metrology for the digitalisation of economy and …...implementation strategy the main pillars for...

Post on 15-Apr-2020

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

METROLOGY FOR THE D IG I TA L I ZAT ION OF THE ECONOMY AND SOC I E T Y

"Inthecourseofeconomicdigitalization(thevirtualutilizationofresources,"Industrie4.0",theIn-ternetofThings,etc.),PTBshouldplayakeyroleinmetrologyformeasurandslinkedtotheInternetandtodigitalization,especiallyinthefieldsofmetrology,standardizationandcalibration,andfor

referencequantitiesininformationtechnologies."ReportoftheGermanCouncilofScienceandHumanities,2017

"Wearewillingtodevelopthequalityinfrastructure(standardization,accreditationandconformityassessment,metrology,technicalproductsafetyandmarketsurveillance)further,sinceitis,asanintegralpartofthetechnologicalrevivalinGermany,thebrandessenceof"MadeinGermany".Forthispurpose,thePhysikalisch-TechnischeBundesanstalt(PTB)andtheBAMFederalInstituteforMa-terialsResearchandTestingwillbefurtherstrengthenedtobeabletoholdtheirgroundinglobal

competitionwithrespecttotheirscientificandtechnicalservices."KeyConsiderationsofOurInnovationPolicy,2017,FederalMinistryforEconomicAffairsandEnergy

(BMWi)

2

ExecutiveSummaryInnovationandconfidenceinanefficientqualityinfrastructurearethebasisofastableandsuccessfuleconomyandsociety.Themainpillarofanefficientquality infrastructure is theability toobtainvaliddatabasedonhigh-precisionmeasurements–which is thedefinitionofmetrology.Theeconomyandsocietyofthe21stcenturyareintheprocessofacomprehensivedigitaltransformation:thecourseisbeingsetto firmlyestablishthebasis forsuccess inthedigitalarenawhich is thecornerstoneforthedevelopmentoftheeconomyandsociety inthedigitalage.Digitalization isaprocesswhichhasbeendevelopingoverseveralyears.Especiallytheexponentialdevelopmentofcomputingandstoragecapac-itiesaswellastheincreasingspeedofdataexchangeandthecost-effectiveavailabilityofversatilesen-sorswhichcanbeusedflexiblyhaveopenedup fullynewpossibilitieswhen itcomestocreatingnet-worksbetweenobjectsandtotheexploitationofthedataandinformationstored.

Theroleofmetrologyforthedigitalizationoftheeconomyandsociety

Measurementvalues,data,algorithms,mathematicalandstatisticalproceduresaswellascommunica-tionand security architectures represent thebasisofdigital expansionand transformation. Thus, thequality infrastructure (QI)– the triadconsistingofmetrology, standardizationandaccreditation–andlegalmetrology(withconformityassessment,theverificationsystemandmarketsurveillance)willhavetobemadestrongerastheyareaprerequisiteofthesuccessfuldigitaltransformationintoanintercon-nectedeconomy, industryandsociety.ThePhysikalisch-TechnischeBundesanstalt (PTB)asGermany'snationalmetrologyinstitutehasakeyroleinvolvingvariouscompetenciesandcapabilities.Besidesde-velopingandvalidatingmeasurementproceduresensuringhighestprecisionaswellasalgorithmsanddataanalysismethods,thesetasksalsoencompassthevalidationofmeasurementdatabytracingthemtotheInternationalSystemofUnits(SI).Thisrepresentspartofthebasisofaccreditation,oflegalme-trologywithinthescopeoftheMeasuresandVerificationAct(MessEG)andoftheMeasuresandVerifi-cation Ordinance (MessEV), of the joint development of national and international standards and ofadvising the verification authoritieswithin the scopeofmarket surveillance.Against this background,PTB isamainpillarofthenationalquality infrastructureandof legalmetrology,andhasset itself theobjectiveofactingasareliablepartnertoindustryandsocietywithinthescopeofthedigitaltransfor-mation.Thecoreofthistransformationconsists,inparticular,ofthemetrologyservicesofferedbyPTBinthelegallycontrolledareaalongwiththeQIservicesofferedaswellastheGermansensorandmeas-uringinstrumentindustrieswhichareoftenorganizedbySMEs.

Attheinternationallevel,metrologyfordigitalizationisbeingintensivelypushedforwardsbymeansofresearchprogrammesandbysettingupnewcapacitygroups.Forinstance,severallargegroupsatNIST(USA), togetherwith public institutions and private economic partners, have been elaborating highlyregardedregulatoryandadministrativefoundationsforthefieldsofcloudcomputing,bigdata,ITsecu-rityandmachinelearning,andhavebeenbuildingthemetrologicalbasisforthedevelopmentofhigh-performancecommunicationchannels(5G)foralongtime.NPL(UK)hasalsobeenstronglydevelopingthedata science fieldaswell as5Gnetworksanddigitalization-related research. Similar activitiesarecurrentlyobservedallovertheworld.PTBwilldevelopitscapacitiescorrespondingly,sothatitwillliveuptoitsroleasoneoftheworld'sleadingmetrologyinstitutesandleadthedigitaltransformationandexpansionofmetrology.

Newidentifiedfocuses

Anexhaustive studybasedonan intensive internalanalysisofPTB'scorecapacities,on requirementsthatclientshavealreadyexpressedandontheresultsofavisitofPTBtoNISTaswellasonseveralex-perts' discussions has identified new fundamental tasks for PTB in order to promote digital transfor-mation.Thefollowingnewfocalpointshavebeendetermined:

A. Thedigitaltransformationofmetrologicalservices

3

Thecentreofthesetasksisthedigitalupgradingofthequalityinfrastructureandoflegalme-trology,amongother thingsbydevelopingreferencearchitectures,validatedstatisticalproce-dures forpredictivemaintenance,an infrastructure fordigital calibrationcertificatesand, lastbutnotleast,bysettingupa"metrologycloud"intheformofadigitalqualityinfrastructurefortheharmonizationanddevelopmentofconformityassessmentandmarketsurveillance.

