dsp & digital filters

Post on 22-Feb-2022

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

DSP & Digital Filters

Lecture 1 z-Transform

DR TANIA STATHAKIREADER (ASSOCIATE PROFESSOR) IN SIGNAL PROCESSINGIMPERIAL COLLEGE LONDON

โ€ข Recall that in order to describe a continuous-time signal ๐‘ฅ(๐‘ก) in frequency

domain we use:

โ‘ The Continuous-Time Fourier Transform (or Fourier Transform):

๐‘‹(๐œ”) = เถฑ

โˆ’โˆž

โˆž

๐‘ฅ(๐‘ก)๐‘’โˆ’๐‘—๐œ”๐‘ก๐‘‘๐‘ก

โ‘ The Laplace Transform

๐‘‹ ๐‘  = เถฑ

โˆ’โˆž

โˆž

๐‘ฅ(๐‘ก)๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘ก

โ€ข The above transforms and their basic properties are considered known in

this course.

โ€ข If you have doubts please consult any book on Signals and Systems.

Continuous-time signals

โ€ข Consider a discrete-time signal ๐‘ฅ(๐‘ก) sampled every ๐‘‡ seconds.

๐‘ฅ ๐‘ก = ๐‘ฅ0๐›ฟ ๐‘ก + ๐‘ฅ1๐›ฟ ๐‘ก โˆ’ ๐‘‡ + ๐‘ฅ2๐›ฟ ๐‘ก โˆ’ 2๐‘‡ + ๐‘ฅ3๐›ฟ ๐‘ก โˆ’ 3๐‘‡ +โ‹ฏ

โ€ข Recall that in the Laplace domain we have:

โ„’ ๐›ฟ ๐‘ก = 1โ„’ ๐›ฟ ๐‘ก โˆ’ ๐‘‡ = ๐‘’โˆ’๐‘ ๐‘‡

โ€ข Therefore, the Laplace transform of ๐‘ฅ ๐‘ก is:

๐‘‹ ๐‘  = ๐‘ฅ0 + ๐‘ฅ1๐‘’โˆ’๐‘ ๐‘‡ + ๐‘ฅ2๐‘’

โˆ’๐‘ 2๐‘‡ + ๐‘ฅ3๐‘’โˆ’๐‘ 3๐‘‡ +โ‹ฏ

โ€ข Now define ๐‘ง = ๐‘’๐‘ ๐‘‡ = ๐‘’(๐œŽ+๐‘—๐œ”)๐‘‡ = ๐‘’๐œŽ๐‘‡cos๐œ”๐‘‡ + ๐‘—๐‘’๐œŽ๐‘‡sin๐œ”๐‘‡.

โ€ข Finally, define

๐‘‹[๐‘ง] = ๐‘ฅ0 + ๐‘ฅ1๐‘งโˆ’1 + ๐‘ฅ2๐‘ง

โˆ’2 + ๐‘ฅ3๐‘งโˆ’3 +โ‹ฏ

Discrete-time signals

The z-transform derived from the Laplace transform

โ€ข From the Laplace time-shift property, we know that an additional term

๐‘ง = ๐‘’๐‘ ๐‘‡ in the Laplace domain, corresponds to time-advance by ๐‘‡seconds (๐‘‡ is the sampling period) of the original function in time.

โ€ข Accordingly, ๐‘งโˆ’1 = ๐‘’โˆ’๐‘ ๐‘‡ corresponds to a time-delay of one sampling

period.

โ€ข As a result, all sampled data (and discrete-time systems) can be

expressed in terms of the variable ๐‘ง.

