disposal of ll-lilw - gnssn home documents/waste... · disposal of llw/ilw: the extension of the...

Post on 15-Mar-2018

217 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Disposal of LLW/ILW: The Extension of

the SFR-Repository

Börje Torstenfelt

Radioactive waste (IAEA GSG-1)

SFR

SFL

SFR after the extension

2015-02-09

Silo

2013-04-08

Rock vault for medium level waste - 1BMA

2013-04-08

Rock vault for medium level waste - 2BMA

2013-04-08

Rock vault for low level waste, 1BLA

2013-04-08

Rock vault for low level waste, 2 to 5BLA

2013-04-08

Rock vault for reactor pressure vessels - BRT

2013-04-08

Rock vault for reactor vessels - BRT

10

Rock vault for concrete tanks 2BTF

2013-04-08

Rock vault for ash drums 1BTF

2013-04-08

Elevation of the SFR

2013-04-08

Base Case – Boundary conditions

• Three repository positions relative to the shoreline

• Three flow fields representing time evolution of the groundwater flow

– Position 1, repository submerged

– Position 2, shoreline @ repository (ca 3000 AD)

– Position 3, repository well removed from shoreline (ca 5000 AD)

14

Modelling using Comsol Multiphysics

• The repository scale models for the SFR1 and SFR 3 are set up and

solved in Comsol Multiphysics

– Generate input for the radionuclide transport (Ecolego)

– Extend the system understanding of the SFR

15

Model example – Flow field calculations

• System understanding studies

– Degradation of concrete barriers and bentonite plugs

– Closure options

– Effects of land rise

– Permafrost effects

Degradation of bentonite plugs – SFR 3

17

• Long bentonite plugs

seal the vaults of the

SFR 3 (blue)

• When land rise has

moved the repository

above the shoreline of

the Baltic, water reaches

the repository from

above

Degradation of bentonite plugs – SFR 3

18

• Intact plugs of bentonite

–Flow is diverted from the

access tunnels and the

repository vaults

–Some groundwater

enters and leaves the

vaults vertically through

faults zones in the rock

Degradation of bentonite plugs – SFR 3

19

• Without the bentonite plugs

–Water travels along access

ramps

–The main flow is distributed

across the BLA vaults that

have no extra engineered

barriers except the plugs

–The concentration of flow to

the BLA vaults also

decreases transverse flow

from vault to vault

–BRT and 2BMA waste flows

are not significantly affected

Relative importance of the safety principles

Safety principles and corresponding safety

functions

Safety principle Breaks down into safety functions

Limitation of the activity of

long-lived radionuclides

Limited quantity of activity

Retention of radionuclides Low water flow

Good retention

Avoid wells in the direct vicinity of

the repository

Scenarios and associated uncertainties

Radiological consequence – Total risk

Total risk as a function of time

Gray areas represents time-

periods with permafrost.