B. MetrologyintheanalysisoflargequantitiesofdataTheobjectiveconsistsindevelopingmetrologicalanalyticalmethodsforlargequantitiesofdataand inassessingmachine learningmethods forbigdatawithanemphasisonexistingand in-creasinglyrelevantmetrologicalapplicationsforindustryinwhichlargequantitiesofdatahavetobeprocessedandwherehigh-dimensionalinformationhastobederived(e.g.inimagingpro-ceduresandinphotonics).

C. MetrologyofthecommunicationsystemsfordigitalizationThis focusconcerns the securingandmetrological validationof reliable, securedandefficientcommunication in complex scenarios. It encompasses the traceability of complex high-frequencymeasurandsfor5Gnetworks,nonlinearandstatisticalmeasurandsinhighfrequency,derivedmeasurandsindigitalcommunicationsystems,andcomplexantennasystems.

D. MetrologyforsimulationsandvirtualmeasuringinstrumentsBy developing analytical methods and licence procedures for interconnected and virtualizedmeasuring systems, the simulation of complex measuring systems (such as optical form-measuring techniquesor coordinatemetrology) for theplanningandanalysisofexperiments,procedures andmeasurement standards for automated process control and virtualmeasure-mentprocessesfortheautomaticassessmentofmeasureddataisactivelysupported.

Implementationstrategy

ThemainpillarsforPTB,asasupporterofdigitaltransformationintheeconomyandsociety,are,inthefirstplace,interdisciplinarycross-sectoralprojects:

Metrology cloud –Establishinga trustworthy coreplatform for adigitalquality infrastructureby cou-plingexistingdatainfrastructuresanddatabasesandprovidingallpartnerswithcustomizedaccessfordigitallyupgradinglegalmetrology.

Digital calibration certificate –Developinga secureand standardizeddigital information structure foruniversaluseincalibration,accreditationandmetrologyaswellasdigitallyupgradingthewholecalibra-tionhierarchyinthequalityinfrastructure.

Virtualexperimentsandmathematics-aidedmetrology–Developinganinterdisciplinary,virtualcompe-tencegrouptometrologicallysupporttheparadigmchangefortheuseofsimulationsanddataanalysisasessentialcomponentsofmeasurementprocedures.

Moreover, themetrological research formodernhigh-frequencynetworks (5G), theexpansionof thequality infrastructure toonline surveillance,and themetrological support todigitalizedprecisionpro-ductionaresomeofthetasksthatwillhavetobefurtheredinthelongtermintherespectivedepart-ments.

4

INTRODUCTION

The term "digitalization" actually designates the transformation of analogue quantities into discretevaluesforelectronicstorageandprocessing[1].Thisterm,however,iscurrentlybeingusedmoregen-erallytodesignatetheconversionofthewholeofsocietytotheuseofdigitaltechnologies[2]andtheincreasinginvolvementofdataandmachinesinbusinessprocessesbymeansofdigitalinterfaces.Thisinterconnectionallowingthecreationoflocalassociationsuptoglobalnetworksalsoexpressesthenewqualityofthisdigitalizationprocess.Dataareexchanged,analysedandvisualizedflexiblyandautomati-callybetweenmanandmachines.Thisopensupnewcommunicationcapacities,newbusinessfieldsforexistingcompaniesandhasledtofullynewindustriesandresearchfields.AccordingtoaBITKOMstudy[3],65%ofGermancompaniesthinkthatdigitalizationwillchangetheirexistingbusinessmodels.

“Perhapsthemostsignificantbusinessdisruptionswillcomefromacombinationoftheconnectedsensors,devicesandobjects(InternetofThings),coupledwithnewwaystoanalyze,actionand

monetizetheresultingdatastreams.”(atosstudy"Journey2020")

Newchallengesare,however,arisingsinceitisoftennotpossibletotransferexistingconcepts,stand-ardsandapproachestothedigitaluniverseandinterconnectedsystems[4].Forinstance,inthefieldofmetrology, sensormanufacturers are being increasingly required to supplymeasurement capabilitiesratherthanonlymeasuringinstruments.Asaconsequence,sensorsareincreasinglybeingdevelopedinsuch away that they contain additional intelligence and integrateddataprocessing [5]. This, in turn,represents a huge challenge for traceable calibrationwhich is no longermanageable as an approachpurelyconceivedforprecisemeasurement.

Thequantityofdatawhichhastobeprocessedduetodigitalizationisincreasingexponentiallyandcanonlybemadeexploitablewithaprofitbymeansofsuitablemathematicalandstatistical tools [6,7,8].Thefirststepmostcompaniestakeistovisualizethedelugeofdatainasuitablemanner.Tothisend,theprocessesthattakeplaceinafacilityare,forexample,representedina"digitaltwin"basedonsen-sordata.Methodsof"predictivemaintenance"[9]gomuchfurtherbydrawingconclusionsastohowreliable the systemcanbeexpected tobebymeansof statistical analysesof thedata. This canhelpprevent fixed testing intervals – and thus unnecessary shut-downs of the facility. Such (and other)methodsof intelligentandautomatedreal-timedataanalysiscancontributetosignificantly increasingefficiency,eveninfacilitiesthatarealreadyfullyautomated[10].Thisisusuallydoneusingmodel-freedataanalysisprocedureswhichare"trained"toworkwithlargequantitiesofdata[11],whichresultsinnew challengeswhen it comes to determining thequality of the results obtained. At the same time,even model-based procedures increasingly need new approaches to make established data analysisconceptsimplementableforthisrapidlyincreasingquantityofdata(obtainedfrom,e.g.,imagingproce-dures).Inmetrology,thischallengeexpressesitselfmoreandmorethroughthenecessityofdetermin-inganddisseminatingmeasurementuncertaintiesforhigh-dimensionalquantities.Duetotheconnec-tion of different data sources and distributedmeasuring systemswith each other, the requirementsplacedondataanalysisinmetrologywillkeepincreasing.

