heavy multiquark systems from heavy ion collisions

Post on 08-Jan-2016

50 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

DESCRIPTION

Heavy multiquark systems from heavy ion collisions. Su Houng Lee 1. Few words on light Multiquark States and Diquarks 2. Few words on heavy Multiquark States and Sum Rules 3. Few words on New Predictions and Future Search. Recent Highlights in Hadron Physics – Heavy quark sector. - PowerPoint PPT Presentation

TRANSCRIPT

1

Heavy multiquark systems from heavy ion collisions

Su Houng Lee

1. Few words on light Multiquark States and Diquarks

2. Few words on heavy Multiquark States and Sum Rules

3. Few words on New Predictions and Future Search

S H Lee 2

Babar: DSJ(2317) 0+

Puzzle in Constituent Quark Model(2400) 1. DK threshold effect

2. Chiral partner of (0- 1-)

3. Tetraquark

X(3872), Y(4260),

Z(4430) ’

Z(4051),Z(4248) c1

Must contain cc ?

molecule ?

Recent Highlights in Hadron Physics – Heavy quark sector

D0 D* D1

1864 2007 2420

Z(4248) ?

Tetraquark ?

D0+D* D*+D* D+D1 D1+D*

3871 4014 4284 4427

S H Lee 3

Scalar tetraquark (Jaffe 76)

Search for H dibaryon Search for + pentaquark

Previous Work on Multiquark hadrons - Light quark sector

1(1400)

Candidate for 1010

S H Lee 4

Light Multiquark states and diquarks

S H Lee 5

Tetraquarks: Jaffe

color spin interaction: light scalar nonet

jj

aj

aiji

jijj

aj

aijig

ss

mmCssH

, q3q1

q2 q4

Diquark configurations

• Diquark basis 0,3;0,3 15.01,6;1,6 98.00,9F

• Q-antiQ basis

Scalar nonet |9,0+>

8888F VV 39.0VV, 33.0PP 43.0PP, 74.00,9

S H Lee 6

1(1400) E852 + Chung et al.

p-wave decay of 1(1400) into

km

jn

inmijkijk

inmgL 11int

quark content of 10+10

• Can not be obtained from QQ

flavor Angular mom Total

Anti-sym 1 (anti-sym) Symmetric

I=1 part of Flavor 10+10

ijk nj m

k

• Can be obtained from (QQ)(QQ): such as (3X6) + (3X6)

Needs further experimental work

S H Lee 7

Recently observed heavy Multiquark states (qqcc)

F.Navara, M. Nielsen, SHL: PLB 649, 166 (07)

SHL, M. Nielsen et al: PLB 661, 28 (08)

SHL, K.Morita, M.Nielsen: PRD 78, 076001 (08), NPA 815,29 (09)

SHL, M.Nielsen, U. Wiedner: JKPS 55,424(09)

S H Lee 8

Belle: PRL 98, 082001 (07)

e+ e- J/ + X(3904)

D D*

e+

e

c

c

Through B decay

Recently observed states at B-Factory

b

W-

c

cs

Through ISR process

S H Lee 9

JPC Observation mode

confirmation Special feature

prediction

X(3872) 1++ B+X(3872)K+J/+-K+

Belle, BaBar, CDF,D0

PP, XJ/(c=+)

B(XJ)/B(X)=1

Tornqvist DD* molecular state

Y 1–-

ISR

Belle 4260,4360,4660

BaBar 4260,4360

[V][S] q=s m=4.65

q=u,d m=4.49(Nielsen, et al)

Ds0Ds* m=4.42D0D* m=4.27DD1 m=4.19

(Nielsen et al )

Hybrid

Z+(4430) ?,0- ’ [PS][S] m=4.52

(Nielsen, et al)

D*D1 m=4.40(Nielsen, Lee et al )

Z+(4050,4250)

? D*D* m=4.15DD1=4.19(Nielsen, et al )

D*D*(4020)D1D(4285) threshold

effect

Newly observed states

,cq[AV] ,cq[V] ,cq[PS] ,cq[S] bTab5

Tab

Tab5

Ta CCCC

,cqD1 ,cqD* ,cqD ,cqD0 55 i

S H Lee 10

JPC Special feature

QSR tetraquark

QSR molecule Others

X(3872) 1++ B(XJ)/B(X)=1

[AV][S] m=3.92(Nielsen ..)

