ece5318 ch4

Post on 29-Jun-2015

172 Views

Category:

Documents

3 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Chapter 4Chapter 4

Linear Wire AntennasLinear Wire Antennas

ECE 5318/6352ECE 5318/6352Antenna EngineeringAntenna Engineering

2

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE

(only electrical current present)

(constant current)

l ≤ λ/50

I

l / 2

l / 2

Io

θImpinging

Wave

z

oIz zaI ˆ)( ' =

; thin wire ;λ<<l

00 =⇒= FIm

[4-1]

3

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

222 zyxr ++=

Fig. 4.1(a) Geometrical arrangementof an infinitesimal dipole

l ≤ λ/50

4

mixed coordinates in mixed coordinates in expression expression -- change to change to

sphericalspherical

222 zyxR ++≅

'''' ),,(4

dR

ezyx(x,y,z)jkR

ce

o−

∫≅ IAπ

μ

λ<<for

(x,y,z)

(x’,y’,z’)

source points

l

[4-2]

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

( ) ( ) ( )2 2 2' ' 'R x x y y z z= − + − + −

5

mixed coordinates in expression mixed coordinates in expression change to sphericalchange to spherical

[4-4]

∫−

≅2/

2/

'

4ˆ zd

re(x,y,z)

jkroo IaA z π

μ

jkroo er

(x,y,z) −≅π

μ4

ˆ IaA z

(x,y,z)

(x’,y’,z’)

source points

l

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

6

( ) ( ) ( ) 2'2'2' zzyyxxR −+−+−≅

θπ

μθθ sin4

sin jkrooz e

rIAA −=−=

θπ

μθ cos4

cos jkroozr e

rIAA −=−=

∫cd ' along source

0=φA

(x,y,z)

(x’,y’,z’)

source points

l

[4-6]

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

mixed coordinates in expression mixed coordinates in expression need to change to sphericalneed to change to spherical

l ≤ λ/50

7

Using Vector Potential Using Vector Potential A A , , calculate calculate HH & & EE fields fields

[ ] ⎥⎦⎤

⎢⎣⎡

∂∂

−∂∂

=×∇θθφ

rAArrr

)(1A

[ ]φφ μμAaAH ×∇=×∇=

1ˆ1

[4-7]

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

8

Using Vector Potential Using Vector Potential A A , , calculate calculate HH fields fields

[4-8]

AH ×∇=μ1

jkro ejkrr

IkjH −⎥⎦

⎤⎢⎣

⎡+=

11sin4

θπφ

0=rH

0=θH

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

9

Using MaxwellUsing Maxwell’’s s EqnsEqns totocalculate calculate EE fields fields

[4-10]

HE ×∇=ωεj1

jkror e

jkrrIE −

⎥⎦

⎤⎢⎣

⎡+=

11cos2 2 θ

πη

0=φE

jkro erkjkrr

IkjE −⎥⎦

⎤⎢⎣

⎡−+= 22

111sin4

θπ

ηθ

Fig. 4.1(b) Geometrical arrangementof an infinitesimal dipole and its associated electric-field componentson a spherical surface

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

10

Using Using HHφφ, , EErr, , EEθθ,, calculate the complex Poynting vectorcalculate the complex Poynting vector

( )∗∗∗ −=×= φθφθ HEHE rr aaHEW ˆ21)(

21

⎥⎦⎤

⎢⎣⎡= −⎥

⎤⎢⎣

⎡3)(

112

2sin2

8 krj

rI

roW θλ

η

[4-12]( )2cos sin 112 3 216 ( )

k Ioj j

r krW η θ θ

θ π+

⎡ ⎤= ⎢ ⎥⎣ ⎦

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

11

Find total outward flux through a closed sphereFind total outward flux through a closed sphere

(only contributions from Wr)

[4-14]∫∫ •=s

dP sW

⎥⎦

⎤⎢⎣

⎡−⎥⎦

⎤⎢⎣⎡= 3

2

)(11

3 krjIo

λπη

θθφπ

θ

π

φdrWd r sin

0

22

0 ∫∫ ===

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

12

Find total outward flux through a closed sphereFind total outward flux through a closed sphere

roo

rad RIIP 22

21

3=⎥⎦

⎤⎢⎣⎡=

ληπ

316.002.050

=⇒== rRλλ

2

2280

λπ=rR

2120 πη =

Real P = total radiated power Prad

ExampleExample [Ω]

Radiation resistance

for free space where

[4-19]

[4-16]

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

(Impedance would also have a large capacitive term that is not calculated here.)