"Theterm"dataquality"designatesthequalityandreliabilityofdataobjectsthemselves.Wheneverpossible,theuncertaintyofapieceofdatashouldbequantifiedsuitably."(CouncilforScientificIn-

formationInfrastructures,2016)

Moreover,likeinalldigitalizedapplications,theITprotectionobjectivesofintegrity,confidentialityandavailabilityplayanessentialroletoadifferentextent[12,13].Theneedsforprotectiontherebydifferdependingontheconcreterequirementsoftheapplication.Also,theintegrityofmeasuringequipment(i.e. protection against unauthorized access tomeasuring equipment and its calibration) plays an im-portantrole[14].TheITprotectionobjectivesareofessentialimportance,especiallyinthelegallyregu-

5

latedarea(legalmetrology)[4].Inlegalmetrology,ensuringintegrity,confidentialityandavailabilityareanabsoluteprerequisiteformoderninformationandcommunicationtechnologies(ICT)tobeaccepted.Furthermore, requiring the highest possible BSI (Federal Office for Information Security) standardswouldpresentmanufacturerswithunnecessarilyhigh requirementsand inhibit innovationanddevel-opment.Here,PTBcanandhastoplayakeyrole inelaboratingsuitable, legally flawlesssolutionsformanufacturers,usersandmarketsurveillance.

Justastechnicalsolutionsfromthenon-regulatedareawill increasinglybeappliedinthefieldof legalmetrology(e.g.cloudcomputingorremotemaintenance),manyofthesolutionsrequiredforthelegallyregulatedareawillbecomeapplicable in thenon-regulatedarea,sincesimilarneedscanbeexpectedduetodemandsfromusers.Atthesametime,deviceswithunnecessarilyhighsecuritymeasureswillhardlymakeitontothemarket.Asimilarpicturecanbedrawnforlegalmetrologywheremanufactur-ers are increasinglywilling to applymodern ICT. Thenecessary conformity assessment calls for strictrulesfordatacommunicationanddataprocessing,whileprovidingmarketsurveillancewithtechnologi-callysimplecheckingpossibilitiesatthesametime[15].Thisbalancingactwillhavetobemasteredinordertoenablethedigitalizationoflegalmetrology.

"TheFederalMinistryforEconomicAffairsandEnergy(BMWi)expects"Industrie4.0"togenerateaddedvaluesamountingtomorethan30billioneurosperyear.80%ofindustrialenterprisessay

thattheywillhavedigitalizedtheirentirevaluechainby2020–whichimpliesinvesting40billioneurosperyearaccordingtotheIndustrie4.0studyconductedbyPWC."(BMWi&BMAS

"ArbeiteninderdigitalenWelt"–"WorkingintheDigitalWorld")

Themajordriverofdigitaltransformationiscurrentlyindustry–whichisreflectedinconceptssuchas"Industrie4.0", the "Industrial Internet of Things" or "Cyber-Physical Systems" (CPS). A recent studyconductedbyVDMA[16]hasshownthat25%ofthecompaniesoperatinginthefieldsofmechanicalengineeringandplantconstructionarealreadysupplyingnoveldigital technologiessuchascloudser-vices.Thesecompaniesbelieve that themainbenefit fromthese technologies results from increasingautomationwhichwill eventually lead to the increased competitiveness of German industry. The re-quiredknowledgenolongersolelyresidesinpuremetrology,butratherinsoftwaredevelopmentandintheanalysisofcomplexdata.Thus,plantcontrolandmonitoringare increasingly implementedviaso-calledappswhichhavetobeabletoincludedatathathavenotbeengeneratedbythemanufacturer.Thisrequirescross-sectoralimplementationandinterconnectionswhichcanonlybebasedonappropri-ate and accepted standards.More generally, the trend is going towards companies relyingmore oncollaboratingwithotherpartnersfromindustryinordertodevelopbilateralagreementsratherthanonconventionalmeanssuchasstandardization.Oneofthereasonsforthisisthenecessitytoactquickly,whichresultsfrompressureontheinternationalmarket.Hence,thestudyconductedbyVDMArecom-mends that companies do notwait for exhaustive standards to be developed, but rather offer initialsolutions[16].Thistrendhastobecounteredwithfast,focused,user-friendlyandflexiblestandardiza-tionprojects.

BesidesmechanicalengineeringandIT,photonicsisakeytechnologyforGermanyandEuropeasplacesfor innovation. As early as2011, it already contributed a considerable 66billioneuros of productionturnovertotheEU'seconomicoutput[17].Theupcomingtransitiontowards integratedphotonic(mi-cro-)systemsandtheconnectionwithfastandpowerfuldigitalimage-processingtoolsmakephotonicsastrategictechnologyinanincreasingnumberofmarkets,inproductsandprocesses.Theserangefromcontrolling(e.g.gesturecontrol,microdisplays)todataacquisition(sensors)anddataprocessing(com-putational imaging) up to production (3D printing/additivemanufacturing (AM), online qualitymeas-urements, laser processing) [18]. Photonics thus acts both as a driver and as a user of digitalization.Virtualexperimentsandsimulations,inparticular,areabasictoolforplanning,optimizingandanalysingin the field of photonics. However, there is a significant lack of reliable standards and metrological

6

traceability [17,18]. Based on its excellent existing capabilities and on a targeted extension of its re-searchactivities,PTBwillbeabletoplayakeyroleinthisarea.

