doc.: ieee 802.11-04/1080r0 submission september 2004 todor cooklev, sf state universityslide 1 ieee...

Post on 05-Jan-2016

212 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

September 2004

Todor Cooklev, SF State University

Slide 1

doc.: IEEE 802.11-04/1080r0

Submission

IEEE 1588 over 802.11b

Afshaneh PakdamanSan Francisco State University

John Eidson Agilent Laboratories, Palo Alto, CA

Todor CooklevSan Francisco State University

tcooklev@sfsu.edu

September 2004

Todor Cooklev, SF State University

Slide 2

doc.: IEEE 802.11-04/1080r0

Submission

Outline

• Introduction• EEE 1588• IEEE 802.11b• IEEE 1588 Clock Synchronization over

IEEE 802.11b Wireless Local Area Network

• Conclusions• Future work

September 2004

Todor Cooklev, SF State University

Slide 3

doc.: IEEE 802.11-04/1080r0

Submission

• Clock synchronization is needed in various home, office, and industrial automation applications.

• Synchronization protocols are used to precisely synchronize independent clocks throughout a distributed system.

• Synchronization allows transactions between distributed systems to be controlled on time basis.

Why do we need to synchronize the clock?Why do we need to synchronize the clock?

September 2004

Todor Cooklev, SF State University

Slide 4

doc.: IEEE 802.11-04/1080r0

Submission

IEEE 1588

• IEEE 1588 is a new standard for precise clock synchronization for networked measurement and control systems in the LAN environment.

• Sub-microsecond synchronization of real-time clocks

• Intended for relatively localized systems typical of industrial automation and test and measurement environments.

• Applicable to local areas networks supporting multicast communications (including but not limited to Ethernet)

September 2004

Todor Cooklev, SF State University

Slide 5

doc.: IEEE 802.11-04/1080r0

Submission

IEEE 1588 (continued)

• Simple, administration free installation

• Support heterogeneous systems of clocks with varying precision, resolution and stability

• Minimal resource requirements on networks and host components.

• Develop a supplement to 1588 for operation over WLAN (future work).

September 2004

Todor Cooklev, SF State University

Slide 6

doc.: IEEE 802.11-04/1080r0

Submission

1588 Timing Related Messages

• Four types of timing messages: Sync, Follow_Up, Delay_Req, Delay_Resp

• Issuing and response to these messages dependent on the ‘state’ of each clock

• The Sync and Delay_Req messages are time stamped when they sent and received

September 2004

Todor Cooklev, SF State University

Slide 7

doc.: IEEE 802.11-04/1080r0

Submission

Detection of Sync messages

Application layer

Network protocol stack

Sync and Delay_Req

message detector

Physical layer

e.g. interface in Ethernet

e.g. IEEE 802.11b in Ad

Hoc mode

September 2004

Todor Cooklev, SF State University

Slide 8

doc.: IEEE 802.11-04/1080r0

Submission

Timing Latency & Fluctuation

msecs of delay and fluctuation

Application layer

Network protocol stack

Physical layer< 100 nsecs of delay

and fluctuation

Application layer

Network protocol stack

Physical layer

Repeater, Switch, or

RouterRepeaters & Switches:fluctuations ~100ns to usecRouters:fluctuations ~ms

September 2004

Todor Cooklev, SF State University

Slide 9

doc.: IEEE 802.11-04/1080r0

Submission

802.11b PHY and MAC layer

• Data is exchanged between the MAC and the PHY by series of PHY-DATA requests issues by MAC and PHY-DATA. confirm primitives issued by PHY.

• The PHY layer indicated Last_Symbol_on_Air event to the MAC layer using PHY-TXEND.confirm.

September 2004

Todor Cooklev, SF State University

Slide 10

doc.: IEEE 802.11-04/1080r0

Submission

At the other node:

• The PHY layer indicates the Last_Symbol_On_Air event to the MAC layer using the PHY_RXEND. indication primitive.

