long baseline neutrino oscillation...

Post on 04-Oct-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Long Baseline Neutrino Oscillation Experiments

Alfons WeberUniversity of Oxford

XXXVIIth Recontre de Moriond

"Electroweak Interactions and Unified Theories"

Les Arcs, Savoie, France March 9-16, 2002

A. Weber LBL Experiments 2

Contents• Introduction• Long baseline experiments

– K2K– MINOS– OPERA– ICARUS– KamLAND

• The Future– SuperBeams– Neutrino Factories

A. Weber LBL Experiments 3

Introduction• Several indication for neutrino oscillations

– Solar neutrino problem• Homestake, SAGE, GALLEX• Kamiokande, Super-Kamiokande, SNO

– Atmospheric neutrino problem• Kamiokande, IMB, Frejus, NUSEX, Soudan 2, SuperK

– LSND effect• LSND, KARMEN

• New precision experiments are needed!– replace natural with man-made neutrino source– tune oscillation distance and energy to problem

A. Weber LBL Experiments 4

Neutrino Oscillations12 13 13 12 13 1

23 12 12 13 23 12 23 12 13 23 13 23 2

23 12 12 23 13 12 23 23 12 13 13 23 3

ei i

i i

c c c s sc s e c s s c c e s s s c s

s s e c c s c s e c s s c c

δ δµ

δ δτ

ν νν νν ν

= − − − − − −

24 2 23

13 23

1.27( ) cos ( )sin ( )sin

m LP

Eµ τν

ν ν θ θ ∆

→ =

Disappearance of atmospheric muon neutrinos:

6 parameter to be determined:•3 angle•2 mass differences•1 CP violating phase

difference mass and angle mixing ,sin ),cos(with 2ij ==== ijijijijij ?m?)(?sc θ

A. Weber LBL Experiments 5

K2K

• Distance: 250 km• Beam Energy: 12 GeV• Neutrino Energy: 1.3 GeV

A. Weber LBL Experiments 6

MINOS

• Beam travels 730 km toSoudan Minnesota

• FNAL Main Injector– E = 120 GeV – 4x1013 ppp (?)– Cycle 2 sec– 10 µsec spill

• Tuneable neutrino Energy– Peak at: 3, 7, 15 GeV

A. Weber LBL Experiments 7

IHEP-Beijing lCollege de France l Athens l Dubna l ITEP-Moscow l Lebedev l ProtvinoCambridge l Oxford l Rutherford l Sussex l University College London

Argonne l Brookhaven l Caltech l Chicago l Elmhurst l Fermilab l James Madison l

Harvard l Illinois l Indiana l Livermore l Macalester l Minnesota l Northwestern l

Pittsburgh l South Carolina l Stanford l Texas-Austin lTexas A&M lTufts lWestern Washington l Wisconsin

Around 180 Physicists and Engineers

MINOS Collaboration

A. Weber LBL Experiments 8

• 2 Super-modules 2.7 kiloton each

• 486 planes of steel and scintillator

• 96 scintillator stripseach plane

• double sided read-outwith multi-anode PMTs

• Toroidal magnetic field(1.5 T at 2 m radius)

• Very similar near detector!

MINOS Far Detector

A. Weber LBL Experiments 9

8 m

Scintillator Module

WLS

Fib

ers

WLS

Fib

ers

Optical Connector

Optical Connector

Optical Connector

Optical Connector

Cle

ar F

iber

Rib

bon

Cab

le (2

-6 m

)

MultiplexBox

MultiplexBox

PMTs

Con

nect

ion

to

elec

troni

cs

Con

nect

ion

to

elec

troni

cs

MINOS Scintillator Module• 4-8m

scintillator modules

• 24-28 strips• double sided

readout• multi anode

PMTs (16/64)