Theentirefieldofhealth isalsomassively influencedbytheground-breakingevolutionsduetodigitaltransformation. In biotechnologies, innovative digitalization concepts are thus helping to create re-sourcesandactivesubstancesinnovelprocess,productionandcooperationprocedures.Theirrealiza-tionrequirescross-sectoralandinterdisciplinarycooperationprojectswithpartnersinbothindustryandresearch. Examples of such cooperationmay be cross-sectoral networks in bio-economics with jointobjectivesandasharedIT infrastructurewhichaimtodevelop innovativeplatformsforresource-andenergy-efficient investigations and to elaborate and implement bio-based products and processes. Inthiscontext,PTBisalreadyinclosecontactwithmajorGermanpharmaceuticalcompanies.

CHALLENGESFORPTBASTHECORNERSTONEOFQUALITYINFRASTRUCTUREANDLEGALMETROLOGY

ForPTB,thechallengeofthedigitalizationoftheeconomyandofsocietyresultsfromitsparticularposi-tion in the legally regulatedpart of the quality infrastructure (with the triad consisting ofmetrology,standardizationandaccreditation)andlegalmetrology(withconformityassessmentandmarketsurveil-lance).PTBcanandmustactasastrongpartnerandfacilitatorbetweenindustryandstandardization,basedon itscorrespondingcapabilities in theestablished fieldsofmetrologyand in thenewareasoftheIT,communicationsanddataanalysislandscape,inordertosupport,furtherandestablishassoonaspossiblethequalityinfrastructureandlegalmetrologyintheirroleasapromoterofinnovationandasaguarantorforthesustainabilityofGermanquality.ThereportoftheGermanCouncilofScienceandHumanitiescorrespondinglyrecommendsthatPTB

"[should]playakeyroleinmetrologyformeasurandslinkedtotheInternetandtodigitalization,es-peciallyinthefieldsofmetrology,standardizationandcalibration,andforreferencequantitiesinin-

formationtechnologies."(GermanCouncilofScienceandHumanities,2017)

To this end, theGermanquality infrastructure represents an effective sales argument for companieswhichisoftenacceptedallovertheworldandwhichnowenjoysinternationalrenownasamodelofasustainabletraceabilitychain.Standardization,which,intechnicalandinpartinmedicalareas,reliesonmetrology,ispavingthewayforthe(ofteninternational)marketaccessofSMEsandfortheinteroper-abilityofbusinessmodels.Thequalityinfrastructure–andthusPTB'smajortask–restsontraceability(metrology),standardizationandaccreditation.Bymaintainingclosecooperationwithnumerouspart-ners,PTBguaranteestheGermaneconomyitsleadingpositionbymeansofreliableandhighlyprecisemeasurement capacities. For instance, PTB provides DAkkS laboratories with experts and carries outapprox.3500calibrationsperyear.PTBparticipates inmorethan400standardizationcommitteesanditspresidentis,atthesametime,vice-presidentoftheGermanstandardizationbody,DIN.PTBplaysacentralrolefortheconformityassessmentbodiesbychairingtheRuleDeterminationCommitteeandbymanaging the conformity assessment bodies (KBS). Furthermore, PTB chairs the Deutscher Kali-brierdienst(DKD)andorganizestheGeneralAssemblyoftheMeasuresandVerificationSystemtoen-surethatinformationandexperiencesareexchanged.

7

FIGURE1:PTB'SROLEINTHEGERMANQUALITYINFRASTRUCTURE(LEFT)ANDINLEGALMETROLOGYANDMARKETSURVEILLANCE(RIGHT)

Thedigitaltransformationofproductsandtheapplicationofdigitalprocessesinconformityassessmentarecurrentlyleadingtoadrasticincreaseinnewchallenges(e.g.forthecalibrationprocess)andrequirethedigital transformationoftheentiretraceabilitychain.Using intelligentsensorsasaproduct inthequalityinfrastructurerequiressuitabletraceabilitytakingboththephysicalpropertiesofthetransducerandtheintegrateddigitalpre-processingofthemeasurementdataintoaccount.Atthesametime,thedigitaltransformationoftheadministrativeprocessesinthetraceabilitychain,inaccreditationandcon-formityassessmentdemandsappropriatestandardizationandacentralized,trustworthyentityforthecertificationofdigitalcalibrationcertificates.