DD* m=3.87 (Nielsen, ..)

QSR with (Morita) ,

Mixture with cc

Y 1–-

ISR

Belle 4260,4360,4660

BaBar 4260,4360

[V][S] q=s m=4.65

q=u,d m=4.49(Nielsen, et al)

Ds0Ds* m=4.42D0D* m=4.27DD1 m=4.19

(Nielsen et al )

Hybrid

Z+(4430) ?,0- ’ [PS][S] m=4.52

(Nielsen, et al)

D*D1 m=4.40(Nielsen, Lee et al )

Z+(4050,4250)

? D*D* m=4.15DD1=4.19(Nielsen, et al )

D*D*(4020)D1D(4285) threshold

effect

Newly observed states

,cq[AV] ,cq[V] ,cq[PS] ,cq[S] bTab5

Tab

Tab5

Ta CCCC

,cqD1 ,cqD* ,cqD ,cqD0 55 i

S H Lee 11

In principle QCD can not distinguish between diquark configuration and molecular configuration

but if the overlap is large, plateau and OPE convergence, pole dominance

QCD sum rule results

22 /exp)(0 MssdsMJxJBT sum rule

222

sms

sfs Small M2 2MOPE Large M2

m

M2

S H Lee 12

QCD sum rules X(3872): SHL, K. Morita, M. Nielsen (PRD08)

J=[s][V] Tetraquark current vs. J=DD* Molecular current

,cq[AV] ,cq[V] ,cq[PS] ,cq[S] bTab5

Tab

Tab5

Ta CCCC

,cqD1 ,cqD* ,cqD ,cqD0 55 i

Small width <2 MeV

S H Lee 13

Cont- Z(4430) : SHL, K. Morita, M. Nielsen (PRD08)

J=D1 D* Molecular current

,cq[AV] ,cq[V] ,cq[PS] ,cq[S] bTab5

Tab

Tab5

Ta CCCC

,cqD1 ,cqD* ,cqD ,cqD0 55 i

width = 40 MeV

S H Lee 14

Cont- Z2(4250) : SHL, K. Morita, M. Nielsen (PRD08)

J=D1 D Molecular current

But J=D* D* Molecular current gives Mass>4.2 in sum rule ?

S H Lee 15

Why not Tetraquarks

color spin interaction:

jj

aj

aiji

jig ss

mmH 1

q3q1

q2 q4

q3q1

H H

Hq1

q2 H

S H Lee 16

Some predictions on Heavy and Explicitly exotic Heavy

Multiquark states (qqcc)

SHL, S. Yasui : EPJC 64 283 (09)

SHL, S. Yasui, W. Liu, CM.Ko : EPJC 54 259 (08)

S H Lee 17

Multiquark configuration: Mulders, Aerts, de Swart PRD80

color spin interaction: light scalar nonet

jj

aj

aiji ss

u d

u d u

u d u s

u d u s u

u d u s u s

32Q

13Q

34Q

35Q

16Q

S H Lee 18

MeV 4700 MeV, 1500 MeV, 500 MeV, 300 bcsdu mmmmm

Diquark inside Baryons

u d u d

s

s

ji

jiji

B ssmm

C

,

.confining.Kinetic Mass

du

B

mm

C

4

3conf.Kinetic Mass c

su

B

du

B

mm

C

mm

C

4

1conf.Kinetic Mass c

Example

Mass diff M –MN M-M Mc-Mc Mb-Mb

Formula 290 MeV 77 MeV 154 MeV 180 MeV

Experiment 290 MeV 75 MeV 170 MeV 192 MeV

S H Lee 19

quark antiquark in Meson

d u d u

Works very well with 3x CB = CM = 635 mu2

u d d ux 3 =

Mass diff M –M MK*-MK MD*-MD MB*-MB

Formula 635 MeV 381 MeV 127 MeV 41 MeV

Experiment 635 MeV 397 MeV 137 MeV 46 MeV

ji

jiji

M ssmm

C

,

.confining.Kinetic Mass

S H Lee 20

Stable Multiquark configurations

in a schematic diquark model

ji

jiji

H ssmm

C

,

.confining.Kinetic Mass

S H Lee 21

Multiquark configuration: Multers, Aerts, de Swart PRD80

Diquark attracation vs quark-antiquark

2121

1

mmssCB

q3q1

q2

diquark picture: Yasui, Lee,.. (EJP08,EJP09)