โ€ข More formally, the unilateral ๐’› โˆ’ transform of a causal sampled

sequence:

๐‘ฅ ๐‘› = {๐‘ฅ 0 , ๐‘ฅ 1 , ๐‘ฅ 2 , ๐‘ฅ 3 , โ€ฆ }

is given by:

๐‘‹[๐‘ง] = ๐‘ฅ0 + ๐‘ฅ1๐‘งโˆ’1 + ๐‘ฅ2๐‘ง

โˆ’2 + ๐‘ฅ3๐‘งโˆ’3 +โ‹ฏ = ฯƒ๐‘›=0

โˆž ๐‘ฅ[๐‘›]๐‘งโˆ’๐‘›, ๐‘ฅ๐‘› = ๐‘ฅ[๐‘›]

โ€ข The bilateral ๐’› โˆ’transform for any sampled sequence is:

๐‘‹[๐‘ง] =

๐‘›=โˆ’โˆž

โˆž

๐‘ฅ[๐‘›]๐‘งโˆ’๐‘›

๐’›โˆ’๐Ÿ: the sampling period delay operator

โ€ข Find the ๐‘ง โˆ’transform of the causal signal ๐›พ๐‘›๐‘ข[๐‘›], where ๐›พ is a constant.

โ€ข By definition:

๐‘‹[๐‘ง] =

๐‘›=โˆ’โˆž

โˆž

๐›พ๐‘›๐‘ข ๐‘› ๐‘งโˆ’๐‘› =

๐‘›=0

โˆž

๐›พ๐‘›๐‘งโˆ’๐‘› =

๐‘›=0

โˆž๐›พ

๐‘ง

๐‘›

= 1 +๐›พ

๐‘ง+

๐›พ

๐‘ง

2

+๐›พ

๐‘ง

3

+โ‹ฏ

โ€ข We apply the geometric progression formula:

1 + ๐‘ฅ + ๐‘ฅ2 + ๐‘ฅ3 +โ‹ฏ =1

1 โˆ’ ๐‘ฅ, ๐‘ฅ < 1

โ€ข Therefore,

๐‘‹[๐‘ง] =1

1โˆ’๐›พ

๐‘ง

, ๐›พ

๐‘ง< 1

=๐‘ง

๐‘งโˆ’๐›พ, ๐‘ง > ๐›พ

โ€ข We notice that the ๐‘ง โˆ’transform exists for certain values of ๐‘ง. These values

form the so called Region-of-Convergence (ROC) of the transform.

Example: Find the ๐’› โˆ’transform of ๐’™ ๐’ = ๐œธ๐’๐’–[๐’]

โ€ข Observe that a simple rational equation in ๐‘ง-domain corresponds to an

infinite sequence of samples in time-domain.

โ€ข The figures below depict the signal in time (left) for ๐›พ < 1 and the ROC,

shown with the shaded area, within the ๐‘ง โˆ’plane.

Example: Find the ๐’› โˆ’transform of ๐’™ ๐’ = ๐œธ๐’๐’– ๐’ cont.

โ€ข Consider the causal signal ๐‘ฅ ๐‘› = ฯƒ๐‘–=1๐พ ๐›พ๐‘–

๐‘›๐‘ข[๐‘›] with ๐‘‹(๐‘ง) = ฯƒ๐‘–=1๐พ ๐‘ง

๐‘งโˆ’๐›พ๐‘–.

โ€ข In that case the ROC is the intersection of the ROCs of the individual

terms, i.e., the intersection of the sets ๐‘ง > ๐›พ๐‘– i.e., ROC: ๐‘ง > ๐›พmax

โ€ข In case that ๐‘ฅ ๐‘› is the impulse response of a system, the transfer function

of the system is the rational function ๐‘‹(๐‘ง) = ฯƒ๐‘–=1๐พ ๐‘ง

๐‘งโˆ’๐›พ๐‘–with poles ๐›พ๐‘–.

โ€ข The above analysis yields the following properties regarding the ROC:

PROPERTY:

If ๐’™ ๐’ is a causal signal, the ROC of its ๐’› โˆ’transform is ๐’› > ๐œธ๐ฆ๐š๐ฑ

with ๐œธ๐ฆ๐š๐ฑ the maximum magnitude pole of the ๐’› โˆ’transform.

