marek kowalski 11.5.2009 ptf, szczecin exploding stars, cosmic acceleration and dark energy...

Post on 21-Dec-2015

218 Views

Category:

Documents

3 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Marek Kowalski11.5.2009 PTF, Szczecin

Exploding Stars, Cosmic Acceleration and Dark Energy

Supernova 1994D

Marek KowalskiHumboldt-Universität zu BerlinSzczecin, 11.5.2009

Marek Kowalski11.5.2009 PTF, Szczecin

Outline

A brief history of Cosmology

Supernova observations today

A mysteries: Dark Energy

3

Marek Kowalski11.5.2009 PTF, Szczecin

Outline

A brief history of Cosmology

Supernova observations today

A mysteries: Dark Energy

3

Marek Kowalski11.5.2009 PTF, Szczecin

HistoryEinstein, 1916:General Relativity

Marek Kowalski11.5.2009 PTF, Szczecin

History

−8πGTμν = Rμν − 12 gμνR

Energy Curvature

Einstein, 1916:General Relativity

Marek Kowalski11.5.2009 PTF, Szczecin

General Relativity:Gravitational bending of light

Marek Kowalski11.5.2009 PTF, Szczecin

General Relativity:Gravitational bending of light

Abell 2218: A Galaxy Cluster Lens, Andrew Fruchter et al. (HST)

Marek Kowalski11.5.2009 PTF, Szczecin

General Relativity:The Universe can have curvature

Marek Kowalski11.5.2009 PTF, Szczecin

Einstein, 1916:General Relativity

−8πGTμν = Rμν − 12 gμνR + gμνΛ

Curvature

I want a static Universe - I’ll add a cosmological constant

Energy

Marek Kowalski11.5.2009 PTF, Szczecin

Einstein, 1916:General Relativity

History continues...

Marek Kowalski11.5.2009 PTF, Szczecin

History continues...

Edwin Hubble, 1929: Redshift of Galaxies

Marek Kowalski11.5.2009 PTF, Szczecin

Redshift of spectral lines:

“Doppler effect”

z =λobs −λemit

λemit

v ≈z⋅(speed of light)

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

The larger the distance to a Galaxy, the faster it is flying away from us:

velocity = H0 x distance

Marek Kowalski11.5.2009 PTF, Szczecin

Hubble:The Universe is expanding!

Einstein:The cosmological constant was the biggest Blunder of my life!

Marek Kowalski11.5.2009 PTF, Szczecin

History continues...

Edwin Hubble, 1929: Redshift of Galaxies

Marek Kowalski11.5.2009 PTF, Szczecin

10 years ago: Detection of the accelerated

Universe by two teams of astronomers

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

History continues...

The cosmological constant might be back!

B. Schmidt S. Perlmutter

Marek Kowalski11.5.2009 PTF, Szczecin

Marek Kowalski11.5.2009 PTF, Szczecin

Outline

A brief history of Cosmology

Supernova observations today

A mysteries: Dark Energy

3

Marek Kowalski11.5.2009 PTF, Szczecin

Marek Kowalski11.5.2009 PTF, Szczecin

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

1

Supernova Type Ia

•Type Ia supernovae (SNe Ia) provide bright “standard candle” that can be used to construct a Hubble diagram.

• Accretion sends mass of white dwarf star to Chandrasekhar limit leading to gravitational collapse and a thermo-nuclear explosion of its outer layers.

• Each one is a strikingly similar explosion event with nearly the same peak intensity.

Marek Kowalski11.5.2009 PTF, Szczecin

“Standard” Candles

• Nearby supernovae used to study SNe light curve (z<0.1)• Brightness not quite standard

Stretching the timescale:

t'= s× t

M '= M+α (s−1)

Correcting the Brightness:

Intrinsically brighter SNe have wider

lightcurves.

Marek Kowalski11.5.2009 PTF, Szczecin

Spectra used for Identification & Redshift determination

Marek Kowalski11.5.2009 PTF, Szczecin

Searching for Supernovae

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Reference new picture difference

SN-Candidate

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

For example with the: • Canadian-French-Hawaii Telescope: 3.6 m

• MegaCam Camera: 3.6 108 pixels

Marek Kowalski11.5.2009 PTF, SzczecinSloan Digital Sky Survey

Marek Kowalski11.5.2009 PTF, Szczecin

SNe at large Redshifts (z>1)

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Observations from Space with the Hubble Space Telescopes:

