inventory management (deterministic model): eoq models and extensions

Post on 09-Jan-2016

109 Views

Category:

Documents

5 Downloads

Preview:

Click to see full reader

DESCRIPTION

Inventory Management (Deterministic Model): EOQ Models and Extensions. Prof. Dr. Jinxing Xie Department of Mathematical Sciences Tsinghua University, Beijing 100084, China http://faculty.math.tsinghua.edu.cn/~jxie Email: jxie@math.tsinghua.edu.cn Voice: (86-10)62787812 Fax: (86-10)62785847 - PowerPoint PPT Presentation

TRANSCRIPT

1

Inventory Management (Deterministic Model): EOQ Models and Extensions

Prof. Dr. Jinxing Xie

Department of Mathematical Sciences

Tsinghua University, Beijing 100084, China

http://faculty.math.tsinghua.edu.cn/~jxie

Email: jxie@math.tsinghua.edu.cn

Voice: (86-10)62787812 Fax: (86-10)62785847

Office: Rm. 1202, New Science Building

2

Inventory Cycle inventory

Exists in a supply chain because different stages exploit economics of scale to lower the total cost

Safety inventory Is carried because demand forecasts are uncertain

and a product shortage may result if actual demand exceeds the actual demand

Other inventory Deals with price fluctuations, etc.

3

库存费用在不同的领域中所占的比重

其它 (12.0%)

农业(8.7%)

制造业(36.4%)

批发商(20.8%)

零售商(22.2%)

要解决的问题要解决的问题• 什么时候发出订货?• 每次应订多少货?

4

库存系统特征

( 库存模型分类)

系统结构 Single stage Multi-stage (echelon): serial, in-tree, out-tree

需求( demand ) 确定性 不确定性

计划期( planning horizon) Single period Finite periods Infinite periods

供货提前期( leadtime) 确定性 不确定性

库存监控方式 (monitoring) 连续盘点 (continuous review) 周期盘点 (periodic review)

缺货 (shortage/stockout) 处理方式 Backlogging (backorder) Lost sales

其他

5

相关成本持货费用 (inventory holding / carrying cost):

与库存量成正比。 c :每件物品的价值I:年利率或其他因素 h :每件物品的年持货费用

则下述关系成立Ich

6

相关成本持货费用 :

一个有趣的问题:当库存量随着时间而变时,如何计算持货费用?

I(t)

tt1 t2

t1至t2 期间的平均库存水平

7

相关成本订购成本 (ordering cost) :

该项成本包含两部分:固定费用  换订成本 (setup cost)

可变部分 与订购量成正比 (purchasing cost)

0

0 0

xcxK

xxC

如果如果

8

相关成本订购成本:

订购成本

斜率 = c

X

K

9

相关成本惩罚成本 (penalty cost) :

惩罚成本是由于缺货而不能满足顾客需求所造成的成本;

此项成本视缺货时的处理方式(等待和不等待)而有不同的内涵;

它应包含“信誉”方面的成本; 用符号 p 表示单位缺货所带来的惩罚成本。

10

经济订货批量模型Economic Order Quantity (EOQ)

( sometimes called EPQ, EMQ)

基本模型:

假设条件: 无穷长的计划时间 单位时间对物品的需求率为已知且为常数( Constant ) 不允许有缺货 无订货提前期 成本包括

每次订货时的换订成本为K 每单件进货成本为 c 单件物品的年持货成本为 h

11

经济订货批量(EOQ)模型基本模型:

库存

I(t

)

斜率 =

Q

T t时间

12

经济订货批量(EOQ)模型基本模型:

每一周期的进货成本

平均库存量

单位时间库存成本

cQKQC

2Q

222

hQc

Q

KhQQ

cQKhQ

T

cQKQG

13

经济订货批量(EOQ)模型基本模型:经济订货批量 (EOQ) (Harris, 1913)

h

KQ

2*

0

100

200

300

400

500

600

5 10 15 20 25 301

hQ2

KQ

G (Q )