โ‘ In the general case of ๐’™ ๐’ being a right-sided signal (RSS) the

ROC is as above but might not include โˆž (think why).

PROPERTY:

No pole can exist in ROC.

Generic form of a causal signal

โ€ข The signal ๐‘ฅ ๐‘› = ฯƒ๐‘–=1๐พ ๐›พ๐‘–

๐‘›๐‘ข[๐‘›] is bounded only if ๐›พ๐‘– < 1 โˆ€๐‘– or ๐›พmax < 1.

โ€ข In that case the ROC includes a circle with radius equal to 1. This is known

as the unit circle.

โ€ข The above observation yields the following property:

PROPERTY:

If the ROC of ๐‘ฟ(๐’›) includes the unit circle in ๐’› โˆ’plane, then the signal

in time is bounded and its Discrete Time Fourier Transform exists.

โ€ข In case that ๐›พ๐‘›๐‘ข ๐‘› is part of a causal systemโ€™s impulse response, we see

that the condition ๐›พ < 1 must hold. This is because, since lim๐‘›โ†’โˆž

๐›พ ๐‘› = โˆž,

for ๐›พ > 1, the system will be unstable in that case.

โ€ข Therefore, in causal systems, stability requires that the ROC of the

systemโ€™s transfer function includes the unit circle.

Generic form of a causal signal cont.

โ€ข Find the ๐‘ง โˆ’transform of the anti-causal signal โˆ’๐›พ๐‘›๐‘ข[โˆ’๐‘› โˆ’ 1], where ๐›พ is a

constant.

โ€ข By definition:

๐‘‹[๐‘ง] =

๐‘›=โˆ’โˆž

โˆž

โˆ’๐›พ๐‘›๐‘ข โˆ’๐‘› โˆ’ 1 ๐‘งโˆ’๐‘› =

๐‘›=โˆ’โˆž

โˆ’1

โˆ’๐›พ๐‘›๐‘งโˆ’๐‘› = โˆ’

๐‘›=1

โˆž

๐›พโˆ’๐‘›๐‘ง๐‘› = โˆ’

๐‘›=1

โˆž๐‘ง

๐›พ

๐‘›

= โˆ’๐‘ง

๐›พ

๐‘›=0

โˆž๐‘ง

๐›พ

๐‘›

= โˆ’๐‘ง

๐›พ1 +

๐‘ง

๐›พ+

๐‘ง

๐›พ

2

+๐‘ง

๐›พ

3

+โ‹ฏ

โ€ข Therefore,

๐‘‹[๐‘ง] = โˆ’๐‘ง

๐›พ

1

1โˆ’๐‘ง

๐›พ

, ๐‘ง

๐›พ< 1

=๐‘ง

๐‘งโˆ’๐›พ, ๐‘ง < ๐›พ

โ€ข We notice that the ๐‘ง โˆ’transform exists for certain values of ๐‘ง, which consist

the complement of the ROC of the function ๐›พ๐‘›๐‘ข[๐‘›] with respect to the

๐‘ง โˆ’plane.

Example: Find the ๐’› โˆ’transform of ๐’™ ๐’ = โˆ’๐œธ๐’๐’–[โˆ’๐’ โˆ’ ๐Ÿ]

โ€ข Consider the anti-causal signal ๐‘ฅ ๐‘› = ฯƒ๐‘–=1๐พ โˆ’๐›พ๐‘–

๐‘›๐‘ข[โˆ’๐‘› โˆ’ 1] with

๐‘ง โˆ’transform ๐‘‹(๐‘ง) = ฯƒ๐‘–=1๐พ ๐‘ง

๐‘งโˆ’๐›พ๐‘–.

โ€ข In that case the ROC is the intersection of the sets ๐‘ง < ๐›พ๐‘– , i.e., ROC:

๐‘ง < ๐›พmin

โ€ข In case that ๐‘ฅ ๐‘› is the impulse response of a system, the transfer function

of the system is the rational function ๐‘‹(๐‘ง) = ฯƒ๐‘–=1๐พ ๐‘ง

๐‘งโˆ’๐›พ๐‘–with poles ๐›พ๐‘–.

