funding national science foundation r. a. welch foundation hungarian science foundation

Post on 16-Jan-2016

48 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Excess Electrons in W ater: Clusters, Interfaces, and the Bulk. Laszlo Turi Adam Madarasz (Eotvos Loring U., Budapest) Wen-Shyan Sheu (Fu-Jen University, Taipei) Daniel Borgis (Universite d’Evry / ENS Paris). Funding National Science Foundation R. A. Welch Foundation - PowerPoint PPT Presentation

TRANSCRIPT

1

FundingFunding•National Science Foundation•R. A. Welch Foundation•Hungarian Science Foundation•Eötvös Fellowship•Bolyai János Fellowship•Széchenyi Professor Fellowship

Laszlo Turi Adam Madarasz(Eotvos Loring U., Budapest)

Wen-Shyan Sheu(Fu-Jen University, Taipei)

Daniel Borgis(Universite d’Evry / ENS Paris)

Excess Electrons in Water: Clusters, Interfaces, and the

Bulk

2

Water Cluster Anions: distinct “isomers”

Systematic variations

What are the characteristic properties which distinguish the different classes? Common sets of structural motifs?

Backing pressure/thermodynamic conditions. Non-equilibrium?

J. R. R. Verlet, A. E. Bragg, A. Kammrath, O. Cheshnovsky, and D. M. Neumark, Science, 307, 93 (2005).

3

Anionic clusters and hydrated electrons:localization mode/”binding motif” and

structure

“infinite” cluster

clusters

4

The Toolkit for Mixed Quantum-Classical MD Simulations

Components:

N classical water molecules (SPC model + internal flexibility)

the excess electron (wave function represented on dual [k,r] grid)

the electron-molecule interaction (pseudopotential*)

the force acting on the molecular nuclei:

= classical force (from the solvent) + quantum force (from the solute)

= FH2O + FQ

A sampling scheme: (adiabatic) time evolution of the system:

...)())(;())(;(ˆ)(12000

ttRQEtRQHtQOHnucl

RFFFR

{ quantum mechanical e- + classical solvent molecules }

* Turi, L.; Gaigeot, M.-P.; Levy, N.; Borgis, D.; J. Chem. Phys., 2001, 114, 7805. Turi, L.; Borgis, D. J. Chem. Phys., 2002, 117, 6186.

5

Applicability of the Pseudopotential

Bulk:

VDE for n=12 clusters

MP2/6-31(1+3+)G*

vs.

the pseudopotential

0 100 200 300 4000

100

200

300

400

500

600

VD

EM

P2/

me

V

VDEpseudo

/meV

Turi, L.; Madarász, Á.; Rossky, P. J.; JCP 125, 014308 (2006).

E0 = -3.12 eV

Es-p,max = 1.92 eV (vs. 1.72)

RG = <r2>1/2 = 2.4 A

6

Cluster Simulations: Surface states vs. internal states

L. Turi, W.-S. Sheu, P. J. Rossky, Science 309, 914 (2005), ibid. 310, 1719 (2005).

n = 20, 30, 45, 66, 104, 200 + 500, 1000

nominal T = 100K, 200K, 300K

(s p; n = 45. T = 200K)

7

E0,1

gap

expt. (M. Johnson + coworkers)

Average surface state energetic behavior vs. interior states and vs. expt.

old lines, new points: n = 200, 500, 1000(surface and internal at 200K)

(expt)

(expt)

300K bulk

- spectral gap

E0

internal

internal

n -1/3

0 0.1 0.30.2

300K bulk

n -1/3

~35D

0.20

8

Electron radius and kinetic energy

From: David M. Bartels - J. Chem. Phys. 115, 4404 (2001).

0 50 100 150 2000.0

0.5

1.0

1.5

2.0

2.5

Ekin

etic/e

V

n

0 50 100 150 200

1

2

3

4

5

Rg

,ele

ctro

n/Å

n

Simulations:

surface

surface

internal

internal

9

Hydrated electrons at water/vacuum interfaces:

the infinite cluster limit

Cases: Ambient water surface (300 K) Supercooled water surface (200 K) Hexagonal ice surface (200 K) Amorphous solid (quenched) water surface (100 K)

Starting point: charge-neutral equilibrium surfaces

Dynamic simulations of surface accommodation

and final states

Localization analysis

Á. Madarász, P. J. Rossky, L. Turi, JCP 126, 234707 (2007).

10

Interior and surface hydrated electrons at liquid water/vacuum interfaces

(meta)stable surface states at 200 K

vs. spontaneous internal states at 300 K

0 2000 4000 6000 8000 10000

-8

-6

-4

-2

0

2

4

6

8

(zco

m,e -

zG

ibbs

) / Å

t / fs

z(t)

10 ps

11

Surface vs. Internal states

Internal state – bulk hydrated electron

Surface state – supercooled water interface

300 K Simulation temperature 200 K

2.4 Å Radius of the electron 2.7 Å

-3.1 eV Ground state energy -2.6 eV

1.9 eV Spectral maximum 1.5 eV

16 Coordination number (<5 Å) 10

12

partly reorganized -OH

Bulk Supercooled water interface

Amorphous solid water interface

ice Ih interface

Temperature 300 K 200 K 100 K 200 K

Electronradius

2.4 Å 2.7 Å 3.0 Å 2.6 Å

Ground state energy

-3.1 eV -2.6 eV -1.6 eV -2.7 eV

Spectral maximum

1.9 eV 1.5 eV ~1 eV 1.6 eV

Alternative surface states

partly reorganized from dangling -OH

fully reorganized -OH

restricted reorganization‘otherwise occupied’ -OH

13

(Credit: Mark Johnson)

1

23

4 1 AA 2 AD 3 DD 4 AD ice AADD

D A

A

D

Donor-Acceptor characterization of water molecules

strong electron binding

Concept: N. I. Hammer, J.-W. Shin, J. M. Headrick, E. G. Diken, J. R. Roscioli, G. H. Weddle, and M. A. Johnson, Science, 306, 675 (2004).

14

Hydrated electrons at solid water interfaces

1 2 3 4 5 60.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

fre

qu

en

cy c

ou

nt

r / Å

Structure II, T=100 K

Structure I, T=200 K

H-bonding structure analysis:

AA (solid) and AAD (dashed)

Ice Ih, 200K

ASW, 100K

AAD

AAD

AA

15

Equilibrium and non-equilibrium preparation of cluster anions

quenched clusters (QC)

Prepare warm (ambient) neutral equilibrium structures

→ quench them gradually to a sequence of lower T’s Cluster surface site analysis

metastable clusters (MC)

Alternative preparation protocol: assemble the neutral clusters at very low T → warm them up gradually to the desired higher T.

metastable clusters have never “seen” annealing temperatures

Add the electron and relax (for ~ 200 ps).

top related