PHY and MAC layer (continued)

September 2004

Todor Cooklev, SF State University

Slide 11

doc.: IEEE 802.11-04/1080r0

Submission

PHY_TXEND.req

PHY_TXEND.conf

MAC

PHY

PLCP

PHY_TXSTART.req

PHY_TXSTART.confirm

PHY_DATA.req

Time

PHY_DATA.

confirm

PMD_TXPWRLVL.req

PMD_RATE.req

PMD_ANTSEL.req

PMD_TXSTART.req

PMD_DATA.req

PMD_RATE.req

PMD_DATA.req

PMD_RATE.req

PMD_MODULATION .req

PMD_DATA.req

PMD_TXEND.req

SY

NC

SF

DLE

NG

TH

SIG

NA

L, SE

RV

ICE

CR

CP

SD

U

PHY

PMD

TX Power RAMP on Scramble start

CRC 16 start

CRC 16 end

TX Power RAMP

off

PLCP Transmit Procedure

------

---

September 2004

Todor Cooklev, SF State University

Slide 12

doc.: IEEE 802.11-04/1080r0

Submission

Mapping 1588 over 802.11b

• Processing Delay

• Jitter between the Transmitter and Receiver devices

• Delay spread

September 2004

Todor Cooklev, SF State University

Slide 13

doc.: IEEE 802.11-04/1080r0

Submission

Mapping 1588 over 802.11b (continued)

• Time stamp point

• Last_Symbol_on_Air

• This indication is observable by all the stations.• It is readily available from the PHY layer in the form

of either PHY_RXEND indication or PHY_TXEND indication.

September 2004

Todor Cooklev, SF State University

Slide 14

doc.: IEEE 802.11-04/1080r0

Submission

LAST DATA BIT SAMPLED

TX PORT TIMING

TXCLK

TX_PE

TXD

TX_RDY

FIRST DATA BIT SAMPLED

DATA

RX PORT TIMING

RXCLK

RX_PE

MD_RDY

RXD

Timing Diagram

LSB DATA PACKET MSB

LSB DATA PACKET MSB

September 2004

Todor Cooklev, SF State University

Slide 15

doc.: IEEE 802.11-04/1080r0

Submission

September 2004

Todor Cooklev, SF State University

Slide 16

doc.: IEEE 802.11-04/1080r0

Submission

September 2004

Todor Cooklev, SF State University

Slide 17

doc.: IEEE 802.11-04/1080r0

Submission

Time interval between TX_RDY on Device A and MD_RDY on Device B falling edge

September 2004

Todor Cooklev, SF State University

Slide 18

doc.: IEEE 802.11-04/1080r0

Submission

Time interval between TX_RDY on Device A and MD_RDY on Device B rising edge

September 2004

Todor Cooklev, SF State University

Slide 19

doc.: IEEE 802.11-04/1080r0

Submission

Time interval between TX_PE on Device A and RX_PE on Device B falling edge

September 2004

Todor Cooklev, SF State University

Slide 20

doc.: IEEE 802.11-04/1080r0

Submission

Time interval between TX_CLK, TX_RDY and MD_RDY falling edge

September 2004

Todor Cooklev, SF State University

Slide 21

doc.: IEEE 802.11-04/1080r0

Submission

Time interval between TX_CLK, TX_RDY and MD_RDY falling edge

September 2004

Todor Cooklev, SF State University

Slide 22

doc.: IEEE 802.11-04/1080r0

Submission

Time interval TX_RDY and MD_RDYfalling edge

0

20

40

60

80

100

120

Time Microsecond

Da

ta s

am

pli

ng

10

00

.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Frequency

Cumulative %

September 2004

Todor Cooklev, SF State University

Slide 23

doc.: IEEE 802.11-04/1080r0

Submission

Time interval TX_RDY and MD_RDYfalling edge

050

100150200250300350400450500

Time Microsecond

Da

ta s

am

pli

ng

10

00

.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Frequency

Cumulative%

September 2004

Todor Cooklev, SF State University

Slide 24

doc.: IEEE 802.11-04/1080r0

Submission

Conclusions

• State the meaning of the results in terms of synchronization, IEEE 1588 can be implemented over WLAN.

• TX_RDY and MD_RDY Falling edge looks best for implementing 1588.

• PHY jitter is 500 to 600 ns and the average offset is 7.35 us.

top related