โ€ข The above analysis yield the following property regarding ROCs:

PROPERTY:

If ๐’™ ๐’ is an anti-causal signal, the ROC of its ๐’› โˆ’transform is ๐’› <๐›พmin with ๐›พmin the minimum magnitude pole of the ๐’› โˆ’transform.

โ‘ In the general case of ๐’™ ๐’ being a left-sided signal (LSS) the ROC

is as above but might not include ๐ŸŽ (think why).

Generic form of an anti-causal signal

โ€ข We proved that the following two functions:

โ–ช The causal function ๐›พ๐‘›๐‘ข ๐‘› and

โ–ช the anti-causal function โˆ’๐›พ๐‘›๐‘ข[โˆ’๐‘› โˆ’ 1] have:

โ– The same analytical expression for their ๐‘ง โˆ’transforms.

โ– Complementary ROCs. More specifically, the union of their ROCS

forms the entire ๐‘ง โˆ’plane.

โ€ข The above observations verify that the analytical expression alone is not

sufficient to define the ๐‘ง โˆ’transform of a signal. The ROC is also required.

Summary of previous examples

โ€ข Example: Find the ๐‘ง โˆ’transform of the two-sided signal:

๐‘ฅ ๐‘› = 2๐‘›๐‘ข[๐‘›] โˆ’ 4๐‘›๐‘ข[โˆ’๐‘› โˆ’ 1]

Based on the previous analysis we have:

๐‘‹ ๐‘ง =๐‘ง

๐‘งโˆ’2+

๐‘ง

๐‘งโˆ’4, ROC: ๐‘ง > 2 โˆฉ ๐‘ง < 4 or ROC: 2 < ๐‘ง < 4

โ€ข Example: Find the ๐‘ง โˆ’transform of the two-sided signal:

๐‘ฅ ๐‘› = 4๐‘›๐‘ข[๐‘›] โˆ’ 2๐‘›๐‘ข[โˆ’๐‘› โˆ’ 1]

Based on the previous analysis we have:

๐‘‹ ๐‘ง =๐‘ง

๐‘งโˆ’2+

๐‘ง

๐‘งโˆ’4, ROC: ๐‘ง > 4 โˆฉ ๐‘ง < 2 or ROC: โˆ…

PROPERTY:

If ๐’™ ๐’ is two-sided signal then the ROC of its ๐’› โˆ’transform is of the

form:

โ‘ ๐›พ1 < ๐’› < ๐›พ2 with ๐›พ1, ๐›พ2 poles of the system or

โ‘ โˆ…

Two-sided signals

โ€ข By definition ๐›ฟ 0 = 1 and ๐›ฟ ๐‘› = 0 for ๐‘› โ‰  0.

๐‘‹[๐‘ง] =

๐‘›=โˆ’โˆž

โˆž

๐›ฟ ๐‘› ๐‘งโˆ’๐‘› = ๐›ฟ 0 ๐‘งโˆ’0 = 1

โ€ข By definition ๐‘ข ๐‘› = 1 for ๐‘› โ‰ฅ 0.

๐‘‹[๐‘ง] = ฯƒ๐‘›=โˆ’โˆžโˆž ๐‘ข ๐‘› ๐‘งโˆ’๐‘› = ฯƒ๐‘›=0

โˆž ๐‘งโˆ’๐‘› =1

1โˆ’1

๐‘ง

, 1

๐‘ง< 1

=๐‘ง

๐‘งโˆ’1, ๐‘ง > 1

Example: Find the ๐’› โˆ’transform of ๐œน[๐’] and ๐’–[๐’]

โ€ข We write cos๐›ฝ๐‘› =1

2๐‘’๐‘—๐›ฝ๐‘› + ๐‘’โˆ’๐‘—๐›ฝ๐‘› .