G(Q

)

QQ *

14

经济订货批量(EOQ)模型基本模型:

从上述图中可见,最小总成本恰巧是两个分项成本的交叉点。

注意在经济订货批量Q * 的计算公式中,没有进货价格 c 。

15

经济订货批量(EOQ)模型例1:

单位时间的需求率

保管费用

换产成本

经济订货批量 EOQ

31205260

02.025.0 h

3870005.0

31201222*

h

KQ

12K

16

经济订货批量(EOQ)模型包含订货提前期时:

1.24 年

4 个月

订货开始

到货

R = 1040

Q = 3870

I(t)

t

17

经济订货批量(EOQ)模型包含订货提前期时:

0.31 周期 =0.0155 年

订货开始 到货

2.31 周期 = 0.1154 年

t

I(t)

Q = 25

R = 8

18

经济订货批量(EOQ)模型包含订货提前期时:

当  时,应用如下方法 :计算比例 将上述比例的余数乘以周期长度将上述结果乘以需求率得出再订货点

TT

19

有限生产率 (limited production rate)

斜率 = -斜率 = -

I(t)

H

T1 T2

T

t

20

有限生产率

TQ QT

1TQ QT 1

1TH 1QH

21

有限生产率

单位时间的总成本

经济订货批量EOQ (here also called EPQ or EMQ)

122

hQ

Q

KhH

T

KQG

'* 2

h

KQ

1' hh

22

按量折扣 (discount) 模型

两种可能性: 所订购的所有物品均具有相同的折扣 所订购的所有物品中,每超过一个基准量其超过部分

物品按一个新的折扣价计算

第一种模式(称其为一致折扣)更加普遍些称第二种模式为分段折扣

23

按量折扣模型例2:

书包的折扣价

QQ

QQ

QQ

QC

1000for28.0

1000500for29.0

5000for30.0

24

按量折扣模型例2:从图中可以看出,一致折扣模式似乎存在不

合理的地方,例如, 499 个书包的总成本是 149.70 元,而 500 个书包的总成本却是 145.0

C(Q)

Q500 1000

c0 = 0.30

c1 = 0.29

c2 = 0.28

25

按量折扣模型一致折扣模式下的最优订货策略:

针对各个折扣价格计算对应的EOQ值

40030.02.0

600822

0

0

Ic

KQ

40629.02.0

600822

1

1

Ic

KQ

41428.02.0

600822

2

2

Ic

KQ

26

按量折扣模型一致折扣模式下的最优订货策略:

100 200 300 400 500 600 700 800 900 1000 1100 1200

180

190

200

210

220

230

240

G0(Q)

G1(Q)

G2(Q)

G(Q

)

Q

27

按量折扣模型一致折扣模式下的最优订货策略:

因为 5004000 , 0Q 是有效的。 然而,无论 1Q 还是 2Q 均为无效( 1Q 应当在 500 至 1000 之间才算有效, 2Q 应当在大于等于 1000 才算有效。)

28

按量折扣模型一致折扣模式下的最优订货策略:

有三个值可以作为最优解的候选者: 400, 500 和 1000 。单位时间的成本函数如下

2 and 1, 0,for 2

jQIc

Q

KcQG j

jj

29

按量折扣模型一致折扣模式下的最优订货策略:

QQG

QQG

QQG

QC

1000for

1000500for

5000for

2

1

0

00.204$240030.02.0400860030.0600400400 0 GG

10.198$250029.02.0500860029.0600500500 1 GG

80.200$2100028.02.01000860028.060010001000 2 GG

30

按量折扣模型一致折扣模式下的最优订货策略:

小结: 确定最大的有效的 EOQ 值 比较此最大 EOQ 处的成本值与大于此 EOQ 值的各

折扣价格点处的成本值,确定最优解。

31

按量折扣模型分段折扣

C(Q)

