compact cancer killers simulating next-generation laser...

Post on 28-Jul-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Compact Cancer Killers ─

Simulating Next-Generation Laser-Driven Ion Accelerators

Michael Bussmann, Axel Huebl

Computational Radiation Physics

Helmholtz-Center Dresden Rossendorf

Page 2 Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

m.bussmann@hzdr.de

Radiation Tumor Therapy with Beams of Ions

8 X-Ray Beams 2 Ion Beams

Page 3 Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

m.bussmann@hzdr.de

Oncoray @ Dresden

Oncoray is the

German National Center for

Translational Cancer Research

Page 4 Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

m.bussmann@hzdr.de

Oncoray @ Dresden

Can we make

this compact &

affordable?

Page 5 Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

m.bussmann@hzdr.de

Laser-driven

Ion Acceleration

Page 6 Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

m.bussmann@hzdr.de

DRACO High-Power Laser

25 x 10-15 seconds pulse duration

2 x 1014 Watts peak power

10 x worldwide power consumption

200000000000000 W

in

0.000000000000025 s

Compact High Power Lasers

Page 7 Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

m.bussmann@hzdr.de

How does one accelerate Ions with Lasers?

High

Power Laser

Metal Foil

Page 8 Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

m.bussmann@hzdr.de

The Working Horse ─ Target Normal Sheath Acceleration

Laser ionizes target front

side up to critical density

Electrons accelerated by

laser force in bunches

(10-100 fs time scale)

Page 9 Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

m.bussmann@hzdr.de

The Working Horse ─ Target Normal Sheath Acceleration

Electrons form sheath

at rear surface

Energy transfer from

electrons to ions

Page 10 Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

m.bussmann@hzdr.de

The Working Horse ─ Target Normal Sheath Acceleration

Page 11 Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

m.bussmann@hzdr.de

First dose-controlled Laser-Proton-Irradiation of Cancer Cells

Page 12 Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

m.bussmann@hzdr.de

A compact, isochronous Gantry using Pulsed Magnets

Page 13 Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

m.bussmann@hzdr.de

Spread-out Bragg-Peak Irradiation with Broad Energy Beams

The flatter the dose plateau,

the better the dose control

Page 14 Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

m.bussmann@hzdr.de

In Reality, this will look nicer

Page 15 Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

m.bussmann@hzdr.de

Oncoray @ Dresden

Yes, we can

(probably)

Page 16 Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

m.bussmann@hzdr.de

Oncoray @ Dresden

So, what do you

do with GPUs?

Page 17 Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

m.bussmann@hzdr.de

3D3V Particle-in-Cell Code

Fully GPU-accelerated C++

Open Source

See picongpu.hzdr.de

Page 18 Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

m.bussmann@hzdr.de

Plasma Simulation using the Particle-in-Cell Technique

+

+

+

Field Domain Particle Domain

Page 19 Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

m.bussmann@hzdr.de

Creating vectorized Data Structures for Particles and Fields

Field Domain Particle Domain

Cell 1 Cell 1

Cell 2 Cell 4

+ 1 2

3 4

+

+ +

+ +

+

+

Page 20 Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

m.bussmann@hzdr.de

Thread-wise Operations on Fields and Particles in Shared Memory

SHM

Cell 1 Cell 1

Cell 2 Cell 4

+ 1 2

3 4

+

+ +

THREAD BLOCK

THREAD 1 THREAD 2 THREAD 4 THREAD 3

Page 21 Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

m.bussmann@hzdr.de

Task-Parallel Execution of Kernels + Asynchronous Communication

Page 22 Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

m.bussmann@hzdr.de

Particle-in-Cell

GPU-only code!

Page 23 Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

m.bussmann@hzdr.de

Oncoray @ Dresden

Does it work?

Page 24 Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

m.bussmann@hzdr.de

Targets must be held by „something“

© Peter Hilz, LMU

Before laser pulse 100 ps after laser pulse

Page 25 Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

m.bussmann@hzdr.de

Sometimes, you just need a little force…

© Peter Hilz, LMU

Page 26 Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

m.bussmann@hzdr.de

100µm

Levitating Targets in a Paul Traps

© Peter Hilz, LMU

Page 27 Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

m.bussmann@hzdr.de

Simulating levitating Targets on TITAN

Five 3D Simulations (+many 2D)

100 nc, resolving lplasma

1 ps duration @ as resolution

ORNL INCITE Highlight

Page 28 Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

m.bussmann@hzdr.de

Validation ─ Diffraction of Laser on Target

© Peter Hilz, LMU

Simulation

Experiment

Page 29 Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

m.bussmann@hzdr.de

Thank you!

top related