15

Marek Kowalski11.5.2009 PTF, Szczecin

SNe Type Ia & Acceleration of the Universe

Normalization

fainter then expected

M

1 00.73 0.270 1

slightly brighter M

fain

ter

Supernova Cosmology Project Kowalski et al., Ap.J. (2008)

Marek Kowalski11.5.2009 PTF, Szczecin18

Perlmutter et al., 1999

Cosmological Parameter

M

SNe + BAO + CMB

Curvature:

CMB: Komatsu et al. 2008BAO: Eisenstein et al., 2005

m = 0.274 ± 0.016(stat) ± 0.013(sys)

Ωk= 1-Ωm -ΩΛ

Ωk = −0.009 ± 0.010(stat) ± 0.003(sys)

M

Kowalski et al., 2008

Marek Kowalski7. Juli 2008

DarkEnergy:65%

DarkMatter:30%

70%

70%

25%

25%

Marek Kowalski11.5.2009 PTF, Szczecin

Outline

Introduction to Supernova Cosmology

Supernova observations today

A mystery: Dark Energy

3

Marek Kowalski11.5.2009 PTF, Szczecin

Is Dark Energy a property of the Vacuum?

Ground-state of a scalar

Quantum-field:

E0 =

12

hω ii∑

ρvac =

1

2

h

(2π )3kd 3k =

hkmax4

16π 20

kmax

Vacuum-Energy density:

(with ultraviolet Cut-off kmax)

Casimir-Effekt Energiedifferenz

Marek Kowalski11.5.2009 PTF, Szczecin

Vakuum energy:Before: E = 0After: Axρ>0

Pressure (p) of Vacuum energy follows with assumption of energy conservation:Axρ+Axp = 0 p = - ρ

ρ

x

A

Is Dark Energy a property of the Vacuum?

Vacuum energy has all the properties of the Cosmological constant , it has negative pressure and hence can lead to acceleration of Universe.

Marek Kowalski11.5.2009 PTF, Szczecin

Fundamental Problems of Vakuum Energy/Cosmological Constante:

Why so small?

Expectation: ρ planck)4

120 orders of magntides to larger then the observed value!

Why now?

Matter: ρ R-3

Vakuum Energy: ρ konstant

New Physics:

• Quintessence fields• Extra dimensions• Modification of Gravity• …More data will hopefully tell us!

Marek Kowalski11.5.2009 PTF, Szczecin

Future projectsin SN Cosmology

Projekt z-Range # SNe

Pan-STARRS 0.1-0.5 ~104

LSST (2015) 0.1-0.9 ~106

SNAP (2017) 0.2-3.0 >3000

(JDEM/Euclid)SNAP

Marek Kowalski11.5.2009 PTF, Szczecin

Conclusion

• 3/4 of the energy budget of the Universe consists of Dark Energy

• It looks like a cosmological constant / vacuum energy - but this interpretation has problems

• Next generation telescopes will produce unprecedented cosmological observations, and perhaps provide an answer

Ende

Marek Kowalski11.5.2009 PTF, Szczecin

Back Up

Marek Kowalski11.5.2009 PTF, Szczecin

Beobachtete Energiedichten

ρ ~ kmax4

ρPl ~ (M Planck )4 ~ (1018 GeV)4 ~ 10113GeV/cm3

ρobs ~ (10−12 GeV)4 ~ 10−7 GeV/cm3

Erwartete Energiedichten:

Gravitation:

ρSUSY ~ (MSUSY )4 ~ (103GeV)4 ~ 1053GeV/cm3

SUSY:

ρEW ~ (MEW )4 ~ (246 GeV)4 ~ 1051GeV/cm3

Electroweak:

Fundamentale Probleme mit derVakuum-Energie/Kosmologischen Konstante:

Marek Kowalski11.5.2009 PTF, Szczecin

Zustandsgleichung: w =p/ρ

19

Marek Kowalski11.5.2009 PTF, Szczecin

Zustandsgleichung: w =p/ρ

w =−0.97 ±0.06(stat) ±0.06(sys) SNe + BAO + CMB

19

cosmological constant

Marek Kowalski11.5.2009 PTF, Szczecin

heterogener Datensatz

Marek Kowalski11.5.2009 PTF, Szczecin

Study of - mean deviation- residual slope

A heterogenous data sample

Marek Kowalski11.5.2009 PTF, Szczecin

Test for Tension

high-zlow

-z

mean deviation: OK

Marek Kowalski11.5.2009 PTF, Szczecin

Test for Tension

high-zlow

-z

residual slope: (OK)

top related