Upper Rhine Graben

3 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

UpperRhine

Graben

“Most prominentsegment of theCenozoic rift

system”

“Significant pro-bability for large

earthquakes”

3 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

UpperRhine

Graben

“Most prominentsegment of theCenozoic rift

system”

“Significant pro-bability for large

earthquakes”

Basel 1356:MW = 6.7 − 7.1(Fäh et al., 2009)

3 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

UpperRhine

Graben

“Most prominentsegment of theCenozoic rift

system”

“Significant pro-bability for large

earthquakes”

Basel 1356:MW = 6.7 − 7.1(Fäh et al., 2009)

Mahlberg 1728:MW = 5.3(Meidow, 1998)

3 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

UpperRhine

Graben

“Most prominentsegment of theCenozoic rift

system”

“Significant pro-bability for large

earthquakes”

Basel 1356:MW = 6.7 − 7.1(Fäh et al., 2009)

Mahlberg 1728:MW = 5.3(Meidow, 1998)

Waldkirch 2004:MW = 4.6(Häge et al., 2009)

3 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

UpperRhine

Graben

“Most prominentsegment of theCenozoic rift

system”

“Significant pro-bability for large

earthquakes”

Basel 1356:MW = 6.7 − 7.1(Fäh et al., 2009)

Mahlberg 1728:MW = 5.3(Meidow, 1998)

Waldkirch 2004:MW = 4.6(Häge et al., 2009)Tectonic motion:

Small (< 1mm/a),

but still not well

constrained from

Geodesy

3 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Database

3 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Database

3 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Database

3 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Database

Properties of the techniques

4 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Spatial distribution:

• InSAR: high in urban areas

• Levelling: high along lines

• GNSS: low (30–40 km)

Temporal distribution:

• InSAR: 35 days

• Levelling: campaigns (∼20a)

• GNSS: permanent (daily)

1940 1950 1960 1970 1980 1990 2000 2010

Levelling

GPS

InSAR asc.

InSAR desc.

Year

Temporal coverage,representative example

Properties of the techniques

4 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Spatial distribution:

• InSAR: high in urban areas

• Levelling: high along lines

• GNSS: low (30–40 km)

Temporal distribution:

• InSAR: 35 days

• Levelling: campaigns (∼20a)

• GNSS: permanent (daily)

1940 1950 1960 1970 1980 1990 2000 2010

Levelling

GPS

InSAR asc.

InSAR desc.

Year

Temporal coverage,representative example

Single technique analysis

5 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

InSAR: PS analysis using StaMPS (Hooper et al., JGR 2007)

Data: 2 ascending, 1 descending track; ERS-1/2, EnvisatResult: LOS displacement w.r.t. a master scene and areference area

Levelling: Kinematic adjustment of repeatedlymeasured levelling data

Data: 40049 height differences at 15592 levellingbenchmarksResult: Linear displacement rates (vertical) w.r.t. areference point

GNSS: Differential processing using Bernese GPSsoftware (Dach et al., 2007)

Data: GPS observations, daily coordinates at 76 sitesResult: Linear displacement rates (horizontal) w.r.t.ITRF05 (block mean subtracted)

Single technique analysis

5 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

InSAR: PS analysis using StaMPS (Hooper et al., JGR 2007)

Data: 2 ascending, 1 descending track; ERS-1/2, EnvisatResult: LOS displacement w.r.t. a master scene and areference area

Levelling: Kinematic adjustment of repeatedlymeasured levelling data

Data: 40049 height differences at 15592 levellingbenchmarksResult: Linear displacement rates (vertical) w.r.t. areference point

GNSS: Differential processing using Bernese GPSsoftware (Dach et al., 2007)

Data: GPS observations, daily coordinates at 76 sitesResult: Linear displacement rates (horizontal) w.r.t.ITRF05 (block mean subtracted)

Single technique analysis

5 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

InSAR: PS analysis using StaMPS (Hooper et al., JGR 2007)