13

( )3

2 13 kr

Io⎥⎦⎤

⎢⎣⎡−=

λπη

Imaginary part of P = reactive power in the radial direction

(Note: this → 0 as kr → ∞, so it is essentially not present in far field; only important in near field considerations)

[4-17]

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

14

Near Field approximations Near Field approximations [ [ krkr <<<< 1 ]1 ]

(field point very close or very low frequency case)

θπφ sin

4 2reIH

jkro

Dominant terms ⇒

[4-20]

θπ

η cos2 3rk

eIjEjkr

or

−≅

θπ

ηθ sin

4 3rkeIjE

jkro

−≅

Like ‘quasistationary” fields

E near static electric dipole

H near static current element

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

15

Near Field approximations Near Field approximations [ [ krkr <<<< 1 ]1 ]

Biot – Savart Law : infinitesimal current element in directionaz

(same as above when kr →0)

(note E and H are 90° out of phase)

NO RADIAL POWER FLOW --REACTIVE FIELDS

θπφ sin

2rIoaH ≅

][Re21 ∗×= HEWavg

0=avgW

[4-21]

[4-22]

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

16

Intermediate FieldsIntermediate Fields[ [ krkr >> 1]1]

(beginnings of radial power flow; still have radial fields)

1Erθ ∼

1Erφ ∼2

1rE

r∼

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

17

r = λ/2π (Radian Distance)

(Radius of Radian Sphere)

Energy basically imaginary (stored)

Energybasically

real(radiated)

Fig. 4.2 Radiated field terms magnitude variation versus radial distance

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

18

Far Field Far Field [ [ krkr >>>> 1 ]1 ]

Dominant terms ⇒

[4-26]θπφ sin

4 reIkjH

jkro

0r rE E H Hφ θ≅ ≅ ≅ ≅

θπ

ηθ sin

4 reIkjE

jkro

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

19

Far Field Far Field [ [ krkr >>>> 1 ]1 ]

ηφ

θ =H

E( both E and H are TEM to )

ra

θsin

Similar to plane wave but propagation in direction

With and variationsr1

[4-27]

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

ra

l ≤ λ/50

20

DirectivityDirectivity (use Far Field approx.)

RADIATION INTENSITY

][Re21 ∗×= HEWavg 2

22 sin

42ˆ

rIk o

πη

⎥⎥⎥

⎢⎢⎢

= a

θπ

η 242 sin22

⎥⎥⎦

⎢⎢⎣

⎡== oIkavgWrU

( Note: as before for )2

22 sin8 r

oIavgW θ

λη

⎥⎦

⎤⎢⎣

⎡= )( Real rW

[4-28]

[4-29]

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

21

(in θ = 90° direction) [4-31]

rado P

UD max4π=

2

max 42 ⎥⎦

⎤⎢⎣

⎡=

πη oIkU

2

3 ⎥⎦⎤

⎢⎣⎡=

λπη o

radIP

5.123

3

82

2

==

⎥⎦⎤

⎢⎣⎡

⎥⎦⎤

⎢⎣⎡

=

λπη

λη

o

o

oI

I

D

DirectivityDirectivity

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

22

SMALL DIPOLESMALL DIPOLE

Uniform current assumption - only valid for ideal case( approximated by capacitor plate antenna)

value of fields compared to constant current case

1_2

λ/50 < l < λ/10

λ/50 < l < λ/10

θπ

ηθ sin

8 reIkjE

jkro

=

θπφ sin

8 reIkjH

jkro

=

[4-36]

23

SMALL DIPOLESMALL DIPOLE(CONT)(CONT)

For physical small dipole triangular current distribution

value of case of constant current

1_4

same as constant current case

λ/50 < l < λ/10

[4-37]

2

12 ⎥⎦⎤

⎢⎣⎡=

ληπ o

radIP

2220 ⎥⎦

⎤⎢⎣⎡=λ

πrR

5.1=oD

24

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(length comparable to λ)

(max error where θ = 90° ; 4th term = 0 there)

approx. error

2' 21cos sin

2zR r z

rθ θ

′⎛ ⎞= − + +⎜ ⎟

⎝ ⎠

[4.41]

Fig. 4.5 Finite dipole geometryand far-field approximations

25

Phase and Magnitude considerationsPhase and Magnitude considerations

In calculating phase assumecan tolerate phase error of π/8 (22°)

Must choose r far enough away so that ….

