kuliah 5 project time management · 1 project management course 5: project time management ......

Post on 30-Apr-2019

219 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

PROJECT MANAGEMENTCOURSE 5 : PROJECT  TIME MANAGEMENT

G.N. Sandhy Widyasthanawidyasthana@gmail.com

022‐70702020081 225 702020

2

3

4

Process of identifying the specific actions to be performed to produce the project deliverables

Decomposed work packages into smaller components called activities

5

Milestones• A milestone is a significant event that normally has no duration.

• It often takes several activities and a lot of work to complete a milestone.

• Milestones are useful tools for setting schedule goals and monitoring progress.

• Examples include completion and customer sign‐off on key documents and completion of specific products.

6

Process of identifying and documenting relationships among the project activities.

7

PROJECT NETWORK DIAGRAMS

• Project network diagrams are the preferred technique for showing activity sequencing

• A project network diagram is a schematic display of the logical relationships among, or sequencing of, project activities

7

IS370 Project Management Dr Pat Halloran

8

SAMPLE ACTIVITY‐ON‐ARROW (AOA) NETWORK DIAGRAM FOR PROJECT X

8

IS370 Project Management Dr Pat Halloran

9

ARROW DIAGRAMMING METHOD (ADM)

• Also called activity‐on‐arrow (AOA) project network diagrams

• Activities are represented by arrows

• Nodes or circles are the starting and ending points of activities

• Can only show finish‐to‐start dependencies

9

IS370 Project Management Dr Pat Halloran

10

Notation

• Activity‐on‐Arrow (AOA):– Each arrow represents an activity & its precedence relationship(s)

– May require the use of “dummy” arrows if the activity has more than one successor task

– Nodes used only as end‐points for arrows

• Activity‐on‐Node (AON):– Uses nodes to represent the activity– Uses arrows to represent precedence relationships

11

AOA & AON Comparison

12

PROCESS FOR CREATING AOA DIAGRAMS

1. Find all of the activities that start at node 1.  Draw their finish nodes and draw arrows between node 1 and those finish nodes.  Put the activity letter or name and duration estimate on the associated arrow 

2. Continuing drawing the network diagram, working from left to right.  Look for bursts and merges.  Bursts occur when a single node is followed by two or more activities.  A merge occurs when two or more nodes precede a single node

3. Continue drawing the project network diagram until all activities are included on the diagram that have dependencies

4. As a rule of thumb, all arrowheads should face toward the right, and no arrows should cross on an AOA network diagram

12

IS370 Project Management Dr Pat Halloran

13

PRECEDENCE DIAGRAMMING METHOD (PDM)

• Activities are represented by boxes

• Arrows show relationships between activities

•More popular than ADM method and used by project management software

• Better at showing different types of dependencies

13

IS370 Project Management Dr Pat Halloran

14

TASK DEPENDENCY TYPES

14

IS370 Project Management Dr Pat Halloran

15

SAMPLE PDM NETWORK DIAGRAM

15

IS370 Project Management Dr Pat Halloran

16

Process of estimating the type and quantities of material, people, equipment or supplies required to perform each activity

17

GANTT Chart

18

Pada tahun 1917, Henry Gantt mengembangkan sebuah metode untuk membantu penjadwalan job shops. Metode ini akhirnya terkenal dan dipakai sampai sekarang dengan nama Gantt Chart.Gantt Chart adalah suatu metode yang bernilai khususnya untuk proyek-proyek dengan jumlah anggota tim yang sedikit.Gantt Chart merupakan suatu grafik dimana ditampilkan kotak-kotak yang mewakili setiap tugas dan panjang masing-masing setiap kotak menunjukkan waktu pengerjaan tugas-tugas tersebut dalam format pewaktuan tertentu seperti jam, hari, tanggal, minggu, bulan atau tahun .

GANTT CHART

19

Gantt Charts• Gantt charts provide a standard format for displaying project schedule information by listing project activities and their corresponding start and finish dates in a calendar format

• Symbols include:

– A black diamond: milestones or significant events on a project with zero duration

– Thick black bars: summary tasks

– Lighter horizontal bars: tasks

– Arrows: dependencies between tasks

20

Gantt Chart for Project X

21

Gantt Chart for Software Launch Project

22

Sample Tracking Gantt Chart

23

Benefits of Gantt Charts

• Efficiency Increase– Project tracking

– Set deadlines

• Communication Increase 

• Coordination Increase

• Provides motivation through scheduling

• Encourages creativity

24

Features of Gantt Charts

• Easy to create– Freehand Gantt charts

– Microsoft Excel

– Microsoft Project

– SmartDraw, Primavera, and other programs.

• Easy to modify and adjust

• Simple to understand 

25

Disadvantages of Gantt Charts

• Activity descriptions often lack detail

• A lack of precedent and subsequent task relationships

• Does not allow for uncertain situations such as late or early finish times.  