Data: 2 ascending, 1 descending track; ERS-1/2, EnvisatResult: LOS displacement w.r.t. a master scene and areference area

Levelling: Kinematic adjustment of repeatedlymeasured levelling data

Data: 40049 height differences at 15592 levellingbenchmarksResult: Linear displacement rates (vertical) w.r.t. areference point

GNSS: Differential processing using Bernese GPSsoftware (Dach et al., 2007)

Data: GPS observations, daily coordinates at 76 sitesResult: Linear displacement rates (horizontal) w.r.t.ITRF05 (block mean subtracted)

Combination approach

6 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

PS interpolation@ levelling /

GNSS locations

Interferograms 1,2,...,n-------------------------------ERS ascendingERS descendingEnvisat ascendingEnvisat descending

Estimation oflinear velocities

Using time series ofERS/Envisat-------------------------------ascendingdescending

Calculation ofUp / East

component

Estimation ofoffset and trend

(Up / East)

PSinterpolation@ PS grid

Estimationof linearvelocities

Interpolationof levellingvelocities@ PS grid

Interpolationof GNSSvelocities@ PS grid

Estimation ofEast, North

and Upcomponents

Step 1 Step 2

Combination approach

6 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

PS interpolation@ levelling /

GNSS locations

Interferograms 1,2,...,n-------------------------------ERS ascendingERS descendingEnvisat ascendingEnvisat descending

Estimation oflinear velocities

Using time series ofERS/Envisat-------------------------------ascendingdescending

Calculation ofUp / East

component

Estimation ofoffset and trend

(Up / East)

PSinterpolation@ PS grid

Estimationof linearvelocities

Interpolationof levellingvelocities@ PS grid

Interpolationof GNSSvelocities@ PS grid

Estimation ofEast, North

and Upcomponents

Step 1 Step 2

Joint ERS/Envisat displacementtime series (Caro Cuenca et al., 2010)

Combination approach

6 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

PS interpolation@ levelling /

GNSS locations

Interferograms 1,2,...,n-------------------------------ERS ascendingERS descendingEnvisat ascendingEnvisat descending

Estimation oflinear velocities

Using time series ofERS/Envisat-------------------------------ascendingdescending

Calculation ofUp / East

component

Estimation ofoffset and trend

(Up / East)

PSinterpolation@ PS grid

Estimationof linearvelocities

Interpolationof levellingvelocities@ PS grid

Interpolationof GNSSvelocities@ PS grid

Estimation ofEast, North

and Upcomponents

Step 1 Step 2

Joint ERS/Envisat displacementtime series (Caro Cuenca et al., 2010)

Different reference framesResidual atmospheric/orbit effectsValidation of InSAR results

Combination approach

6 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

PS interpolation@ levelling /

GNSS locations

Interferograms 1,2,...,n-------------------------------ERS ascendingERS descendingEnvisat ascendingEnvisat descending

Estimation oflinear velocities

Using time series ofERS/Envisat-------------------------------ascendingdescending

Calculation ofUp / East

component

Estimation ofoffset and trend

(Up / East)

PSinterpolation@ PS grid

Estimationof linearvelocities

Interpolationof levellingvelocities@ PS grid

Interpolationof GNSSvelocities@ PS grid

Estimation ofEast, North

and Upcomponents

Step 1 Step 2

PS interpolation@ levelling /

GNSS locations

Interferograms 1,2,...,n-------------------------------ERS ascendingERS descendingEnvisat ascendingEnvisat descending

Estimation oflinear velocities

Using time series ofERS/Envisat-------------------------------ascendingdescending

Calculation ofUp / East

component

Estimation ofoffset and trend

(Up / East)

PSinterpolation@ PS grid

Estimationof linearvelocities

Interpolationof levellingvelocities@ PS grid

Interpolationof GNSSvelocities@ PS grid

Estimation ofEast, North

and Upcomponents

Step 1 Step 2

Interpolation of PS points (using Kriging)