"Referencequantitiesarebecomingincreasinglyimportantforthedigitalizedeconomy.Againstthebackgroundofthedynamicdevelopmentofcloud-basedservices,thedemandforcalibrationsofdig-italsystemsisbecomingincreasinglyurgent.[...]Inthiscontext,supporttoactivitiesgearedtothedevelopmentofmetrologyfordigitalizationisbeingintensified."(GermanCouncilofScienceand

Humanities,2017)

Legalmetrology–togetherwithconformityassessmentpriortoplacingproductsonthemarketaswellastheverificationsystemandmarketsurveillancewhilstinuse–istheguarantorformutualtrustbe-tweenclientsandmanufacturers.Morethan170millionmeasuringinstrumentsandanannualturnoveramounting to approx.150billioneuros – in Germany alone – especially in the fields of consumptionmeters(electricity,water,gas,fuel,etc.)andofthescalesusedforcommercialtransactionsshowhowimportant legalmetrology is for society and theeconomy [19].At theEuropean level, the regulatoryframeworkisthe"MeasuringInstrumentsDirective"(MID)2014/32/EU,whichhasbeentransposedintoGermannationallawbymeansoftheMeasuresandVerificationAct[20]andoftheMeasuresandVeri-ficationOrdinance[21].AttheEuropeanlevel,conformityassessment(andstandardization)bothbene-fitfirstlyfromthenetworksestablishedintheformofvariouscommitteesandassociations.Secondly,theEU's"NewApproach" inthefieldofconformityassessmenthaspavedthewayfordeclarationsofconformitytoberecognizedandacceptedthroughouttheEUandforthecorrespondinginspectionstobelimitedtoessentialrequirements[22].ThisimpliesacertaindegreeofopennesstonewtechnologiesandastrengtheningofEuropeanstandardizationandoftheEuropeansinglemarket.Inthelegallyregu-lated fields, the increasingly complex IT and communications technologies used inmeasuring instru-ments,however,areleadingtoanexponentialincreaseinthetimeandeffortspentonconformityas-sessmentandtotremendousrequirementsfortheverificationsystemandformarketsurveillance.Therisk thatmanufacturersmightconsider the latterasanobstacle to innovation is therefore increasing.What is urgently neededhere are suitable types of reference architecture in order to accelerate theconformity assessment process and to support the verification and themarket surveillance systems.Moreover,itisabsolutelyindispensabletoestablishadigital,cloud-basedrangeofsolutionswithacen-tralizedentityasatrustworthybasisforthedigitaltransformationoftheprocessesinlegalmetrology.

"PTBisexperiencingstrongsupportinitsefforttoinitiatethesettingupofreferencearchitectureforsecurecloudcomputingandtoensureitscentralcoordination.[...]Cloudmetrologyshould[...]contrib-utetoimplementingdigitalconceptsforthecoordination,concentration,simplification,harmonization

NationalMetrology Institute

NationalStandard Office

NationalAccreditation Body

Calibration Lab Testing Lab Inspection Office Certification Office

Conformity Assessment Offices

Standardization body, Industry, Associations, Politics

Society

8

andqualityassuranceofmetrologicalservicesforallstakeholdersinEurope."(GermanCouncilofSci-enceandHumanities,2017)

Due to the rapidly progressingdigital transformation, companies are facedwithnumerousnew chal-lengeswhichthevastmajorityofthemconsiderasthemost importantchallengetomaintainingtheirowncompetitiveness.Fromtheexamplesofsuccessfuldigitaltransformationquotedonthe"PlattformIndustrie4.0"[23], itbecomesobviousthattherequirementsplacedoncompaniesto implementthisdigitaltransformationliemainlyinthefollowingfields:

- CapabilitiesinthefieldofITandsoftware;- Modellingandvirtualmeasurementprocessor"digitaltwins";- Real-timedatastorageandcloudservices;- Autonomoussystems;- Developmentandintegrationofapps,and- Establishingalinkbetweenthevirtualandthephysicalworld(CPS).

Inthemeantime,thesetechnologieshaveoutgrowntheso-calledhypephaseandhaveenteredevery-day industrial use [16]. The technologiesneeded for disruptivedevelopments [24] in the foreseeablefutureare,partially,alreadyavailableinawiderangeandwill,accordingtothestudy[24],leadtofur-therchangesinthebusinessworldandinindustrywithinthenext2to3years.Companiesaregettingreadyforthesechanges–andthistoalargeextentandatarapidpace,accordingtotheVDMAIMPULSstudy[16].Incontrast,digitaltransformationatPTB–andthusoflargepartsoftheQIandoftheverifi-cationauthoritiesofthefederalstates–hasclearlynotreachedsuchadevelopedstateyet.Withoutanextensive,efficientandfastreaction,thisdeficitputsthequalityinfrastructureasawholeatriskofbe-ingconsideredasanobstacletoinnovation–andthusoflosingitssignificance.

9

DIGITALIZATIONTOPICS:NEWTASKSOFPTB

Thecontinuousexchangesbetweenpolitics,theeconomyandresearchareaprerequisiteforasuccess-fuldigitaltransformation,sinceonlyjointeffortwillenableustocopewiththechallengesofdigitaliza-tion.Bygatheringandinterconnectingallrelevantpartners[25],the"PlattformIndustrie4.0"therebyrepresentsthecoreofGermannationalinitiatives.Thediversetopicsareaddressedingroups,andtheinterconnectionsbetweenthepartnersarecoordinatedbyacentralmanagementteam.Inthiscontext,themostsignificantareaforPTBisstandardization,inparticular,sincePTBplaysakeyrolebyparticipat-ing inmore than 400committees, both at national and at international levels, and has considerableinfluence,asshownbythereportoftheGermanCouncilofScienceandHumanities.DuringadiscussionbetweenexpertsofPTBandrepresentativesoftheplatform,thisrolewasdefinitelyconfirmed,andtheadmittanceofPTBtotheplatformwasclearlyapproved.Meanwhile,PTBhasbeenrepresentedonthemirror committee for standardizationwhere itwill be able to contribute its long-standingexperienceandcontactsinthisfield.Bymeansoftargetedresearchactivitiesgearedtothenewchallengesofdigi-talizationandofdigitaltransformation,PTBwillbeabletocontinuetoefficientlyplaythekeyroleitiscurrentlyplayinginthisprocess.