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

26

Phase and Magnitude considerationsPhase and Magnitude considerations

2max ' =z

2

2 8k z

rπ′

ORIGIN OF DEFINITION OF FAR FIELD

λ

22>r⇒≤

882 2 πλπ

r

jkre−For phase term ⇒ use θcos'zrR −=

For magnitude term ⇒ user1 rR =

[4-45]

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

27

Finite dipole Current distributionFinite dipole Current distribution

(“thin” wire, center fed, zero current at end points)

λ / 2 < l < λ

[4-56]⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ − '

2sinˆ zkIoza

20 ' ≤≤ z

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ + '

2sinˆ zkIoza 0

2' ≤≤− z

=== ),0,0( ''' zyxeI

(see Fig. 4.8)

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

28

Current distribution for linear wire antennaCurrent distribution for linear wire antenna

Fig. 4.8 Current distribution along the length of a linear wire antenna

DIPOLE

29

Radiated fields at (Radiated fields at (x, y, zx, y, z) ) of finite dipoleof finite dipole

''

sin4

)( zdRezkjEd

jkRe θ

πηθ

≅I

( ) 2'22 zzyxR −++=⇒

For infinitesimal dipole at z’ of length Δ z’

Since source is only along the z axis ( )0,0 '' == yx

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

30

Radiated fields of finite dipole at (Radiated fields of finite dipole at (x, y, zx, y, z))

In far field regionin phase term

θcos'zrR −=( let )⇒

'cos'

'

sin4

)( zderezkjEd jkz

jkre θ

θ θπ

η−

≅I

[4-58]

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

31

Far Field Far Field E & H E & H Radiating fields Radiating fields

∫−=

2/

2/ θθ EdE

'cos2/

2/

' '

)(sin4

zdezIr

ekjE jkze

jkrθ

θ θπ

η∫−

Total Field

[4-58a]

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

32

Far Field Far Field E & H E & H Radiating fields Radiating fields

⎥⎥⎥⎥

⎢⎢⎢⎢

⎡⎟⎠⎞

⎜⎝⎛−⎟

⎠⎞

⎜⎝⎛

≅−

θ

θ

πη

θ sin2

coscos2

cos

2

kk

reIjE

jkro

For sinusoidal current distribution

[4-62]

ηθ

φEH ≅

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

33

Power DensityPower Density

2

2

2 2

cos cos cos2 2

8 sino

r avg

k kIW

r

θηπ θ

⎡ ⎤⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥=⎢ ⎥⎢ ⎥⎣ ⎦

[4-63]

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

34

Radiation IntensityRadiation Intensity

2

2

22

sin2

coscos2

cos

8⎥⎥⎥⎥

⎢⎢⎢⎢

⎡⎟⎠⎞

⎜⎝⎛−⎟

⎠⎞

⎜⎝⎛

==θ

θ

πη

kkIWrU o

avg [4-64]

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

l ≥ λ/2

35

33--dB BEAMWIDTHdB BEAMWIDTH

3-dB

BE

AM

WID

TH

90°87°

78°64°

48°

.25 1.75.5 λ

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

36

33--dB BEAMWIDTHdB BEAMWIDTH

λ>If allow new lobes begin to appear

Fig. 4.7(b) 2-D amplitude pattern for a thin dipolel = 1.25 λ and sinusoidal current distribution

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

37

Elevation plane amplitude patterns for a thin dipole with sinusoElevation plane amplitude patterns for a thin dipole with sinusoidal current distributionidal current distribution

Fig. 4.6

38

Radiated power Radiated power

Results of integration give terms involving Ci & Si [4-68]