7 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Step 1: At location of levelling/GNSS pointsStep 2: At a 200 m grid (only in vicinity of PS points)

Interpolation of PS points (using Kriging)

7 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Step 1: At location of levelling/GNSS pointsStep 2: At a 200 m grid (only in vicinity of PS points)

for every Ifg

Interpolation of PS points (using Kriging)

7 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Step 1: At location of levelling/GNSS pointsStep 2: At a 200 m grid (only in vicinity of PS points)

for every Ifg

Linear velocities from PS time series

8 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

yA,1

...yA,NA

yB,1

...yB,NB

=

t3A,1 t2

A,1 tA,1 1 0...

......

......

t3A,NA

t2A,NA

tA,NA1 0

t3B,1 t2

B,1 tB,1 1 1...

......

......

t3B,NB

t2B,NB

tB,NB1 1

x3x2x1x0x∆

+ e

yA,i : Displacement in interferogram i, sensor A (ERS)

yB,i : Displacement in interferogram i, sensor B (Envisat)

NA : Number of interferograms of sensor A

NB : Number of interferograms of sensor B

tA : Acquisition time of sensor A

tB : Acquisition time of sensor B

x0, x1, x2, x3 : Parameters of a polynomial function

x∆ : Offset between sensor A and sensor B

1992 1994 1996 1998 2000 2002

−20

−10

0

10

20

mm

Year

ERS

2002 2004 2006 2008 2010 2012

−20

−10

0

10

20

mm

Year

Envisat

s

Linear velocities from PS time series

8 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

yA,1

...yA,NA

yB,1

...yB,NB

=

t3A,1 t2

A,1 tA,1 1 0...

......

......

t3A,NA

t2A,NA

tA,NA1 0

t3B,1 t2

B,1 tB,1 1 1...

......

......

t3B,NB

t2B,NB

tB,NB1 1

x3x2x1x0x∆

+ e

yA,i : Displacement in interferogram i, sensor A (ERS)

yB,i : Displacement in interferogram i, sensor B (Envisat)

NA : Number of interferograms of sensor A

NB : Number of interferograms of sensor B

tA : Acquisition time of sensor A

tB : Acquisition time of sensor B

x0, x1, x2, x3 : Parameters of a polynomial function

x∆ : Offset between sensor A and sensor B

1992 1994 1996 1998 2000 2002

−20

−10

0

10

20

mm

Year

ERS

2002 2004 2006 2008 2010 2012

−20

−10

0

10

20

mm

Year

Envisat

s

Linear velocities from PS time series

8 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

yA,1

...yA,NA

yB,1

...yB,NB

=

t3A,1 t2

A,1 tA,1 1 0...

......

......

t3A,NA

t2A,NA

tA,NA1 0

t3B,1 t2

B,1 tB,1 1 1...

......

......

t3B,NB

t2B,NB

tB,NB1 1

x3x2x1x0x∆

+ e

yA,i : Displacement in interferogram i, sensor A (ERS)

yB,i : Displacement in interferogram i, sensor B (Envisat)

NA : Number of interferograms of sensor A

NB : Number of interferograms of sensor B

tA : Acquisition time of sensor A

tB : Acquisition time of sensor B

x0, x1, x2, x3 : Parameters of a polynomial function

x∆ : Offset between sensor A and sensor B

1992 1994 1996 1998 2000 2002

−20

−10

0

10

20

mm

Year

ERS

2002 2004 2006 2008 2010 2012

−20

−10

0

10

20

mm

Year

Envisat

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012−30

−20

−10

0

10

mm

Year

ERS

Envisat

1st order (linear)

s

Linear velocities from PS time series

8 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

yA,1

...yA,NA

yB,1

...yB,NB

=

t3A,1 t2

A,1 tA,1 1 0...

......

......

t3A,NA

t2A,NA

tA,NA1 0

t3B,1 t2

B,1 tB,1 1 1...

......