Type of diquark and its q-q binding

S=C=0 (ud) A

S=-1, ms=5/3mu (us) 3/5 A (ds) 3/5 A

C=1, mc=5mu (uc) 1/5 A (dc) 1/5 A (sc) 3/25 A

MeV 1454

3A

2

u

B

m

C

3131

1

mmssCM

BM CC 3

23 3 make mm

S H Lee 22

Tetra-quark - configurations

u d d u u dd u0+

boundnot BM CC0- 0-

Binding against decay = (Mass of 2 Mesons) – (Mass of Tetraquark)

22 4

3

4

3

u

B

u

B

m

C

m

C

22 4

3

4

3

u

M

u

M

m

C

m

C

u d c b u dc b0+

MeV -21.25

T of Binding 0cb

0- 0-

bc

B

u

B

mm

C

m

C

4

3

4

32

bu

M

cu

M

mm

C

mm

C

4

3

4

3

S H Lee 23

Tetra-quark – hadronic weak decay modes

KKBD )( )bc(udT 000cb

1+ u d c c u dc c 0- 1-)cc(udT1cc

22 4

1

4

3

c

B

u

B

m

C

m

C

cu

M

cu

M

mm

C

mm

C

4

1

4

3

S H Lee 24

Belle: PRL 98, 082001 (07)

e+ e- J/ + X(3904)

D D*

Tcc (3800)

e+

e

c

c

SHL, S Yasui, W Liu, C Ko (08)

Can look for 1+ (Tcc)

Previous works on TccZ. Zouzou, B. Silverstre-Brac, C. Gilgnooux, J Richard (86), D. Janc, M. Rosina (04), Y. Cui,

S. L. Zhu (07)

QCD sum rules: F Navarra, M.Nielsen, SHLee, PLB 649, 166 (2007)

simple diquark: SHL, S. Yasui, W.Liu, C Ko EPJ C54, 259 (2008), SHL, S. Yasui: EPJ C (09) in press

c

c

S H Lee 25

Pentaquarks (states with two diquarks )

u d

1/2-

Q

u s u d Q

s

u

Qs D

su

B

u

B

mm

C

m

C

4

3

4

32

Qu

M

u

B

mm

C

m

C

4

3

4

32

KDcs )( )c(udus 0

S H Lee 26

S=C=0 (ud) -A

S=-1, ms=5/3mu (us) -3/5 A (ds) -3/5 A

C=1, mc=5mu (uc) -1/5 A (dc) -1/5 A (sc) -3/25 A

MeV 1454

3A

2

u

B

m

C

Di-bayron – general considerations

2

0+ 4

6

2

4

di-baryon B B

Conf-1

2

4

B B

Conf-2

S H Lee 27

Di-bayron (Conf 1) – (qq) (qq) (qq)

u d

0+

MeV 29Binding H

u s

H di-baryon could be bound

unfortunately not found in elementary processes

d s

u d

s

u d

s

H di-baryon

CFL like state

2SC like state

su

B

u

B

mm

C

m

C

4

32

4

32

22 4

3

4

3

u

B

u

B

m

C

m

C

S H Lee 28

Di-baryon (Conf 2) – (qq) (qq) (qQ)

u d

0+

MeV 92Binding H c

u s

Hc di-baryon new prediction

could be found in heavy ion collision

u c

u d

u

u

c

s

Hc di-baryon P c

cu

B

su

B

u

B

mm

C

mm

C

m

C

4

3

4

3

4

32

su

B

u

B

mm

C

m

C

4

3

4

32

Kpp

ppK

c

c

)(

)( (udusuc)H 0c

S H Lee 29

Some prediction for Heavy Ion

1. Large number of c and b quark produced

2. Vertex detector

3. High density matter: favors multiquark production

4. Example: FAIR 104 / Month D0k- +

SHL, K. Ohnishi, Yasui, In-Kwon Yoo, C.M.Ko: PRL 100, 222301(08)