โ€ข From previous analysis we showed that:

๐›พ๐‘›๐‘ข[๐‘›] โ‡”๐‘ง

๐‘งโˆ’๐›พ, ๐‘ง > ๐›พ

โ€ข Hence,

๐‘’ยฑ๐‘—๐›ฝ๐‘›๐‘ข[๐‘›] โ‡”๐‘ง

๐‘งโˆ’๐‘’ยฑ๐‘—๐›ฝ, ๐‘ง > ๐‘’ยฑ๐‘—๐›ฝ = 1

โ€ข Therefore,

๐‘‹ ๐‘ง =1

2

๐‘ง

๐‘งโˆ’๐‘’๐‘—๐›ฝ+

๐‘ง

๐‘งโˆ’๐‘’โˆ’๐‘—๐›ฝ=

๐‘ง(๐‘งโˆ’cos๐›ฝ)

๐‘ง2โˆ’2๐‘งcos๐›ฝ+1, ๐‘ง > 1

Example: Find the ๐’› โˆ’transform of ๐œ๐จ๐ฌ๐œท๐’๐’–[๐’]

โ€ข Find the ๐‘ง โˆ’transform of the signal depicted in the figure.

โ€ข By definition:

๐‘‹ ๐‘ง = 1 +1

๐‘ง+1`

๐‘ง2+1

๐‘ง3+1

๐‘ง4=

๐‘˜=0

4

๐‘งโˆ’1 ๐‘˜ =1 โˆ’ ๐‘งโˆ’1 5

1 โˆ’ ๐‘งโˆ’1=

๐‘ง

๐‘ง โˆ’ 11 โˆ’ ๐‘งโˆ’5

๐’› โˆ’transform of 5 impulses

Inverse ๐’› โˆ’transform

โ€ข As with other transforms, inverse ๐‘ง โˆ’transform is used to derive ๐‘ฅ[๐‘›]from ๐‘‹[๐‘ง], and is formally defined as:

๐‘ฅ ๐‘› =1

2๐œ‹๐‘—เถป๐‘‹[๐‘ง]๐‘ง๐‘›โˆ’1๐‘‘๐‘ง

โ€ข Here the symbol ืฏ indicates an integration in counter-clockwise

direction around a circle within the ROC and ๐‘ง = ๐‘…๐‘’๐‘—๐œƒ.

โ€ข Such contour integral is difficult to evaluate (but could be done using

Cauchyโ€™s residue theorem), therefore we often use other techniques to

obtain the inverse ๐‘ง โˆ’transform.

โ€ข One such technique is to use a ๐‘ง โˆ’transform pairs Table shown in the

last two slides with partial fraction expansion.

Inverse ๐’› โˆ’transform: Proof

Proof:

1

2๐œ‹๐‘—เถป๐‘‹[๐‘ง]๐‘ง๐‘›โˆ’1๐‘‘๐‘ง =

1

2๐œ‹๐‘—เถป

๐‘š=โˆ’โˆž

โˆž

๐‘ฅ[๐‘š]๐‘งโˆ’๐‘š ๐‘ง๐‘›โˆ’1๐‘‘๐‘ง

= ฯƒ๐‘š=โˆ’โˆžโˆž ๐‘ฅ[๐‘š]

1

2๐œ‹๐‘—ืฏ ๐‘ง๐‘›โˆ’๐‘šโˆ’1๐‘‘๐‘ง = ฯƒ๐‘š=โˆ’โˆž

โˆž ๐‘ฅ[๐‘š] ๐›ฟ ๐‘› โˆ’๐‘š = ๐‘ฅ[๐‘›]

โ‘ For the above we used the Cauchyโ€™s theorem:

1

2๐œ‹๐‘—ืฏ ๐‘ง๐‘˜โˆ’1๐‘‘๐‘ง = ๐›ฟ ๐‘˜ for ๐‘ง = ๐‘…๐‘’๐‘—๐œƒ anti-clockwise.