A. Weber LBL Experiments 10

Bottom steel plane layerTop steel plane layerScintillator plane

Orientations alternate ±90o

in successive planes

2-m wide, 0.5-inch thicksteel plates

MINOS Plane

A. Weber LBL Experiments 11

• Several channels to analyse neutrino oscillations– T-Test = #CC / #NC–– νe appearance (θ13)–

• Combination of all analysis will reveal mixing parameters– ∆m2

– sin22θ– flavour

ντ appearance

νµ disappearance

µ? µ

hadrons

5 m

? µ

hadrons

? µ

1.5 m

MINOS Oscillation Physics

A. Weber LBL Experiments 12

• Select ?µ charge current events and reconstruct neutrino energy

• Energy resolution:

• Compare energy spectrum in near and far detector

• Measure ? m2 and sin22?

hEEE += µν

range, B field calorimetry

EEE

pp

hh /%60/

%10/

=∆

=∆ µµ

? m2

sin22?

?µ CC Energy Analysis

A. Weber LBL Experiments 13

?µ Disappearance Results

A. Weber LBL Experiments 14

• CERN SPS– Ep = 400 GeV– 4.8*1013 ppp – cycle 6 - 27.6 sec– 7.6*1019 pot/year

• Baseline: 730km• <E?> = 17 GeV• optimised for t

appearance

CNGS Beam

CERN Neutrinos to Grand Sasso

• Experiments– ICARUS– OPERA

– try find t by searching for decay kink

– nuclear emulsion

A. Weber LBL Experiments 15

29 groups~ 130 physicists

METU, Ankara, Turkey • LAPP and Université de Savoie, Annecy, France •INFN and Bari University, Bari, Italy • IHEP, Beijing, China PR • Humboldt University,Berlin, Germany • Bern University, Bern, Switzerland • INFN and

Bologna University, Bologna, Italy • IIHE (ULB-VUB), Brussels, Belgium • Joint Institute for Nuclear Research (JINR), Dubna, Russia • Laboratori Nazionali di

Frascati, INFN Frascati, Italy • Toho University, Funabashi, Japan • CERN, Geneva, Switzerland • Märkische Fachhochschule FB Elektrotechnik, Hagen,

Germany • Technion, Haifa, Israel • Hamburg University, Hamburg, Germany •High Energy Physics Group Shandong University, Jinan, Shandong, China PR •Aichi Educational University, Kariya, Japan • Kobe University, Kobe, Japan •

IPNL and Université C.Bernard, Lyon, France • INR, ITEP and MEPHI, Moscow, Russia • Münster University, Münster, Germany • Nagoya University, Nagoya, Japan • INFN and "Federico II" University, Naples, Italy • LAL and

Université Paris-Sud, Orsay, France • INFN and Padova University, Padova, Italy • INFN and "La Sapienza" University, Rome, Italy • Rostock University, Rostock, Germany • INFN and Salerno University, Salerno, Italy • IRES,

Strasbourg, France • Utsunomiya University, Utsunomiya, Japan • Rudjer Boskovic Institute (IRB), Zagreb, Croatia

OPERA Collaboration

A. Weber LBL Experiments 16

~ 10

µ spectrometerMagnetised Iron Dipoles

Drift tubes and RPCs

ν target and τ decay detectorEach “super-module” is

a sequence of 24 “modules” consisting of

- a “wall” of Pb/emulsion “bricks”- planes of orthogonal scintillator strips

scintillator strips

brick wall

module

brick(56 Pb/Em. “cells”)

8 cm (10X0)

super module

The OPERA Experiment

A. Weber LBL Experiments 17

Emulsion-Scintillator strip Hybrid Target

•Tracker taskselect bricks efficiently

• High scanning power + low background allow coarse tracking

Selected bricks extracted dailyusing dedicated robot

Sampling by Target Tracker planes ( X,Y )

Brick wall

10 c

m

Selected brick

Event as seen by the target tracker

0 max

p.h.