∫∫ •=s

avgrad dP sW [4.66]

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

39

Radiated power Radiated power

sin and cos integrals (tabulated functions like trig. functions, but not as common)

Can find Rr and Do in terms of Ci and Si

Do, Rr, Rin plotted in fig. 4.9

[4-75][4-70]

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

40

Radiation resistance, input resistance and directivity of a thinRadiation resistance, input resistance and directivity of a thin dipole with sinusoidal dipole with sinusoidal current distributioncurrent distribution

Fig. 4.9

FINITE LENGTH DIPOLE

41

Input ResistanceInput Resistance

(note that Rr uses Imax in its derivation)

≥for

oin II ≠

at input terminalsI

VZin =

z’

Ie (z’)

maxIIo =

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

42

Input ResistanceInput Resistance

So, even for lossless antenna ( RL = 0 )

[4-77a]

rin

oin R

IIR

2

⎥⎦

⎤⎢⎣

⎡=inr RR ≠ ⇒

⎟⎠⎞

⎜⎝⎛

=

2sin2 k

Rr

z’

Ie (z’)

maxIIo =

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

43

Input Resistance (cont)Input Resistance (cont)

Not true in practical case, current not exactly sinusoidal at the feed point(due to non-zero radius of wire and finite feed gap at terminals)

Numerous ways to account for more exact current distribution, result in currents that are both in and out of phase, and in Rin + j Xin

(subject of extensive research, numerical and analytical)

Note: when ; andλn= ∞→inR0→inI

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

44

Empirical formula for Empirical formula for RinRin

)12max( ⎥⎦⎤

⎢⎣⎡Ω<inR

40 λ

≤≤4

0 π≤≤ G220GRin ≅

17.414.11 GRin ≅

5.27.24 GRin ≅24λλ

≤≤

λλ 64.02

≤≤

24ππ

≤≤ G

22

≤≤ Gπ )200max( ⎥⎦⎤

⎢⎣⎡Ω<inR

)76max( ⎥⎦⎤

⎢⎣⎡Ω<inR

let 2kG = for dipole of length

λπ

=G⇒

[4-107] → [4-110]

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

45

For MONOPOLEFor MONOPOLE

[ ]5.427321 jZin +≅

kG =

21Rin (monopole) = Rin (dipole)

[ ]Ω+≅ 2.215.36 jZin

for wavelength monopole14

same current; voltage ⇒ impedance21

21

[4-106]

46

HALF WAVE DIPOLEHALF WAVE DIPOLE

⎥⎥⎥⎥

⎢⎢⎢⎢

⎡⎟⎠⎞

⎜⎝⎛

≅−

θ

θπ

πη

θ sin

cos2

cos

2 reIjE

jkro

2

22

2

sin

cos2

cos

8⎥⎥⎥⎥

⎢⎢⎢⎢

⎡⎟⎠⎞

⎜⎝⎛

θπ

πη

rIW o

avg

⎥⎥⎥⎥

⎢⎢⎢⎢

⎡⎟⎠⎞

⎜⎝⎛

≅−

θ

θπ

πφ sin

cos2

cos

2 reIjH

jkro

ll = = λλ/2/2

0 20 40 60 80 100 120 140 160 1800

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ (deg)

Nor

mal

ized

Pow

er

θ2sin

θ3sin

[4-84]

θθ

θπ

πη π

dIP orad ∫

⎟⎠⎞

⎜⎝⎛

=0

22

sin

cos2

cos

4[4-88]

[4-86]

[4-85]

47

ll = = λλ/2/2

HALF WAVE DIPOLE HALF WAVE DIPOLE (CONT)(CONT)

Slightly moredirective thaninf. dipole withDo = 1.5

64.14 max ≅=rad

o PUD π

where 435.2)2( ≅πinC)2(

2

πη

ino

rad CIP = [4-89]

[4-91]

48

l l = = λλ/2/2

HALF WAVE DIPOLE HALF WAVE DIPOLE (CONT)(CONT)

since (if lossless)rin RR ≅ inII =max

[ ] [ ]Ω+≅⇒Ω≅ 5.42735.42 jZX inin

[ ]Ω≅== 734

2 )2(2 ππ

ηin

o

radr C

IPR

[4-93]