26

Gantt Chart Fundamentals

• Separate tasks are listed in vertical rows

• Time spans horizontally along the top

• Each task is represented by a bar along the time horizon

27

How to Create a Gantt Chart using Microsoft Project

Enter Task Name

Choose task duration

Adjust start and end times

List any resources to be used

28

SummarySummary

• Gantt charts are visual representations of a project over time. – Includes start, finish, and milestone dates.

– Useful in project planning and tracking.

– Helpful in resource communication and allocation

29

Process of approximating the number of work periods needed to complete individual activities with estimated resources

30

PERT

31

PERT ‐Project Evaluation & Review Techniques

• Definition: In PERT activities are shown as a network of precedence relationships using activity‐on‐arrow network construction

– Multiple time estimates 

– Probabilistic activity times

USED IN  : Project management ‐ for non‐repetitive jobs (research and development work), where the time and cost estimates tend to be quite uncertain. This  technique uses probabilistic time estimates.

32

PERT • PERT is based on the assumption that an activity’s duration 

follows a probability distribution instead of being a single value• Three time estimates are required to compute the parameters 

of an activity’s duration distribution:– pessimistic time (tp ) ‐ the time the activity would take if things did not go well

– most likely time (tm ) ‐ the consensus best estimate of the activity’s duration

– optimistic time (to ) ‐ the time the activity would take if things did go well

Mean (expected time): te = tp + 4 tm + to6

Variance: Vt =σ 2 =tp - to

6

2

33

PERT analysis• Draw the network.

• Analyze the paths through the network and find the critical path.

• The length of the critical path is the mean of the project duration probability distribution which is assumed to be normal

• The standard deviation of the project duration probability distribution is computed by adding the variances of the criticalactivities (all of the activities that make up the critical path) and taking the square root of that sum

• Probability computations can now be made using the normal distribution table.

34

Probability computation

Determine probability that project is completed within specified time

Z = x - µ

σwhere µ = tp = project mean time

σ = project standard mean time

x = (proposed ) specified time

35

Normal Distribution of Project Time

µ = tp Timex

Probability

36

PERT Example 

Immed.  Optimistic   Most Likely   Pessimistic

Activity Predec. Time (Hr.)   Time (Hr.) Time (Hr.)

A            ‐‐ 4                  6                   8B            ‐‐ 1                 4.5                 5C            A                3                  3               3D            A                4                  5           6 E            A               0.5                1            1.5F           B,C              3                  4            5G          B,C              1                 1.5            5H          E,F               5                  6            7I            E,F              2                  5           8J           D,H             2.5              2.75            4.5K          G,I               3                  5            7

37

PERT Example

AA

DD

CC

BBFF

EE

GG

II

HH

KK

JJ

PERT Network

38

PERT ExampleActivity Expected Time Variance

A             6             4/9B             4             4/9C             3              0D             5             1/9E             1             1/36F             4             1/9G             2             4/9H             6             1/9I             5              1J             3             1/9K             5             4/9

39

PERT Example

Activity ES EF LS LF SlackA           0       6        0       6        0 *criticalB           0       4        5       9         5C           6       9        6       9        0 *D           6     11      15     20       9E           6       7       12     13       6F            9      13       9     13       0 *G           9     11      16     18       7H          13     19      14     20       1I           13     18      13     18       0 *J           19     22      20     23       1K     18     23      18     23     0 *

40

PERT Example

Vpath =  VA + VC + VF + VI + VK

=  4/9 + 0 + 1/9 + 1 + 4/9 

=  2

σpath =  1.414

z = (24 ‐ 23)/σ = (24‐23)/1.414 = .71From the Standard Normal Distribution table: 

P(z < .71) = .5 + .2612 =  .7612

41

A Simple Project

Activity ImmediatePredecessor

ExpectedTime

A - 5

B - 6

C A 4

D A, B 2

42

Project Network

43

Activity ImmediatePredecessor

ExpectedTime

A - 5

B - 6

C A 4

D A, B 2

44

ES Earliest Starting (time)

EF Earliest Finishing

LS Latest Starting

LF Latest Finishing

Slack Extra Time

45

Earliest Starting/Finishing Times

EF = ES + t

46

47

LS = LF - t

48

49

50

a optimistic time

m most likely time

b pessimistic time

t = E(T) expected time = (a + 4m + b)/6

V(T) variance = (b - a)2/36

What if activity times are variable?

51

Activity TimeExpected Value and Variance

a m b t V(T)

A 4 5 6 5 4/36

B 4 5 12 6 64/36

C 1 4 7 4 36/36

D 1 2 3 2 4/36

52

Possible Paths and Statistics

Path E(T) = t V(T)

A - C 9 * 40/36

A - D 7 8/36

B - D 8 68/36

53

• What is the probability that the project takes at least 10 days?