SHL, S. Yasui, W.Liu, C.M.Ko: EPJ C54, 259 (08)

S H Lee 30

Suppression of p-wave resonance (Muller and Kadana En’yo) 1

)/)1520(()/)1520((

*

*

pp

AuAu

Coalescence model = Statistical model + overlap

Quark number scaling of v2 PT dependence of ratio v4

Success of Coalescence model

S H Lee 31

2

][][

2/32][

][2)]([

2

12

2/32

33)(

3

12

2/32

44

21

4

23

2

21

4

23

2

21

4

223

3

udCudC

ududccud

i iCiC

iducudc

i iCiC

iducccoalTcc

TVNNN

TVNNNN

TV

NNNNN

c

c

RHIC (Au+Au) LHC (Pb+Pb)

Nu=Nd 245 662

Nc 3 20

VC (fm3) 1000 2700

Nu/Vc (fm-3) 0.245 0.245

44.14

,663.021

4

2/32

2

2/32

C

iu

iCiC

iu

V

N

TV

N

Multiquark production in a simple coalescence model

S H Lee 32

Tcc/D > 0.34 x 10 -4 RHIC

> 0.8 x 10 -4 LHC

c/D > 0.8 x 10 -4

Hc/Ds > 0.25 x 10 -3

Kpp

ppK

c

c

)(

)( (udusuc)H 0c

Production ratios for predicted Multiquarks

cDx

cDsx

c production at RHIC and LHC

Hc production at RHIC and LHC

Tcc production

S H Lee 33

2. Diquarks are unique features of QCD, Mutltiquark states will exits in Heavy sector, due to diquark structure Tcc (ud cc) cs (udusc), Hc(udusuc)…

RHIC, LHC can be a very useful heavy exotic factory If found, it will be the first exotic ever,

will tell us about QCD, q-q interaction and dense matter

great step forward in QCD

1. QCD sum rule analysis suggests that recently measured X,Y,Z most likely exotic states

3. If diquarks exists near Tc, additional production of Tcc and cs. c/D enhancement can be a signature of sQGP

LHC plans to measure c and D, But all can be measured at KEK and J-PARK

Summary

4. Multiquark states are doorway to dense QCD.

S H Lee 34

Back ups

S H Lee 35

Hadronization through coalescence : c / D ratio

u d

d

u d

u

us

ds

c

c

d

u

d

u

us

ds

c

dudu

c

u d

c production through 3-body coalescence

c production through 2-body coalescence

c

c

c

cu

cu

D meson production through 2-body coalescence

D meson production through 2-body coalescence of diquark and c suppressed

c

S H Lee 36

S=C=0 (ud) A

S=-1, ms=5/3mu (us) 3/5 A (ds) 3/5 A

C=1, mc=5mu (uc) 1/5 A (dc) 1/5 A (sc) 3/25 A

MeV 1454

3A

2

u

B

m

C

diquark – anti-diquark (Tetra-quark) - II

A5

1- A

5

1-

A5

3-

L=1Z(4248) ?

A5

3-

1- u c d c u cc d 0- 0-

L=1

MeV 447L

A5

2--A

5

6Binding

23.0

2

I2

LA

5

2-.. KineticMass Tetraquark

2

MeV 3740A5

6-..KineticmassMeson 2

MeV 74.3303

)2593()2625(2

2

L*

]2/1[*

]2/3[2

ccc

I

MeV 4187 MeV 447 MeV 3740Mass Tetraquark

S H Lee 37

S=C=0 (ud) -A

S=-1, ms=5/3mu (us) -3/5 A (ds) -3/5 A

C=1, mc=5mu (uc) -1/5 A (dc) -1/5 A (sc) -3/25 A

MeV 1454

3A

2

u

B

m

C

Pentaquark – general considerations

d

A- A-

1/2+

MeV 480MeV 366A5

4Binding

d

L=1

d

d

A- A5

9-

MeV 15.36623

)1405()1520(2 2*]2/1[

*]2/3[

I

LL2 contribution

- 500 MeV

in Full quark model by Hiyama, Hosaka et al

+ 1540 can not be a pentaquark state, if it exists ?

P K

top related