๐‘‘๐‘ง

๐‘‘๐œƒ= ๐‘—๐‘…๐‘’๐‘—๐œƒ โ‡’

1

2๐œ‹๐‘—ืฏ ๐‘ง๐‘˜โˆ’1๐‘‘๐‘ง =

1

2๐œ‹๐‘—๐œƒ=02๐œ‹

๐‘…๐‘˜โˆ’1๐‘’๐‘—(๐‘˜โˆ’1)๐œƒ ๐‘—๐‘…๐‘’๐‘—๐œƒ๐‘‘๐œƒ =

๐‘…๐‘˜

2๐œ‹๐œƒ=02๐œ‹

๐‘’๐‘—๐‘˜๐œƒ ๐‘‘๐œƒ = ๐‘…๐‘˜ ๐›ฟ ๐‘˜

[ ๐‘…๐‘˜

2๐œ‹๐œƒ=02๐œ‹

๐‘’๐‘—๐‘˜๐œƒ ๐‘‘๐œƒ = แ‰0 ๐‘˜ โ‰  0

๐‘…๐‘˜

2๐œ‹2๐œ‹ = ๐‘…๐‘˜ ๐‘˜ = 0

]

Find the inverse ๐’› โˆ’transform in the case of real unique poles

โ€ข Find the inverse ๐‘ง โˆ’transform of ๐‘‹ ๐‘ง =8๐‘งโˆ’19

(๐‘งโˆ’2)(๐‘โˆ’3)

Solution

๐‘‹[๐‘ง]

๐‘ง=

8๐‘ง โˆ’ 19

๐‘ง(๐‘ง โˆ’ 2)(๐‘ โˆ’ 3)=(โˆ’

196)

๐‘ง+

3/2

๐‘ง โˆ’ 2+

5/3

๐‘ง โˆ’ 3

๐‘‹ ๐‘ง = โˆ’19

6+

3

2

๐‘ง

๐‘งโˆ’2+

5

3

๐‘ง

๐‘งโˆ’3

By using the simple transforms that we derived previously we get:

๐‘ฅ ๐‘› = โˆ’19

6๐›ฟ[๐‘›] +

3

22๐‘› +

5

33๐‘› ๐‘ข[๐‘›]

Find the inverse ๐’› โˆ’transform in the case of real repeated poles

โ€ข Find the inverse ๐‘ง โˆ’transform of ๐‘‹ ๐‘ง =๐‘ง(2๐‘ง2โˆ’11๐‘ง+12)

(๐‘งโˆ’1)(๐‘งโˆ’2)3

Solution

๐‘‹[๐‘ง]

๐‘ง=

(2๐‘ง2โˆ’11๐‘ง+12)

(๐‘งโˆ’1)(๐‘งโˆ’2)3=

๐‘˜

๐‘งโˆ’1+

๐‘Ž0

(๐‘งโˆ’2)3+

๐‘Ž1

(๐‘งโˆ’2)2+

๐‘Ž2

(๐‘งโˆ’2)

โ–ช We use the so called covering method to find ๐‘˜ and ๐‘Ž0

๐‘˜ = เธญ(2๐‘ง2 โˆ’ 11๐‘ง + 12)

(๐‘ง โˆ’ 1)(๐‘ง โˆ’ 2)3๐‘ง=1

= โˆ’3

๐‘Ž0 = เธญ(2๐‘ง2 โˆ’ 11๐‘ง + 12)

(๐‘ง โˆ’ 1)(๐‘ง โˆ’ 2)3๐‘ง=2

= โˆ’2

The shaded areas above indicate that they are excluded from the entire

function when the specific value of ๐‘ง is applied.

Find the inverse ๐’› โˆ’transform in the case of real repeated poles cont.