• What is the probability that the project takes less than7 days?

54

P t P z P z( )/

( . ) . . .≥ = ≥−⎛

⎝⎜⎞⎠⎟

= ≥ = − =1010 940 36

0 95 0 5 0 3289 01711

55

P t P z P z( )/

( . ) . . .≤ = ≤−⎛

⎝⎜⎞⎠⎟

= ≤ − = − =77 940 36

190 0 5 0 4713 0 0287

56

Process of analyzing activity sequences, durations, resource requirements, and schedule constraints to create the project schedule

57

CPM

58

CPM ‐ Critical Path Method

• Definition: In CPM activities are shown as a network of precedence relationships using activity‐on‐node network construction

– Single estimate of activity time

– Deterministic activity times

USED IN  :  Production management ‐ for the jobs of repetitive in nature where the activity time estimates can be predicted with considerable certainty due to the existence of past experience.

59

Activity Slack

Each event has two important times associated with it :

‐ Earliest time , Te , which is a calendar time when a event can occur when all the predecessor events completed at the earliest possible times

‐ Latest time , TL , which is the latest time the event can occur with out delaying the subsequent events and completion of project.

• Difference between the latest time and the earliest time of an event is the slack time for that event 

Positive slack :  Slack is the amount of time an event  can be delayed without delaying the project completion

60

CPM calculation

• Path– A connected sequence of activities leading from the starting event to the ending event

• Critical Path– The longest path (time); determines the project duration

• Critical Activities– All of the activities that make up the critical path

61

Forward Pass• Earliest Start Time (ES)

– earliest time an activity can start – ES = maximum EF of immediate predecessors

• Earliest finish time (EF)– earliest time an activity can finish– earliest start time plus  activity time

EF= ES + t

Latest Start Time (LS)

Latest time an activity can start without delaying critical path time 

LS= LF ‐ t

Latest finish time (LF)

latest time an activity can be completed without delaying critical path time

LS = minimum LS of immediate predecessors

Backward Pass

62

A

Nama kegiatan atau simbol

Earliest Start ES

Earliest FinishEF

Latest Start

LS Latest Finish

LF

Lamanya kegiatan

2

63

CPM analysis

• Draw the CPM network

• Analyze the paths through the network

• Determine the float for each activity

– Compute the activity’s float

float = LS ‐ ES = LF ‐ EF

– Float is the maximum amount of time that this activity can be delay in its completion before it becomes a critical activity, i.e., delays completion of the project

• Find the critical path is that the sequence of activities and events where there is no “slack” i.e..   Zero slack