49

PRACTICAL DIPOLEPRACTICAL DIPOLE

[ ]Ω≅ 300inR

[ ]Ω≅ 300oZ

Folded dipole

Useful for matching to two-wire

lines where

l l slightly < slightly < λλ/2/2

Usually choose ll slightly less than so that is totally real.2λ

ininX Z0 &→

50

PRACTICAL DIPOLEPRACTICAL DIPOLE(CONT)(CONT)

Resistance and Reactance Variations

2λ(pure real for length slightly less than )

l l slightly < slightly < λλ/2/2

0.5 1.0 λ

G , B

G

B

51

IMAGE THEORYIMAGE THEORY

Can calculate the fields in the UHP by removing the conductorand finding the field due to the actual and image sources.

Linear antennas near an infinite ground plane could approximate case of earth.

h1

Direct

Reflectedh2

52

IMAGE THEORYIMAGE THEORY(CONT)(CONT)

In the Lower Half Plane, E = H = 0→→

h

μο, εο

h

h

μο, εο

μο, εο

Image

σ = ∞

Actual Problem Equivalent Problem

Observation Point

Observation Point

53

IMAGE THEORY IMAGE THEORY (CONT)(CONT)

Fields due to image source are actually produced by the induced currents in the ground plane

+

+

⇓ ⇓

actual

image

I

I

image

actual

I

Iactual

image

I

I

54

VERTICAL DIPOLEVERTICAL DIPOLE HORIZONTAL DIPOLEHORIZONTAL DIPOLE

Electric dipoles above an infinite perfect electric conductorElectric dipoles above an infinite perfect electric conductor

Fig. 4.12(a) Vertical electric dipole above anInfinite, flat, perfect electric conductor

Fig. 4.24 Horizontal electric dipole, and its associated image, above an infinite, flat, perfect electric conductor

55

VERTICAL DIPOLEVERTICAL DIPOLE HORIZONTAL DIPOLEHORIZONTAL DIPOLE

Electric dipoles above ground planeElectric dipoles above ground plane

Fig. 4.14(a)

Fig. 4.25(a)

56

Far FieldFar Field

Electric dipoles above an infinite perfect electric conductorElectric dipoles above an infinite perfect electric conductor

Fig. 4.14(b) Fig. 4.25(b)

57

FAR FIELD RADIATING FIELDSFAR FIELD RADIATING FIELDS

r1

h

h

r

r2

θ

h cos

θ

x

y

z

h

h

r1

r

r2

x

y

z

ψ

VERTICAL DIPOLEVERTICAL DIPOLE HORIZONTAL DIPOLEHORIZONTAL DIPOLE

approx. in phase terms

θcos1 hrr −≅θcos2 hrr +≅

in magnitude terms321 rrr ≅≅[4-97]

[4-98]

58

Summing two contributions

total = incident + reflected total = actual + imaginary

VERTICAL DIPOLEVERTICAL DIPOLE HORIZONTAL DIPOLEHORIZONTAL DIPOLE

rd EEE21 θθθ +≅

11

sin4

1

θπ

ηθ r

eIkjEjkr

od−

22

sin4

2

θπ

ηθ r

eIkjEjkr

or−

ψπ

ηψ sin

4 1

1

reIkjE

jkrod

ψπ

ηψ sin

4 2

2

reIkjE

jkror

−≅

rd EEE21 ψψψ +≅

[4-94]

[4-95]

[4-111]

[4-112]

FAR FIELD RADIATING FIELDSFAR FIELD RADIATING FIELDS(CONT)(CONT)

59

VERTICAL DIPOLEVERTICAL DIPOLEHORIZONTAL DIPOLEHORIZONTAL DIPOLE

[ ]θθθ θ

πη coscossin

4jkhjkh

jkro ee

reIkjE +≅ −

[ ]θθψ ψ

πη coscossin

4jkhjkh

jkro ee

reIkjE −≅ −

φθψ 22 sinsin1sin −=

φθψ sinsincos =

FAR FIELD RADIATING FIELDSFAR FIELD RADIATING FIELDS(CONT)(CONT)

60

[4-99]

[4-116]