โ€ข Find the inverse ๐‘ง โˆ’transform of ๐‘‹ ๐‘ง =๐‘ง(2๐‘ง2โˆ’11๐‘ง+12)

(๐‘งโˆ’1)(๐‘งโˆ’2)3

Solution

๐‘‹[๐‘ง]

๐‘ง=

(2๐‘ง2โˆ’11๐‘ง+12)

(๐‘งโˆ’1)(๐‘งโˆ’2)3=

โˆ’3

๐‘งโˆ’1+

โˆ’2

(๐‘งโˆ’2)3+

๐‘Ž1

(๐‘งโˆ’2)2+

๐‘Ž2

(๐‘งโˆ’2)

โ–ช To find ๐‘Ž2 we multiply both sides of the above equation with ๐‘ง and let

๐‘ง โ†’ โˆž.

0 = โˆ’3 โˆ’ 0 + 0 + ๐‘Ž2 โ‡’ ๐‘Ž2 = 3

โ–ช To find ๐‘Ž1 let ๐‘ง โ†’ 0.

12

8= 3 +

1

4+

๐‘Ž1

4โˆ’

3

2โ‡’ ๐‘Ž1 = โˆ’1

๐‘‹[๐‘ง]

๐‘ง=

(2๐‘ง2โˆ’11๐‘ง+12)

(๐‘งโˆ’1)(๐‘งโˆ’2)3=

โˆ’3

๐‘งโˆ’1โˆ’

2

๐‘งโˆ’2 3 โˆ’1

(๐‘งโˆ’2)2+

3

(๐‘งโˆ’2)โ‡’

๐‘‹ ๐‘ง =โˆ’3๐‘ง

๐‘งโˆ’1โˆ’

2๐‘ง

๐‘งโˆ’2 3 โˆ’๐‘ง

(๐‘งโˆ’2)2+

3๐‘ง

(๐‘งโˆ’2)

Find the inverse ๐’› โˆ’transform in the case of real repeated poles cont.

๐‘‹ ๐‘ง =โˆ’3๐‘ง

๐‘งโˆ’1โˆ’

2๐‘ง

๐‘งโˆ’2 3 โˆ’๐‘ง

(๐‘งโˆ’2)2+

3๐‘ง

(๐‘งโˆ’2)

โ€ข We use the following properties:

โ–ช ๐›พ๐‘›๐‘ข[๐‘›] โ‡”๐‘ง

๐‘งโˆ’๐›พ

โ–ช๐‘›(๐‘›โˆ’1)(๐‘›โˆ’2)โ€ฆ(๐‘›โˆ’๐‘š+1)

๐›พ๐‘š๐‘š!๐›พ๐‘›๐‘ข ๐‘› โ‡”

๐‘ง

(๐‘งโˆ’๐›พ)๐‘š+1

[โˆ’2๐‘ง

๐‘งโˆ’2 3 = (โˆ’2)๐‘ง

๐‘งโˆ’2 2+1 โ‡” (โˆ’2)๐‘›(๐‘›โˆ’1)

222!๐›พ๐‘›๐‘ข ๐‘› = โˆ’2

๐‘›(๐‘›โˆ’1)

8โˆ™ 2๐‘›๐‘ข[๐‘›]

โ€ข Therefore,

๐‘ฅ ๐‘› = [โˆ’3 โˆ™ 1๐‘› โˆ’ 2๐‘›(๐‘›โˆ’1)

8โˆ™ 2๐‘› โˆ’

๐‘›

2โˆ™ 2๐‘› + 3 โˆ™ 2๐‘›]๐‘ข[๐‘›]

= โˆ’ 3 +1

4๐‘›2 + ๐‘› โˆ’ 12 2๐‘› ๐‘ข[๐‘›]

Find the inverse ๐’› โˆ’transform in the case of complex poles

โ€ข Find the inverse ๐‘ง โˆ’transform of ๐‘‹ ๐‘ง =2๐‘ง(3๐‘ง+17)

(๐‘งโˆ’1)(๐‘ง2โˆ’6๐‘ง+25)

Solution

๐‘‹ ๐‘ง =2๐‘ง(3๐‘ง + 17)