– Longest path through a network

• Find the project duration is minimum project completion time

64

CPM Example: • CPM Network

a, 6a, 6a, 6

f, 15f, 15f, 15

b, 8b, 8b, 8

c, 5c, 5c, 5e, 9e, 9e, 9

d, 13d, 13d, 13

g, 17g, 17g, 17 h, 9h, 9h, 9

i, 6i, 6i, 6

j, 12j, 12j, 12

65

CPM Example

• ES and EF Times

a, 6a, 6a, 6

f, 15f, 15f, 15

b, 8b, 8b, 8

c, 5c, 5c, 5e, 9e, 9e, 9

d, 13d, 13d, 13

g, 17g, 17g, 17 h, 9h, 9h, 9

i, 6i, 6i, 6

j, 12j, 12j, 12

0 6

0 8

0 5

66

CPM Example

• ES and EF Times

a, 6a, 6a, 6

f, 15f, 15f, 15

b, 8b, 8b, 8

c, 5c, 5c, 5e, 9e, 9e, 9

d, 13d, 13d, 13

g, 17g, 17g, 17 h, 9h, 9h, 9

i, 6i, 6i, 6

j, 12j, 12j, 12

0 6

0 8

0 55 14

8 21

6 23

6 21

67

CPM Example

• ES and EF Times

a, 6a, 6a, 6

f, 15f, 15f, 15

b, 8b, 8b, 8

c, 5c, 5c, 5e, 9e, 9e, 9

d, 13d, 13d, 13

g, 17g, 17g, 17 h, 9h, 9h, 9

i, 6i, 6i, 6

j, 12j, 12j, 12

0 6

0 8

0 55 14

8 21 21 33

6 23 21 30

23 29

6 21

ProjectProject’’s EF = 33s EF = 33

68

CPM Example

• LS and LF Times

a, 6a, 6a, 6

f, 15f, 15f, 15

b, 8b, 8b, 8

c, 5c, 5c, 5e, 9e, 9e, 9

d, 13d, 13d, 13

g, 17g, 17g, 17

h, 9h, 9h, 9

i, 6i, 6i, 6

j, 12j, 12j, 12

0 6

0 8

0 55 14

8 21 21 33

6 23

21 30

23 29

6 21

21 33

27 33

24 33

69

CPM ExampleCPM Example

• LS and LF Times

a, 6a, 6a, 6

f, 15f, 15f, 15

b, 8b, 8b, 8

c, 5c, 5c, 5e, 9e, 9e, 9

d, 13d, 13d, 13

g, 17g, 17g, 17

h, 9h, 9h, 9

i, 6i, 6i, 6

j, 12j, 12j, 12

0 6

0 8

0 55 14

8 21 21 33

6 23

21 30

23 29

6 21

4 10

0 8

7 12 12 21

21 33

27 33

8 21

10 27

24 33

18 24

70

CPM ExampleCPM Example• Float

a, 6a, 6a, 6

f, 15f, 15f, 15

b, 8b, 8b, 8

c, 5c, 5c, 5e, 9e, 9e, 9

d, 13d, 13d, 13

g, 17g, 17g, 17

h, 9h, 9h, 9

i, 6i, 6i, 6

j, 12j, 12j, 12

0 6

0 8

0 55 14

8 21 21 33

6 23

21 30

23 29

6 21

3 9

0 8

7 12 12 21

21 33

27 33

8 21

10 27

24 33

9 24

3 4

3

3

4

00

77

0

71

CPM Example

• Critical Path

a, 6a, 6a, 6

f, 15f, 15f, 15

b, 8b, 8b, 8

c, 5c, 5c, 5e, 9e, 9e, 9

d, 13d, 13d, 13

g, 17g, 17g, 17 h, 9h, 9h, 9

i, 6i, 6i, 6

j, 12j, 12j, 12

72

73

Process of monitoring the status of the project to update project progress and manage changes to the schedule baseline

74

How To            Earned Value Management OverviewEarned Value Management (EVM) is a management methodology for integrating scope,  scheduleand resources, and for objectively measuring project performance and progress. 

Performance is measured by determining the budgeted cost of work performed (i.e. earned value) and comparing it to the actual cost of work performed (i.e. actual cost).

Progress is measured by comparing the earned value to the planned value.

Source:  A Guide to the Project Management Body of Knowledge (PMBOK Guide) Third Edition 2004

Example:Project Budget: $400KProject Schedule: 4 months (= Baseline Duration)

At the 3 month checkpoint:Spent: $200KWork completed: $100K

Earned Value Management helps you to report how the project is doing in terms of cost and schedule?

75

Earned Value ManagementTerms and FormulasTerms and Formulas Alternative Definition

Earned Value (EV) Budgeted Cost of Work Performed (BCWP)i.e.   the budgeted cost to date x % complete

Actual Cost (AC) Actual Cost of Work Performed (ACWP)

i.e. actual cost of work performed to date

Planned Value (PV) Budgeted Cost of Work Scheduled (BCWS) i.e. the estimated value of work to be performed

Cost Variance (CV)= EV ‐ AC

Budgeted Cost of Work Performed (BCWP)‐ Actual Cost of Work Performed (ACWP)

Schedule Variance (SV)= EV ‐ PV

Budgeted Cost of Work Performed (BCWP) ‐ Budgeted Cost of Work Scheduled (BCWS) 

Cost Performance Index (CPI) = EV/AC

Budgeted Cost of Work Performed (BCWP)/ Actual Cost of Work Performed (ACWP)

Schedule Performance Index (SPI) = EV/PV

Budgeted Cost of Work Performed (BCWP)/Budgeted Cost of Work Scheduled (BCWS) 

Example

$100K

$200K

$300K

$100K – $200K =  ($100K)

$100K ‐ $300K=   ($200K)

$100K/$200K= 0.5 i.e. 50%

$100K/$300K= 0.33 i.e 33%

Example:Project Budget: $400KProject Schedule: 4 months

At the 3 month checkpoint:Spent: $200KWork completed: $100K

Revised Total Duration Baseline Duration/Schedule Performance Index 4/0.33= 12 months

76

0

100

200

300

400

500

600

700

800

J F M A M J J A S O N D

Budget

3 MonthCheckpoint

PV

Earned Value ManagementChart for project example

Actual Cost

Earned Value

CV = EV – AC = (100K)SV = EV – PV = (200K)CPI = EV/AC = (50%)SPI = EV/PV = (33%)

Example:Project Budget: $400KProject Schedule: 4 monthsAt the 3 month checkpoint:Spent: $200KWork completed: $100K

Revised Total Duration = Baseline Duration/SPI = 4/0.33 = 12 months

77

Referensi

• PM BOK, Project Management Body Of Knowledge Fourth Edition, Project Management Institute

78

Case 4

• Resume Project Cost Management

79

G.N. Sandhy Widyasthanawidyasthana@gmail.com

022‐70702020081 225 702020

top related