VERTICAL DIPOLEVERTICAL DIPOLE HORIZONTAL DIPOLEHORIZONTAL DIPOLE

Single source at origin array factor

( )sin 2 cos cos4

jkrok I eE j kh

rθη θ θ

π

≅ ⎡ ⎤⎣ ⎦

Single source at origin array factor

( )[ ]θφθπ

ηψ cossin2sinsin1

422 khj

reIkjE

jkro −≅

for 0=θE 0<z

FAR FIELD RADIATING FIELDSFAR FIELD RADIATING FIELDS(CONT)(CONT)

61

Amplitude patterns at different heightsAmplitude patterns at different heights

Fig. 4.15Fig. 4.26

Number of lobes

Note minor lobes that are

formed for

HORIZONTAL DIPOLEHORIZONTAL DIPOLEVERTICAL DIPOLEVERTICAL DIPOLE

Number of lobes

Note minor lobes that are

formed for

12+≅

λh

≥h2λ

≥h

λh2

≅[4-100] [4-117]

62

Amplitude patterns at different heightsAmplitude patterns at different heights(CONT)(CONT)

VERTICAL DIPOLEVERTICAL DIPOLE HORIZONTAL DIPOLEHORIZONTAL DIPOLE

Note max radiation is in θ = 90° direction

Fig. 4.16Fig. 4.28

63

VERTICAL DIPOLEVERTICAL DIPOLE

HORIZONTAL DIPOLEHORIZONTAL DIPOLE[4-102]

[4-118]

R(kh)

RADIATION POWERRADIATION POWER

( )( )

( )( ) ⎥

⎤⎢⎣

⎡+−⎥⎦

⎤⎢⎣⎡= 32

2

22sin

22cos

31

khkh

khkhIP o

rad λπη

( )( )

( )( )

( )( ) ⎥

⎤⎢⎣

⎡+−−⎥⎦

⎤⎢⎣⎡= 32

2

22sin

22cos

22sin

31

khkh

khkh

khkhIP o

rad λπη

64

[4-104]

[4-123]

DIRECTIVITYDIRECTIVITYVERTICAL DIPOLEVERTICAL DIPOLE HORIZONTAL DIPOLEHORIZONTAL DIPOLE

Fig. 4.29 Radiation resistance and max. directivityof a horizontal infinitesimal electric dipole as afunction of its height above an infinite perfectelectric conductor.

( )( )

( )( ) ⎥

⎥⎥⎥⎥

⎢⎢⎢⎢⎢

⎥⎦

⎤⎢⎣

⎡+−

==

32

max

22sin

22cos

31

24

khkh

khkhP

UDrad

o π

⎟⎠⎞

⎜⎝⎛ ≥≥

42R(kh)4 λπ hkh

==rad

o PUD max4π

( )⎟⎠⎞

⎜⎝⎛ ≤≤

42R(kh)sin4 2 λπ hkhkh

Fig. 4.18 Directivity and radiation resistanceOf a vertical infinitesimal electric dipole as afunction of its height above an infinite perfectelectric conductor.

65

DIRECTIVITYDIRECTIVITY(CONT)(CONT)

VERTICAL DIPOLEVERTICAL DIPOLEHORIZONTAL DIPOLEHORIZONTAL DIPOLE

Limiting case of kh→ 0

Note:

!5!3sin

53 xxxx +−=

!421cos

42 xxx +−=

2345611sin 2

23 ⋅⋅⋅+−=

xxx

x

234211cos 2

22 ⋅⋅+−=

xxx

x

32

sincos31

xx

xx

+−⇒

32

64

61

21

31

==−+≅

⎥⎦

⎤⎢⎣

⎡⋅⋅⋅

+−+⎥⎦

⎤⎢⎣

⎡⋅⋅

+−−≅23456

112342

1131 2

2

2

2

xx

xx

Note: direction of maximum radiationchanges as “h” is varied. Dg (θ=0)

Dg(θ=0)

h/λ

66

VERTICAL DIPOLEVERTICAL DIPOLE HORIZONTAL DIPOLEHORIZONTAL DIPOLE

6.0∞∞

6.57.4582.88

300

Doh/λkh

6.0∞

slightly

> 6.0.615+n/2(n=1,2,3…)