OPERA Target Section

A. Weber LBL Experiments 18

ν

Origami packed ECC brick for OPERA

Vacuum packing• Protection against light

and humidity variations.• Keep the position between

films and lead plates.• Vacuum preserved over

10 years

10X0 ( 56 emulsion films )

12.5cm235k bricks for 3 super modules

OPERA Emulsion Brick

A. Weber LBL Experiments 19

“ Long decays″reconstruct kink topology

“ Short decays ″detect large impact parameter track

Loose cut to reject low momentum tracks

OPERA ?t Candidates

A. Weber LBL Experiments 20

∆m2 = 1.2x10-3 eV2

at full mixing

sin2 (2θ) = 6.0x10-3

at large ∆m2

(average 90 % CL upper limit for a large number of experiment in the absence

of a signal)

5 years3 years

OPERA Sensitivity

5 years data taking

A. Weber LBL Experiments 21

OPERA90 % CL in 5 years

OPERA: ∆m2

* assuming the observation of a number of events corresponding to those expected for the given ∆m2

(mixing constrained by SuperK)

years P3σ P4σ

3 93% 83%

5 96% 91%

Probability to observe SuperK signal

90 % CL limits * ∆m2 ( 10-3 eV2 )

1.5 3.2 5.0

Upper limit 2.1 3.8 5.6

Lower limit 0.8 2.6 4.3(U - L) / (2*True) 41 % 19 % 12 %

Nt / year 0.82 2.82 3.66

A. Weber LBL Experiments 22

ICARUS Sensitivityatmospheric beam

Sensitivity similar to OPERA!

A. Weber LBL Experiments 23

• Use a very intense proton beam dump to produce neutrinos = SuperBeam – Low energy (0.2-2 GeV) low ? m2

– Medium baseline (~100 km) large rate– Massive detectors (20-1000 kton) low sin22T

• Measurement program:– Improve ? m2

23, sin22T23

– Measure ?13! Totally unconstrained!– Possibility of measuring CP violating phase d!

• Sites– CERN-Modane (SPL, 130 km)– Tokaimura-Kamioka (JAERI, 295km)

SuperBeams

A. Weber LBL Experiments 24

SuperBeams: JHF-SuperK

• Phase II– Increase beam power: 4 MW– HyperKamiokande: 1 Mton

• Possibility of measuring CP-violation, if parameters are right!

• No need for ?-factory?

• New beam from JAERI– 50 GeV, 0.77 MW– 3.3*1014 ppp / 3.3 sec

• Phase I– approved– start operation 2007

• Detector exists!

A. Weber LBL Experiments 25

SuperBeam Physics• CP violation (phase II)• Sensitivity (phase I)

– ?µ disappearance (1 year)

212 12

13

( ) ( )

( ) ( )

sin2sin

4 sin

eeCP

ee

P PA

P P

m LE

µµ

µµ

ν

ν ν ν ν

ν ν ν ν

θ δθ

→ − →=

→ + →

∆= ⋅ ⋅

223

2 4 223

2 313

(sin 2 ) 0.01

( ) 2 10 eV

sin 2 10

m

δ θ

δ

θ

≈ ×

<

Only possible,

if KamLAND

confirms LMA!

A. Weber LBL Experiments 26

Mostly ruled out Mostly ruled out by most recent by most recent

SNO resultSNO result

KamLAND SensitivityMeasuring ?e disappearance!

A. Weber LBL Experiments 27

Neutrino Factory• Muon storage ring: The Ultimate Neutrino Source

A. Weber LBL Experiments 28

Neutrino Factory Physics

A. Weber LBL Experiments 29

Summary• Present

– K2K (nice data until 2001 and later)– KamLAND (just started taking data)

• Future– MINOS (cosmics 2001, beam 2005)– OPERA (beam 2005)– ICARUS (2005, partially approved)– JHF-SuperK (2007, not yet approved)

• Science fantasy– Neutrino Factories (2010, at the earliest)

top related