Q500 1000

c0 = 0.30

c1 = 0.29

c2 = 0.28

150

295

32

按量折扣模型分段折扣模型:

单位时间平均成本函数

2

Q

Q

QCI

Q

K

Q

QCQG

QQ

QQ

Q

Q

QC

1000for15

28.0

1000500for5

29.0

5000for30.0

QQQ

QQQ

QQ

QC

1000for28.015100028.0295

1000500for29.0550029.0150

5000for30.0

33

按量折扣模型分段折扣模型:

200

202

204

206

208

210

212

214

216

218

200

100 200 300 400 500 600 700 800 900 1000 1100 1200

Q

G(Q

)

34

按量折扣模型分段折扣模型:

2

30.020.0600830.06000

Q

QQG

40030.02.0

600822

0

0

Ic

KQ

35

按量折扣模型分段折扣模型:

2

520.0

229.020.0

6001360029.0

2

529.020.0

6008529.06001

Q

Q

Q

QQQQG

51929.02.0

6001321

Q

36

按量折扣模型分段折扣模型:

2

1520.0

228.020.0

6002360028.0

2

1528.020.0

60081528.06002

Q

Q

Q

QQQQG

70228.02.0

6002322

Q

37

按量折扣模型分段折扣模型:

和  均为有效值 ; 因为     ,所以   为无效值。最优解可通过比较   和    的大小而获得。

0Q 1Q 2Q 10002 Q

00 QG 1

1 QG

00204$00 .QG

58.204$11 QG

38

按量折扣模型分段折扣模型:

小结 对于每个价格区间,确定其对应的成本代数表达式 将    的表达式代入   表达式中 从上一步中确定最小的有效值(即落在正确的区间中)

QC

QQC QG

39

按量折扣模型其它折扣模式:

斜率 = c

斜率 = c

QM M

C(Q)

40

资源受限时多品种库存系统例3:

商店在进货方面的总投入 ( 仅考虑可变成本 ) 不超 过 : 30000 元  ( 包 括 固 定 成 本 不 超 过 33000 元)

品目 1 2 3

需求率 j 进货价 jc

换订费 jK

1850

50

100

1150

350

150

800

85

50

假设 I = 0.25, 即  hj=0.25cj

41

资源受限时多品种库存系统解:

1725025.0

18501002EOQ1

6335025.0

11501502EOQ2

618525.0

800502EOQ3

42

资源受限时多品种库存系统解:

所需最大进货投入为 35835 元 (仅考虑可变成本 ) 。

可是总投入要求不超过  30000  元,所得的 EOQ 解违反了该约束。

因此必须减少这些批量。如何做?

43

资源受限时多品种库存系统解:

我们只需将各 EOQ 值乘以比率30000 / 35835 = 0.8372

即可。

1448372.0172*1 Q

528372.063*2 Q

518372.061*3 Q

44

资源受限时多品种库存系统

一般地,假定 n 类品目其单位成本为 c1, …, cn,

总的可利用投入为C。

CQcQcQc nn 2211

nih

K

i

iii , 1, for

2EOQ

45

资源受限时多品种库存系统两种可能性:

1)如果所得的 EOQ 解有效,则

2)如果所得的 EOQ 解违反约束条件,则

n

iii Cc

1

EOQ

n

iii Cc

1

EOQ最优解必然在等号处取得

46

资源受限时多品种库存系统

如果下列条件成立,即

n

n

h

c

h

c

h

c

2

2

1

1

imQ EOQ*

n

i iicCm1

EOQ

则可容易地获得最优解

n

iii

iiii

i

iiii

n

iii

CQcts

Qhc

Q

KQGQGMin

1

1

..