TheGermanFederalGovernmentandthefederalministriesaresupportingdigitaltransformationviaanumberofpackagesofmeasuresandpromotionmeasures.Forexample,thelackofinformationidenti-fiedinSMEsisaddressedinatargetedmannerbycontinuouslydevelopingso-called"Mittelstand4.0"competencecentresandbymeansofvarious supportprogrammes [26].PTBcould indirectly supporttheseprojectsviameasuressuchasthedigitaltransformationofthecalibrationsystemorbysupplyingreference architecture, which would contribute to digital business processes' being accompanied bycorresponding digital interfaceswith an appropriate security level in themeasuring chain and in thequalityinfrastructure.

TestingcentresprovideSMEsparticularlywiththepossibilitytoassessnewtechnologieswithouthavingtobearany risk themselvesand todevelopsolutionswithcompetentpartners.Thisarea is thereforebeingintenselypromotedbytheFederalMinistryofEducationandResearch(BMBF)andbythe"LabsNetworks Industrie 4.0" (LNI4.0) association [27, 28]. PTBalreadydistinguishes itself by its numerouscooperationprojectswithSMEsinwhichtechnologyandknow-howaretransferredintheformofjointprojectsandlicensing.Bydevelopingandofferingtechnologicalsolutionstodealwiththechallengesofdigitaltransformation,PTBwillbeabletosecureitspositionasasupporteroftheGermanindustryandeconomy.Forthispurpose,closecooperationwithLNI4.0isplannedinordertousesynergyeffectsandtoincreasethevisibilityofwhatPTBisoffering.AfirstroundofdiscussionswithLNI4.0hasalreadytak-enplace.ThelinkbetweenLNI4.0andstandardizationviathe"StandardizationCouncil4.0"(SC4.0)[29]andthenumerousinternationalmirrorcommitteesonwhichPTBisalreadyrepresentedareparticularlyimportantforPTB,sincethetechnologiesthusdevelopedallowlong-termsupporttotheentirequalityinfrastructure.Inthisrespect,thedevelopmentofsuitabletestingcentresatPTBbenefitstheGermaneconomyintwoways.Inafirststep,PTB,Siemensandinterestedpartnersareplanningtosetupatest-ing field"DigitalTransformation in theQuality Infrastructure".Moreover,existing internalactivitiesofPTBwhichcould,inthefuture,beofferedastestingcentrestogetherwithLNI4.0areidentifiedinorderto support the digital transformation of theGerman economy in a targetedmanner. For instance, itseemsobviousthatanothertestingcentreofPTBinthefieldofvirtualmeasuringinstruments,basedonthe uncertainty determination specific to themeasurement task for complex 3Dmeasuring systems,wouldbewelcome.

In the field of biotechnologies, the FederalMinistry of Education and Research (BMBF) supports thecreationofnetworkprojectswith topics ranging frombasicandadvancedtraining tostandardization;

10

thesearepromotedwithin the scopeof the "Nationale ForschungsstrategieBioÖkonomie2030"pro-grammeviathe"InnovationsräumeBioökonomie".Ontheinitiativeofindustry,PTBwillgetinvolvedinthe "DigitalisierungderBiotechnologie" ("Biotechnologydigitalization")project application concerningthetraceabilityofmeasuredvalues,securedatatransferandstandardization.

At the European level, an increasing number of cooperation projects and promotion initiatives havebeendeveloped.TheEuropeanpartnerscooperatewitheachother followingtheprinciplesof theEUstrategyofa"DigitalSingleMarket" [30] inwhichtheobjective istoestablishunlimiteddigital trade,developrulesandstandardsthatareabletokeepupwithtechnologicaladvances,andseizemeasuresaimingtoenabletheEuropeaneconomyandindustrytoexploitallopportunitiesprovidedbydigitaliza-tiontothefull. Inadditiontosupportingselectedresearchprojects(e.g.withinthescopeof"Horizon2020"[31,32]),itisalsoplannedtodevelopastrategyfora"EuropeanOpenScienceCloud"withinthescopeofthe"EuropeanCloudInitiative"[33].WhereastheGovDataplatformandthecurrentlegislativeinitiativesatthefederallevelarepresentlylimitedtoadministrativedata,the"EuropeanOpenScienceCloud" isexplicitly tomake research resultsavailable freeof charge [33].The first stepwill consist indisclosingresearchdataobtainedfornewresearchprojectsfromtheHorizon2020programme.SincePTB is involved in numerous European projects realized within the scope of the Horizon2020 pro-gramme, this development represents considerable challenges for PTB's research datamanagement,andthesechallengeswillhavetobeaddressedpromptly.ThisnecessityhasalsobeenidentifiedbytheGermanCouncilofScienceandHumanitiesthathasrecommendedthaturgentmeasuresbetaken.PTBhasalreadytakeninitialstepsinthisdirection.

