coresym co hergebruik van staal naar chemie...2 source • 1,5 mta meoh; 2,1 mta co 2 avoided; total...

Post on 30-May-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

CORESYM – CO Hergebruik van

Staal naar Chemie

FME Industrie en Energie

Zoetermeer – 12 December 2017

Andreas ten Cate – andreas.tencate@ispt.eu

Director International Business Development - ISPT

December 21, 2017

1.

2

CORESYM – CarbOn-monoxide RE-use through industrial

SYMbiosis between steel and chemical industries

December 21, 2017

2.

3December 21, 2017

3.

4December 21, 2017

O2

H-H

CH4

5December 21, 2017

6December 21, 2017

Fe + C

CO

CO2

7December 21, 2017

4.

8

Some more numbers on waste gas..

• Reference scale – Tata steel IJmuiden and Arcelor Mittal Gent – each around 7

million tonnes of steel per year (mta)

• Around 2 ton waste gas per ton steel – total around 14 mta per site - around 10 mta

CO2 (all C to CO2)

• Current use of CO is for power energetic value of CO is low

December 21, 2017

9

And on the CO2 budget of NL…

December 21, 2017

Industry43.6 MT CO₂

Total:184.8 MT CO₂

Excluding part toenergy generation

10

How do we make use of this gas?

December 21, 2017

5.

11

Considerations – product-market sizes, technology readiness

Market size large enough to absorb (very) large amount of product

from one or more steel mills without significant market disruption

Technology status sufficient to have an outlook to reach full-scale

practice with manageable scale-up route

• CO to Specialty Products – limited market size or immature technology

• Syngas to Methanol – market size ok, technology scale-up feasible

• Syngas to FT Fuels – market size good, technology feasible

• Syngas Fermentation – market ok, technology scale-up ongoing

• Hydrogen through WG shift – market expected, technology scale-up ongoing

December 21, 2017

12

Hydrogen through Watergas shift (SEWGS)

• CO + H2O CO2 + H2

• SEWGS (ECN technology) promotes selective shift to CO2 + H2

• 0,32 mta H2; 3,2 mta CO2 avoided; total CO2 capture ready 9,4 mta

• 0,65 billion € investment Capex, positive revenues

• Key technical challenge – bring SEWGS technology to scale of steelworks

Alternatives for H2 production

• Electrolysis PEM, Alkaline or Solid Oxide – price range 3 – 4 €/ton

• Capex/Opex for electrolysis high and not (yet) at needed GW scale

• Conventional – Steam Methand Reforming – 2 €/ton

• Stranded hydrogen – unused industrial sources

December 21, 2017

13

Methanol from Syngas – classic route

• EU Market for Methanol – 7,5 mta – of which EU production 2,5 mta

• CO + 2 H2 H3COH

• Classic route – H2 from external source

• 2,36 mta MeOH; 4,9 mta CO2 avoided; total CO2 capture ready 4,7 mta

• 1,5 billion € investment Capex, negative revenues

• CO2 avoidance cost – 136 (H2 @ 3400 €/ton) to 46 €/ton (H2 @ 1700 €/ton)

• Key technical challenge to separate CO – N2

December 21, 2017

14

Methanol from Syngas – SEWGS route

• EU Market for Methanol – 7,5 mta – of which EU production 2,5 mta

• CO + 2 H2 H3COH

• H2 from SEWGS – no external H2 source

• 1,5 mta MeOH; 2,1 mta CO2 avoided; total CO2 capture ready 7,3 mta

• 1,4 billion € investment Capex, positive revenues

• Key technical challenge – bring SEWGS technology to scale of steelworks

December 21, 2017

15

Fischer-Tropsch Naphtha from Syngas

• EU Market for Naphtha – 450 mta of mixed products

• CO + 2H2 -CH2- + H2O

• 0,95 mta FT product; 3,5 mta CO2 avoided; total CO2 capture ready 4,7 mta

• 1,4 billion € investment Capex, negative revenues

• CO2 avoidance cost – 280 (H2 @ 3400 €/ton) to 160 €/ton (H2 @ 1700 €/ton)

• Key technical challenge to separate CO – N2

December 21, 2017

16

Ethanol from Fermentation of CO

• EU Market for EtOH – 5,4 mta

• 2CO + 4H2 C2H5OH + H2O Additional H2 not required

• 0,8 mta EtOH; 5,6 mta CO2 avoided; total CO2 capture ready 4,7 mta

• 1,2 billion € investment Capex, expected negative revenues

• CO2 avoidance cost – 175 (H2 @ 3400 €/ton) to 96 €/ton (H2 @ 1700 €/ton)

• Key technical challenge – scale up to full scale

December 21, 2017

17

Conclusions on single site analysis

• Business case depends highly on:

• H2 cost price

• CO2 avoidance costs (future CO2 pricing - not included)

• Investment conditions (not included)

• Each route has technical scale-up challenges – can be overcome

but require focused effort to realize in 2030

December 21, 2017

6.

18

Conclusions on single site analysis

• Large Capex needed 0,6 – 1,5 B€ per site

• CO2 avoidance – 2,1 to 5,6 mta @ 46 – 280 €/ton

• Additional clean CO2 produced 4,7 – 9,4 mta – ready for CCU/S

December 21, 2017

• Premium on CO2 costs for an average car

• 840 kg steel in car 2400 kg CO2 (50% scrap in manufacturing)

• Worst case 670 € premium per car of €15.000,=

• Compare to CO2 avoidance offshore wind 220 €/ton in 2013, 130

€/ton in 2016 (factsheet Wind op Zee)

7. – 8.

19

Scaling up to European level – impact assessment

December 21, 2017

20

Environmental impact

Example Ethanol optimistic scenario

December 21, 2017

21

Scaling up to European level – CO2 emission reduction

December 21, 2017

22

Scaling up to European level – water consumption

December 21, 2017

23

Scaling up to European level – waste water production

December 21, 2017

24

Scaling up to European level – Clean energy need

December 21, 2017

25

Scaling up to European level – resource consumption

December 21, 2017

26

Timing of it all…

December 21, 2017

27

Final remarks

First steps towards circular carbon:

• Large capex-intensive operations

• Technically feasible at large scale

• Economically not straightforward – societal support is essential

What do you think?

December 21, 2017

9. – 10.

28

See the full report on www.ispt.eu

THANK YOUDecember 21, 2017

top related