2;

可用 Lagrangean relaxation method

47

资源受限时多品种库存系统假定约束条件为库存空间约束

则该问题更复杂些( wi/hi 一般不是常数).当约束中等号成立时,可证明最优解是如下形式

( Lagrangean relaxation method)

WQwQwQw nn 2211

ii

iii wh

KQ

2

2*

48

资源受限时多品种库存系统

式中: ( Lagrangean Multiplier )值的选择应使下式成立

其具体值可通过解非线性方程得到,实际应用中也用试错法( try-and-error )来确定 ( 尤其是当要求订货量为非负整数时 ) 。

n

iii WQw

1

*

49

资源受限时多品种库存系统例4:

考虑例3中的情形。 假定可利用的存货空间为 2000 平方米。 三种货品中,每单件物品所占用的空间分别为 9 平方米 , 12 平方米 , 和 18 平方米。

50

资源受限时多品种库存系统例4:

首先,检查对应的 EOQ 是否可被满足

由此可知,可利用的空间不能满足 EOQ 的量。

3402186112639172EOQ iiw

51

资源受限时多品种库存系统例4:

第二步,对各品目计算比率 wi / hi ,它们分别是 0.72, 0.14, 和 0.85 。 由于它们不相等,我们必须确定常数值 经多次试找后, = 1.75 ,此时整数订货量

对应的空间要求为   ,满足约束条件。

92*1 Q 51*

2 Q 31*3 Q

1998* iiQw

52

其他扩展:可用类似方法处理学习效应 (learning effect) :后续产品生产成本逐渐降低

采购降格上升或下降 ( 假设规律已知 )

需求率上升或下降 ( 假设规律已知 )

通货膨胀 (inflation)

需求率与销售价格有关:考虑总利润最大

产品会过时/报废,或有挥发性或变质性( obsolescence, perishable )

53

有限生产能力下的多品种库存系统多品种生产 / 库存问题,假设由单一设备生产,设备生产能力有限

( limited capacity / production rate)

还可以考虑以下一些方面的因素: 有否 SETUP TIME (生产准备时间 / 换产占用能力) 有否资金限制 /仓库容量限制?

这时的生产 / 库存问题一般称为经济批量问题 ( ELSP : Economic Lot-Sizing Problem)

How to build the model? How to solve the model?

54

Multi-Echelon Inventory in Supply Chain

Outside supplier(s)

Central warehouse

Branch warehouse

Retail outlets

Customers

Branch warehouse

55

Two Stage Echelon Inventory

Sequential stocking points with level demand

Two-stage

process

QW

War

ehou

se in

vent

ory

leve

l

Time

Time

QR

Ret

aile

rin

vent

ory

leve

l

Actual physical inventory level at the particular location

Echelon inventory of the warehouse item

56

Two Stage Echelon Inventory

Two-stage process:

A little reflection shows that at least for the case of deterministic demand it never would make sense to have be anything but an integer multiple of .

Therefore, we can think of two alternative decision variables and n where

WQ

RQ

RQ

... 3, 2, 1, nnQQ RW

57

Two Stage Echelon Inventory

Two-stage process:

The first stage cost

The second stage cost

The total cost

rvvQ

QDA

rvQ

QDA

CCQQ WRR

R

RW

W

W

WWRRW

22,TRC

rvQ

Q

DAC R

R

R

RR 2

rvQ

rvQ

Q

DAC W

RW

W

W

WW 22

A : SETUP COST

v : VALUE

58

Two Stage Echelon Inventory

Two-stage process:

The warehouse echelon inventory is valued at

while the retailer echelon inventory is valued at only

WW vv '

WRR vvv '

59

Two Stage Echelon Inventory

Two-stage process:

The total relevant (setup plus carrying) costs per unit time are given by

= average value of the warehouse echelon inventory, in units ( =QW/2 )

= average value of the retailer echelon inventory, in units ( =QR/2 )

rvIQ

DArvI

Q

DA,QQ RR

R

RWW

W

WRW

''''TRC

'WI

'RI

60

Two Stage Echelon Inventory

Two-stage process:

Substituting from equation

and noting that the echelon stocks follow sawtooth patterns,

''

''