Additional analysis, Risk per waste vault

Additional analysis, Risk per radionuclide

Radioactivity after 100 y vs free release limit

1E-09

1E-07

1E-05

1E-03

1E-01

1E+01

1E+03

Co-6

0

Eu

-15

4

H-3

Eu

-15

2

Pu

-24

1

Nb

-93

m

Cm

-24

4

Sr-

90

Cm

-24

3

Cs-

13

7

U-2

32

Pu

-23

8

Sm

-151

Ni-

63

Am

-24

2m

Am

-24

1

Ag

-10

8m

Ho

-16

6m

Mo

-93

Cm

-24

6

C-1

4

Pu

-24

0

Am

-24

3

Cm

-24

5

Nb

-94

Pu

-23

9

Ni-

59

Tc-

99

U-2

34

Cl-

36

Pu

-24

2

Zr-

93

Np

-23

7

Cs-

13

5

I-12

9

U-2

36

U-2

35

U-2

38

Ra

tio

bet

wee

n a

ver

ag

e co

nce

ntr

ati

on

in w

ast

e a

nd

cle

ra

nce

lev

els

1BLA

Radioactivity after 1000 y vs free release limit

1E-09

1E-07

1E-05

1E-03

1E-01

1E+01

1E+03

Co-6

0

Eu

-15

4

H-3

Eu

-15

2

Pu

-24

1

Nb

-93

m

Cm

-24

4

Sr-

90

Cm

-24

3

Cs-

13

7

U-2

32

Pu

-23

8

Sm

-151

Ni-

63

Am

-24

2m

Am

-24

1

Ag

-10

8m

Ho

-16

6m

Mo

-93

Cm

-24

6

C-1

4

Pu

-24

0

Am

-24

3

Cm

-24

5

Nb

-94

Pu

-23

9

Ni-

59

Tc-

99

U-2

34

Cl-

36

Pu

-24

2

Zr-

93

Np

-23

7

Cs-

13

5

I-12

9

U-2

36

U-2

35

U-2

38

Ra

tio

betw

een

av

era

ge c

on

cen

tra

tio

n

in w

ast

e a

nd

cle

ra

nce l

ev

els

1BLA

Radioactivity after 10000 y vs free release limit

1E-09

1E-07

1E-05

1E-03

1E-01

1E+01

1E+03

Co-6

0

Eu

-15

4

H-3

Eu

-15

2

Pu

-24

1

Nb

-93

m

Cm

-24

4

Sr-

90

Cm

-24

3

Cs-

13

7

U-2

32

Pu

-23

8

Sm

-151

Ni-

63

Am

-24

2m

Am

-24

1

Ag

-10

8m

Ho

-16

6m

Mo

-93

Cm

-24

6

C-1

4

Pu

-24

0

Am

-24

3

Cm

-24

5

Nb

-94

Pu

-23

9

Ni-

59

Tc-

99

U-2

34

Cl-

36

Pu

-24

2

Zr-

93

Np

-23

7

Cs-

13

5

I-12

9

U-2

36

U-2

35

U-2

38

Ra

tio

bet

wee

n a

ver

ag

e co

nce

ntr

ati

on

in w

ast

e a

nd

cle

ra

nce

lev

els

1BLA

Radioactivity after 100 y vs free release limit

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+03

1E+04

Co-6

0

Eu

-15

4

H-3

Eu

-15

2

Pu

-24

1

Nb

-93

m

Cm

-24

4

Sr-

90

Cm

-24

3

Cs-

13

7

U-2

32

Pu

-23

8

Sm

-151

Ni-

63

Am

-24

2m

Am

-24

1

Ag

-10

8m

Ho

-16

6m

Mo

-93

Cm

-24

6

C-1

4

Pu

-24

0

Am

-24

3

Cm

-24

5

Nb

-94

Pu

-23

9

Ni-

59

Tc-

99

U-2

34

Cl-

36

Pu

-24

2

Zr-

93

Np

-23

7

Cs-

13

5

I-12

9

U-2

36

U-2

35

U-2

38

Ra

tio

bet

wee

n a

ver

ag

e co

nce

ntr

ati

on

in

wa

ste

an

d c

lera

nce

lev

els

1BMA

Radioactivity after 1000 y vs free release limit

1E-09

1E-07

1E-05

1E-03

1E-01

1E+01

1E+03

Co-6

0

Eu

-15

4

H-3

Eu

-15

2

Pu

-24

1

Nb

-93

m

Cm

-24

4

Sr-

90

Cm

-24

3

Cs-

13

7

U-2

32

Pu

-23

8

Sm

-151

Ni-

63

Am

-24

2m

Am

-24

1

Ag

-10

8m

Ho

-16

6m

Mo

-93

Cm

-24

6

C-1

4

Pu

-24

0

Am

-24

3

Cm

-24

5

Nb

-94

Pu

-23

9

Ni-

59

Tc-

99

U-2

34

Cl-

36

Pu

-24

2

Zr-

93

Np

-23

7

Cs-

13

5

I-12

9

U-2

36

U-2

35

U-2

38

Ra

tio

bet

wee

n a

ver

ag

e co

nce

ntr

ati

on

in w

ast

e a

nd

cle

ra

nce

lev

els

1BMA

Radioactivity after 10000 y vs free release limit

Radioactivity after 100000 y vs free release limit

1E-09

1E-07

1E-05

1E-03

1E-01

1E+01

1E+03

Co-6

0

Eu

-15

4

H-3

Eu

-15

2

Pu

-24

1

Nb

-93

m

Cm

-24

4

Sr-

90

Cm

-24

3

Cs-

13

7

U-2

32

Pu

-23

8

Sm

-151

Ni-

63

Am

-24

2m

Am

-24

1

Ag

-10

8m

Ho

-16

6m

Mo

-93

Cm

-24

6

C-1

4

Pu

-24

0

Am

-24

3

Cm

-24

5

Nb

-94

Pu

-23

9

Ni-

59

Tc-

99

U-2

34

Cl-

36

Pu

-24

2

Zr-

93

Np

-23

7

Cs-

13

5

I-12

9

U-2

36

U-2

35

U-2

38

Ra

tio

bet

wee

n a

ver

ag

e co

nce

ntr

ati

on

in w

ast

e a

nd

cle

ra

nce

lev

els

1BMA

1E-09

1E-07

1E-05

1E-03

1E-01

1E+01

1E+03

Co-6

0

Eu

-15

4

H-3

Eu

-15

2

Pu

-24

1

Nb

-93

m

Cm

-24

4

Sr-

90

Cm

-24

3

Cs-

13

7

U-2

32

Pu

-23

8

Sm

-151

Ni-

63

Am

-24

2m

Am

-24

1

Ag

-10

8m

Ho

-16

6m

Mo

-93

Cm

-24

6

C-1

4

Pu

-24

0

Am

-24

3

Cm

-24

5

Nb

-94

Pu

-23

9

Ni-

59

Tc-

99

U-2

34

Cl-

36

Pu

-24

2

Zr-

93

Np

-23

7

Cs-

13

5

I-12

9

U-2

36

U-2

35

U-2

38

Ra

tio

bet

wee

n a

ver

ag

e co

nce

ntr

ati

on

in w

ast

e a

nd

cle

ra

nce

lev

els

1BMA

Thank you!

top related