7.50

Doh/λ

63

12

lim

=→

∞→

oDkh

33

22

0lim

=→

oDkh

( ) 2

0lim )(

sin5.7 ⎥⎦

⎤⎢⎣

⎡=

khkh

oDkh

[4-124]

DIRECTIVITYDIRECTIVITY(CONT)(CONT)

67

VERTICAL DIPOLEVERTICAL DIPOLE

Input Impedance of a Input Impedance of a λλ/2 dipole above a /2 dipole above a flat lossy electric conductive surfaceflat lossy electric conductive surface

Fig. 4.20

ininin XRZ +≅ [ ]Ω+≅ 5.4273 jZin

68

HORIZONTAL DIPOLEHORIZONTAL DIPOLE

Input Impedance of a Input Impedance of a λλ/2 dipole above a /2 dipole above a flat lossy electric conductive surfaceflat lossy electric conductive surface

Fig. 4.30ininin XRZ +≅ [ ]Ω+≅ 5.4273 jZin

69

GROUND EFFECTSGROUND EFFECTS

Finite conductivity σearth

(“real” earth as ground plane)

h1

h2

Direct

Reflected

σearth

Assume earth flat (ok. for Rearth >> λ)

10 → 1 [S/m]

70

GROUND EFFECTSGROUND EFFECTS(CONT)(CONT)

(real earth as ground plane)

Fig. 4.31 Elevation plane amplitude patterns of an infinitesimal vertical dipole above a perfect electric conductor σ=∞ and a flat earth σ= 0.01 [S/m]

VERTICAL DIPOLEVERTICAL DIPOLE

HORIZONTAL DIPOLEHORIZONTAL DIPOLE

Fig. 4.32 Elevation plane ( φ = 90°)amplitude patterns of an infinitesimal horizontal dipole above a perfect electric conductor σ=∞ and a flat earth σ= 0.01 [S/m]

71

(real earth as ground plane)

σσ = = ∞∞

σσearthearth

For low and medium frequency applications when height is comparable to skin depth [ δ = 2/ωμσ ]of the ground ⇒ increasing changes in input impedance; less efficient; use of ground wires)

GROUND EFFECTS GROUND EFFECTS (CONT)(CONT)

72

Usually negligible effect for observation angle ψgreater than 3°.

EARTH CURVATUREEARTH CURVATURE

Fig. 4.34 Geometry for reflections from a spherical surface

GROUND EFFECTS GROUND EFFECTS (CONT)(CONT)

73

EARTH CURVATUREEARTH CURVATURE

Curved surfaces spreads out radiation (divergent) that is reflected more than from flat surface.(can introduce a divergence factor)

Fig. 4.35 Divergence factor for a 4/3 radius earth(ae = 5,280 mi = 8,497.3 km) as a function ofgrazing angle ψ.

reflected field from spherical surface

reflected field from flat surface___________________=

DDivergence factor

= rf

rs

EE

GROUND EFFECTS GROUND EFFECTS (CONT)(CONT)

74

l=λl=λ/2l=λ/10l=λ/50

0 (-∞ dB)1.5746 (1.972 dB)0.2181 (-6.613 dB)0.0374 (-14.27 dB)G0abs

0 (-∞ Db)

0.9642 (-0.158 dB)

0.1556 (-8.08 dB)

0.0271(-15.67 dB)

er

10.18929-0.9189-0.9863Γ

2.4026(3.807 dB)

1.6331(2.13 dB)

1.4009(1.464 dB)

1.3782(1.393 dB)

G0

2.411 (3.822 dB)

1.6409 (2.151 dB)

1.5 (1.761 dB)

1.5 (1.761 dB)

D0

0.9965 (-0.015 dB)

0.9952 (-0.021 dB)

0.9339 (-0.296 dB)

0.9188(-0.368 dB)

ecd

∞731.97390.3158Rin

199731.97390.3158Rr

0.69810.3490.13960.0279RL

1.39620.6980.27920.0279Rhf

DIPOLE SUMMARYDIPOLE SUMMARY(Resonant ⇒ XA=0; f = 100 MHz; σ = 5.7 x 107 S/m; Zc = 50; b = 3x10-4l)

top related