2

22TRC

RWRW

RR

RR

R

RWR

R

WRW

vnvrQ

n

AA

Q

D

rvQ

Q

DArvQn

nQ

DA,QQ

... 3, 2, 1, nnQQ RW

61

Two Stage Echelon Inventory

Select (an integer) and in order to minimize

Partial derivation of TRC

n RQ

''

2,TRC RW

RWR

RR vnv

rQn

AA

QD

Qn

02

TRC ''2

RWW

RRR

vnvr

nA

AQ

DQ

rvnv

Dn

AA

nQRW

WR

R

2

''*

62

Two Stage Echelon Inventory

Substitute the result into the cost equation

We recognize that the n that minimizes the simpler expression

rvnvDn

AAn RW

WR 2TRC ''*

''RW

WR vnv

n

AAnF

63

Two Stage Echelon Inventory

A convenient way is to first set

which gives

This solves for

0

nFn

0'2

''

W

WR

WRW v

nA

An

Avnv

'

'*

WR

RW

vA

vAn

64

Two Stage Echelon Inventory

Ascertain and where and are the two integers surrounding the

Whichever gives the lower value of F is the appropriate n to use (because the F function is convex in n).

1nF 2nF 1n 2n*n

65

Two Stage Echelon Inventory

Two-stage process:

Step 1 Compute

Step 2 Ascertain the two integer values, and , that surround .

'

'*

WR

RW

vA

vAn

1n2n *n

66

Two Stage Echelon Inventory

Two-stage process:

Step 3

''1

11 RW

WR vvn

n

AAnF

''2

22 RW

WR vvn

n

AAnF

121 use , If nnnFnF

221 use , If nnnFnF

67

Two Stage Echelon Inventory

Two-stage process:

Step 4

Step 5

rvnv

Dn

AA

QRW

WR

R ''

2

RW nQQ

68

Two Stage Echelon Inventory

Example 1:Let us consider a particular liquid product that a firm

buys in bulk, then breaks down and repackages.

So in this case, the warehouse corresponds to the inventory prior to the repackaging operation, and the retailer corresponds to the inventory after the repackaging operation.

The demand for this item can be assumed to be essentially deterministic and level at a rate of 1000 liters per year.

69

Two Stage Echelon Inventory

Example 1:The unit value of the bulk material or is

$1/liter, while the value added by the transforming (break and package) operation is $4/liter.

The fixed component of the purchase charge ( ) is $10, while the setup cost for the break and repackage operation ( ) is $15.

Finally, the estimated carrying charge is 0.24$/$/yr.

WA

RA

Wv 'Wv

WRR vvv '

70

Two Stage Echelon Inventory

Example 1:

Step 1:

Step 2:

11 n

63.1115410*

n

22 n

71

Two Stage Echelon Inventory

Example 1:Step 3:

that is,

Thus, use n = 2.

125411

10151

F

1204122

10152

F

21 FF

72

Two Stage Echelon Inventory

Example 1:Step 4:

Step 5:

liters 167

24.0412

10002

10152

RQ

liters 3341672 WQ

73

Two Stage Echelon Inventory

Example 1:In other words, we purchase 334 liters at a

time; one-half of these or 167 liters are immediately broken and repackaged.

When these 167 (finished) liters are depleted, a second break and repackage run of 167 liters is made.

When these are depleted, we start a new cycle by again purchasing 334 liters of raw material.

74

One-warehouse N-retailer System

75

One-warehouse N-retailer System

76

One-warehouse N-retailer System

77

Summary: infinite planning horizon, deterministic constant demand case

Up to now, we focus only on EOQ single stage (single item) deterministic and static demand (not time-varying) infinite planning horizon

How about finite horizon case? Constant demand: equal cycles; or use EOQ approximation

Multiple stage: Serial System General network (e.g., assembly, distribution)

ELSP (Economic Lot-Sizing Problem): Single stage, production capacity is incorporated (single facility)

and there are multiple products

top related