......

t3B,NB

t2B,NB

tB,NB1 1

x3x2x1x0x∆

+ e

yA,i : Displacement in interferogram i, sensor A (ERS)

yB,i : Displacement in interferogram i, sensor B (Envisat)

NA : Number of interferograms of sensor A

NB : Number of interferograms of sensor B

tA : Acquisition time of sensor A

tB : Acquisition time of sensor B

x0, x1, x2, x3 : Parameters of a polynomial function

x∆ : Offset between sensor A and sensor B

1992 1994 1996 1998 2000 2002

−20

−10

0

10

20

mm

Year

ERS

2002 2004 2006 2008 2010 2012

−20

−10

0

10

20

mm

Year

Envisat

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012−30

−20

−10

0

10

mm

Year

ERS

Envisat

1st order (linear)

2nd order

3rd order

Statistical teston linearity

s

Linear velocities from PS time series

8 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Temporal covariance matrix for the estimation:

10 20 30 40 50 60 70

10

20

30

40

50

60

70[m

m2]

0

1

2

3

4

5

6

54 ERS Interferograms

17 Envisat Interferograms

s

Linear velocities from PS time series

8 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Temporal covariance matrix for the estimation:

10 20 30 40 50 60 70

10

20

30

40

50

60

70[m

m2]

0

1

2

3

4

5

6

54 ERS Interferograms

17 Envisat Interferograms

Correlation length fromatmospheric filtering

Variances qii scaled w.r.t.relative Ifg and PS accuracy

s

Linear velocities from PS time series

9 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

−20

−10

0

10

20

mm

Year

ERS

Envisat

asc

ERS/Envisat combination: Accurate estimates for linear rates

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

−20

−10

0

10

20

mm

Year

ERS

Envisat

desc

Linear velocities from PS time series

9 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

−20

−10

0

10

20

mm

Year

ERS

Envisat

asc

Separation of non-linear movements

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

−20

−10

0

10

20

mm

Year

ERS

Envisat

desc

Linear velocities from PS time series

9 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

LOS velocities (desc)

Linear velocities from PS time series

9 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

LOS velocities (desc) + non-linear grid points

Interpolation of levelling and GPS velocities

10 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Standarddev.

Interpolation of levelling and GPS velocities

10 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Standarddev.

Interpolation of levelling and GPS velocities

10 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Standarddev.

High weight close to the data points

Low weight in between

Mathematical fusion

11 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Using least squares adjustment: y = Ax + e

y : Velocities from InSAR (asc and desc), GPS (East and North comp.) and levelling

x : Velocities in East, North, Up

VascVdesc

VGPS,EVGPS,N

Vlev

=

Sasc,1 Sasc,2 Sasc,3Sdesc,1 Sdesc,2 Sdesc,3

1 0 00 1 00 0 1

vE

vNvU

+ e

Qyy =

σ2

Vasc0 0 0 0

0 σ2Vdesc

0 0 00 0 σ2

VGPS,EσVGPS,E,N

0

0 0 σVGPS,E,Nσ2

VGPS,N0

0 0 0 0 σ2Vlev

Sasc =

− sin θasc cos αascsin θasc sin αasc

cos θasc

Sdesc =

− sin θdesc cos αdescsin θdesc sin αdesc

cos θdesc

Covariance matrix usingstandard deviations ofsingle technique estimates

Mathematical fusion

11 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Using least squares adjustment: y = Ax + e

y : Velocities from InSAR (asc and desc), GPS (East and North comp.) and levelling

x : Velocities in East, North, Up

VascVdesc

VGPS,EVGPS,N

Vlev

=

Sasc,1 Sasc,2 Sasc,3Sdesc,1 Sdesc,2 Sdesc,3

1 0 00 1 00 0 1

vE

vNvU

+ e

Qyy =

σ2

Vasc0 0 0 0

0 σ2Vdesc

0 0 00 0 σ2

VGPS,EσVGPS,E,N

0

0 0 σVGPS,E,Nσ2

VGPS,N0

0 0 0 0 σ2Vlev

Sasc =

− sin θasc cos αascsin θasc sin αasc

cos θasc

Sdesc =

− sin θdesc cos αdescsin θdesc sin αdesc

cos θdesc

Covariance matrix usingstandard deviations ofsingle technique estimates

12 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Results

Two test areas:Northern part,Southern part

3D velocity field

Standarddeviations

Results – Northern Upper Rhine Graben

13 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Results – Northern Upper Rhine Graben