LEGALMETROLOGY

In the field of legal metrology (i.e. conformity assessment, verification system, market surveillance),digitalization has mainly manifested itself through the increasing spreading of so-called "intelligentmeasuringsystems"(e.g.smartmeters)–whichispartlyduetothe"digitalizationoftheenergytransi-tion"–distributedmeasuringsystemsandcloud infrastructures [35,36].All inall, considerableeffortwillberequiredinordertofurtherthedigitaltransformationofthelegalmetrologysystem(andofthequalityinfrastructure),sincethedigitalizationofindustrydependsonitinanumberofareas.Thus,PTBdivisionsaccommodatingdepartmentswhichareresponsibleforthetestingofphysicalpropertieswith-inthescopeoftheir legalmetrologytasks,haveregisteredan increasingnumberofapplicationsfromindustryconcerningdigitalintelligentsensors,distributedmeasuringsystemsandcloudinfrastructures.Atpresent,theintegrationofmodernITandcommunicationstechnologiesintomeasuringinstrumentsforregulatedfieldsisstillbeinghamperedbyhighrequirementsintheapprovalandconformityassess-mentprocesses.Manufacturersarethereforeincreasinglyconsideringtheregulationandapprovalpro-cessesasanobstacletoinnovation,andtheyfearthesecouldrepresentacompetitivedrawbackinthelong run. PTB can support this process by developing legally compliant reference architecturewhichoffersacceptablesolutionswithappropriatesecurityandsimpleverificationmethodsforbasictechnol-ogiesofnewtechnological fields.Manufacturersusing the referencearchitecturesuppliedbyPTB fortheirmeasuringinstrumentscanexpectaspeedyapprovalprocessandcan,thus,markettheirinnova-tionsfaster.Atthesametime,thisreferencearchitectureensurescompliancewiththerequiredsecuri-tystandardsandtheverifiabilitywhichisnecessaryformarketsurveillance.Especiallythedevelopmentofthearchitectureforthelegallycompliantdivisionofthesoftwareofthemeasuringinstrumentintoalegally relevant part and a free part allows themanufacturers to develop new, innovative solutions,regular softwareupdates and individual client customization in the freepartof the softwarewithouthavingtogothroughtheapprovalprocessagain.

Thetrendisclearlygoingtowardsmeasuringinstrumentswithdistributed–andforsomeofthemevenvirtualized–componentsandtowardstheuseofcloudservices.Thisappliestoanevengreaterextent

11

to legalmetrology. The division into units for the acquisition, processing and indicating ofmeasuredvalues alone providesmanufacturerswith various possibilities, but presentsmarket surveillancewithconsiderable technical obstacles. Today in dosimetry for example,mobile,web-baseddosimeters areusedalmostwithoutexception.Thereby,themobiledosimeter,whichisconnectedtoadesktopcom-puter, contacts one of the manufacturer's cloud infrastructures via the Internet. From the acquireddata, thecomputercangeneratemeasurement results, store them inadatabase,andupdate the in-strument'ssoftwareinordertoadjustthecalibrationparameters.Thisapproachhasnowbecomethestateoftheart;itis,however,compatibleneitherwiththeGermancalibrationregulationsnorwiththeradiationprotectionguidelines.

FIGURE2:CONCEPTOFTHE"METROLOGYCLOUD"ASATRUSTWORTHYCOREPLATFORM

Inaddition,thedistributed,interconnectedandpartlyvirtualizedinfrastructurealreadywith170millionmeasuring instruments inGermanyalone in the fieldsof approval andmarket surveillanceoffersnu-merouspossibilitiesfortheuseofbigdatasolutionsbasedonthedatageneratedduringthelifetimeofthemeasuring instrument. These databases are currentlywidely distributed, not interconnected andveryheterogeneous(measurementdata,administrativedata,servicedata).Thedigitalupgradingofthelegalmetrologysystemcanbeachievedbyestablishingadigitalquality infrastructureasa"metrologycloud": coupling existing data infrastructures, differentiated access of all partners to the "metrologycloud"asadatabaseandsecureaccessplace,newconceptsforthecoordination,concentration,simpli-fication,harmonizationandqualityassuranceofmetrologicalservices.StartingwithareliablebasisofthisdigitalinfrastructureatPTB,itisplannedtoprogressivelydevelopthe"metrologycloud"intoa"Eu-ropeanmetrologycloud"tosupporttheconceptofa"DigitalSingleMarket".Thisideawillbeinitiatedby theapplication fora three-yearEuropean jointprojectwithin the scopeof theEMPIRprogrammeundertheHorizon2020programme.Thistrustworthycoreplatformincludesthedigitalrepresentationofeverysingletypeapprovalormeasuringinstrument,ensuresecurecommunicationandclearidentifi-cation,providessupportservicesformarketsurveillanceandwillcontributetostreamliningadministra-tiveprocesses. In itsreport,theGermanCouncilofScienceandHumanitiestherebyemphaticallysup-portstheconceptofa"Europeanmetrologycloud".

InactsandordinancesthatareindirectconnectionwithPTB'scompetences(e.g.concerningthetypeapprovalofcashgamingmachines(payoutmachines)(SpielV)ortheconformityassessmentofmeasur-inginstruments(MessEG,MessEV)),ITsecurityexpertisereportsarerequired;thesemustbeissuedbyBSI,atestcentreauthorizedbyBSIorsimilar.However,inlegalmetrology,assetsworthprotectingaredefinedandwiththis,assessmentstrategiesareneededwhicharenotpartofthetopicscoveredbyBSI,

TLS

Digital twin Trust and security Test data repository Shared databases Smart services

Trustworthy core platform

ICSMS AUX

Notified bodies

Market surveillance

Manufacturer UserMIMIMIMI

Plug-in modules

Unique ID

12

aBSI-approvedtestcentreorsimilar.ThisgapcanbebridgedbyaserviceunitwithinPTB.The"CashGamingMachines"workinggroupalreadyassessesandsupportsITsecurityexpertiseintheprocessesofthemanufacturersofcashgamingmachineswithinthescopeofthetypeapprovalinaccordancewiththeGamingOrdinance(SpielV).The"MetrologicalSoftware"workinggroupassessesandsupportsriskanalyses for software and IT components of themanufacturers ofmeasuring instrumentswithin thescopeofconformityassessment.Bothworkinggroupsareresponsibleforupdatingandpublishingtopi-calattackvectors.BSIpublishesgeneralthreatsonaregularbasis,however,assetsworthprotectinginthelegallyregulatedareaareoftensospecificthatonlyPTBcanidentifyrelevantthreatscenarios.ThistaskalsoincludesthecounsellingofBSI-approvedtestcentresorsimilarinelaboratingthesecurityex-pertisereports.Thisdevelopmentseemstosuggestthatwithinthescopeofthe"DigitalAgenda",fur-thertasksofPTBthatarepartofitslegalmetrologymissionwillbeaffectedbythenecessityoftheas-sessmentofITsecurityrisks.Forthispurpose,it isenvisagedtocreatea"MetrologicalSecurityExper-tise andRiskAnalysis"working grouphaving the characteristics of an internal serviceprovider to actindependentlyasaBSI-approvedtestcentreforallofPTB.