(๐‘ง โˆ’ 1)(๐‘ง โˆ’ 3 โˆ’ ๐‘—4)(๐‘ง โˆ’ 3 + ๐‘—4)

๐‘‹[๐‘ง]

๐‘ง=

(2๐‘ง2โˆ’11๐‘ง+12)

(๐‘งโˆ’1)(๐‘งโˆ’2)3=

๐‘˜

๐‘งโˆ’1+

๐‘Ž0

(๐‘งโˆ’2)3+

๐‘Ž1

(๐‘งโˆ’2)2+

๐‘Ž2

(๐‘งโˆ’2)

Whenever we encounter a complex pole we need to use a special partial

fraction method called quadratic factors method.

๐‘‹[๐‘ง]

๐‘ง=

2(3๐‘ง+17)

(๐‘งโˆ’1)(๐‘ง2โˆ’6๐‘ง+25)=

2

๐‘งโˆ’1+

๐ด๐‘ง+๐ต

๐‘ง2โˆ’6๐‘ง+25

We multiply both sides with ๐‘ง and let ๐‘ง โ†’ โˆž:

0 = 2 + ๐ด โ‡’ ๐ด = โˆ’2

Therefore,

2(3๐‘ง+17)

(๐‘งโˆ’1)(๐‘ง2โˆ’6๐‘ง+25)=

2

๐‘งโˆ’1+

โˆ’2๐‘ง+๐ต

๐‘ง2โˆ’6๐‘ง+25

Find the inverse ๐’› โˆ’transform in the case of complex poles cont.

2(3๐‘ง+17)

(๐‘งโˆ’1)(๐‘ง2โˆ’6๐‘ง+25)=

2

๐‘งโˆ’1+

โˆ’2๐‘ง+๐ต

๐‘ง2โˆ’6๐‘ง+25

To find ๐ต we let ๐‘ง = 0:

โˆ’34

25= โˆ’2 +

๐ต

25โ‡’ ๐ต = 16

๐‘‹[๐‘ง]

๐‘ง=

2

๐‘งโˆ’1+

โˆ’2๐‘ง+16

๐‘ง2โˆ’6๐‘ง+25โ‡’ ๐‘‹ ๐‘ง =

2๐‘ง

๐‘งโˆ’1+

๐‘ง(โˆ’2๐‘ง+16)

๐‘ง2โˆ’6๐‘ง+25

โ€ข We use the following property:

๐‘Ÿ ๐›พ ๐‘› cos ๐›ฝ๐‘› + ๐œƒ ๐‘ข[๐‘›] โ‡”๐‘ง(๐ด๐‘ง+๐ต)

๐‘ง2+2๐‘Ž๐‘ง+ ๐›พ 2 with ๐ด = โˆ’2, ๐ต = 16, ๐‘Ž = โˆ’3, ๐›พ = 5.

๐‘Ÿ =๐ด2 ๐›พ 2+๐ต2โˆ’2๐ด๐‘Ž๐ต

๐›พ 2โˆ’๐‘Ž2=

4โˆ™25+256โˆ’2โˆ™(โˆ’2)โˆ™(โˆ’3)โˆ™16

25โˆ’9= 3.2, ๐›ฝ = cosโˆ’1

โˆ’๐‘Ž

๐›พ= 0.927๐‘Ÿ๐‘Ž๐‘‘,

๐œƒ = tanโˆ’1๐ด๐‘Žโˆ’๐ต

๐ด ๐›พ 2โˆ’๐‘Ž2= โˆ’2.246๐‘Ÿ๐‘Ž๐‘‘.

Therefore, ๐‘ฅ ๐‘› = [2 + 3.2 cos 0.927๐‘› โˆ’ 2.246 ]๐‘ข[๐‘›]

๐’› โˆ’transform Table

No. ๐’™[๐’] ๐‘ฟ[๐’›]

๐’› โˆ’transform Table

No. ๐’™[๐’] ๐‘ฟ[๐’›]

top related