13 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Results – Northern Upper Rhine Graben

13 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Mean standard deviation

Up: 0.10 mm/a

Results – Northern Upper Rhine Graben

13 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Results – Northern Upper Rhine Graben

13 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Mean standard deviation

East: 0.20 mm/a

North: 0.24 mm/a

Results – Northern Upper Rhine Graben

13 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Mean standard deviation

East: 0.20 mm/a

North: 0.24 mm/a

14 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Results –SouthernUpperRhineGraben

Results –SouthernUpperRhineGraben

14 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Results –SouthernUpperRhineGraben

14 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Mean standard deviation

Up: 0.12 mm/a

Results –SouthernUpperRhineGraben

14 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Results –SouthernUpperRhineGraben

14 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Mean standard deviation

East: 0.30 mm/a

North: 0.36 mm/a

Results –SouthernUpperRhineGraben

14 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Mean standard deviation

East: 0.30 mm/a

North: 0.36 mm/a

Results –SouthernUpperRhineGraben

Conclusions

15 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Consistent approach to combine velocities fromDifferent SAR sensors (ERS, Envisat)Different SAR tracks (asc, desc)Permanent GNSS sitesRepeated levelling measurements

Consideration of realistic covariance information

Results for two test areas in the URG:Tectonic movements are well below 1.0 mm/aStandard deviations: 0.3 mm/a (horizontal) / 0.1 mm/a (vertical)

Next steps:Combined velocity solution for the whole URG area (300 km SAR stripes)Special cases: Overlapping SAR tracks, only ascending/descending

Conclusions

15 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Consistent approach to combine velocities fromDifferent SAR sensors (ERS, Envisat)Different SAR tracks (asc, desc)Permanent GNSS sitesRepeated levelling measurements

Consideration of realistic covariance information

Results for two test areas in the URG:Tectonic movements are well below 1.0 mm/aStandard deviations: 0.3 mm/a (horizontal) / 0.1 mm/a (vertical)

Next steps:Combined velocity solution for the whole URG area (300 km SAR stripes)Special cases: Overlapping SAR tracks, only ascending/descending

Conclusions

15 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Consistent approach to combine velocities fromDifferent SAR sensors (ERS, Envisat)Different SAR tracks (asc, desc)Permanent GNSS sitesRepeated levelling measurements

Consideration of realistic covariance information

Results for two test areas in the URG:Tectonic movements are well below 1.0 mm/aStandard deviations: 0.3 mm/a (horizontal) / 0.1 mm/a (vertical)

Next steps:Combined velocity solution for the whole URG area (300 km SAR stripes)Special cases: Overlapping SAR tracks, only ascending/descending

Conclusions

15 Introduction Database Combination ResultsT. Fuhrmann et al. – Combining InSAR, Levelling and GNSS – Fringe Workshop 2015, Frascati – March 24, 2015

KIT

Consistent approach to combine velocities fromDifferent SAR sensors (ERS, Envisat)Different SAR tracks (asc, desc)Permanent GNSS sitesRepeated levelling measurements

Consideration of realistic covariance information

Results for two test areas in the URG:Tectonic movements are well below 1.0 mm/aStandard deviations: 0.3 mm/a (horizontal) / 0.1 mm/a (vertical)

Next steps:Combined velocity solution for the whole URG area (300 km SAR stripes)Special cases: Overlapping SAR tracks, only ascending/descending

top related