Centralizeddataprovisionisanabsoluteprerequisitefortheefficientuseofmodernbigdataanalyticalproceduresasarealreadybeingusedverysuccessfullytoincreaseefficiencyinthoseareasofmetrologythatarenotlegallyregulated.Theconceptsof"predictivemaintenance"developedinthatareacan,inprinciple, alsobe applied to increaseefficiency in the fields ofmetrology, verification and calibrationwherecurrently fixeddeadlinesprevailwhicharebasedonrandomsamplingtests.Bydevelopingap-propriatestatisticalmodellingmethods,itwouldbepossibletoestablishcontinuousprognosticsandtoguarantee thequalityof themeasurementaccuracyof theentiremeasurement infrastructure–evenformetrology and verification. To this end, however, preliminary research activities at PTBwould benecessarytoprepareasustainablemodificationoftheMeasuresandVerificationAct.The"Mathemati-calModellingandDataAnalysis"departmentalreadyadvisesprofessionalassociations,DAkkSlaborato-riesandmarketsurveillancebodies,providingthemwithstatisticalexpertiseandprocedures.Thecon-ceptsthathadtobedevelopedfor"predictivemaintenance",however,involvefarmorethanthis.

QUALITYINFRASTRUCTURE

Digitalizationaffectsqualityinfrastructure(metrology,standardizationandaccreditation)initsentirety.Here,thegreatestchallengesseemtoconcernstandardizationandthecalibrationsystemasmetrologi-cal parts of accreditation.At the "National IT Summit2015"of theGermanFederalGovernment, thepositionpaper"Leitplanken fürdiedigitaleSouveränität" ("Guardrail fordigital sovereignty")waspre-sented[37].Thispaperliststhethreemajorprerequisitesformaintainingcompetitiveness:efficientandsecure infrastructure,masteringkeycapabilitiesand technologies,anddigital sovereigntywith frame-work conditionsopen to innovation. In all of these threeareas, ensuring reliability and confidence incorrectmeasurementsareexpresslydemandedfromthequalityinfrastructureinitsentirety.Thiscon-cerns,foronething,thecommunicationsinfrastructureinwhichthereliabilityofhigh-frequencymeas-urementswillbeapre-conditionforthesustainabledevelopmentofthecommunicationnetwork[38].For another, the entire calibration system is also expected to provide efficient framework conditionsthatareopentoinnovationandtechnologyinordertopromoteinnovation[4].Masteringkeycapabili-tiesinthefieldsofcalibration,ITsecurity,metrologyanddataanalysisistherebythebasisofastand-ardizationsystemthatisgearedtoactualneeds.Correspondingly,theGermangovernmentmadeuseofitsG20presidencytotakeupthetopicofstandardizationindigitaltransformationasakeytopic[39].Duringdiscussionsamongexperts,whichtookplaceatPTB,thetermof"platformcapitalism"wasmen-tionedseveral timesasawarningagainst themarketdominanceofa fewcompanies thatmay resultfromthisprocessandmayput–not least–SMEsatconsiderablerisk.Thisphenomenoncanonlybecounteredbymeansofflexibleandreliablestandardization.ThisisparticularlyimportantinthecontextofaglobalizedeconomysothatGermanorEuropeancompaniesdonotseetheirpossibilitiesforaction

13

limitedbyotherglobalcompetitors.Furthermore,atopicalIECwhitepaperlaysdownthatthevisionofan"InternetofThings"withhighlyautomatedoperatingparticipantscanonlybesuccessfulduetosuit-ablestandards[40].

FIGURE3:CALIBRATIONHIERARCHYINTHEFEDERALREPUBLICOFGERMAN

Inthefieldofaccreditation,PTBplaysakeyroleforaccreditedlaboratoriesduetotherequiredtracea-bilitytotheSI.TaskdistributionbetweenPTBandDAkkS(DeutscheAkkreditierungsstelle–Germanac-creditationbody)withmore than400accredited laboratories (aswellasmarketsurveillancewith theverificationauthorities)isinlinewiththeGermancalibrationhierarchy–withPTBspearheadingit–andwiththeinternationalISO17025standard[41],whichlaysdownthemainrequirementsthatareplacedonaccreditedlaboratories.Thisstandardis,inprinciple,conceivedinsuchawaythatitisopentotech-nologiesandallowsdigitalformatstobeused.Againstthebackgroundofdigitalization,theaspectsofdigitalinformationandcommunicationchannelsaregaininginimportance,lastbutnotleastinordertomeetthegrowingrequirementsofindustry.Duetothedigitaltransformationofthecalibrationsystem,PTBthushastheopportunityofconsiderablysupportingthedigitalizationoftheeconomyandofindus-try. This means that digital business processes are accompanied by corresponding digital interfaceswithinthemeasuringchainandthequalityinfrastructure.

FIGURE4:CONCEPTOFASTANDARDIZEDDIGITALCALIBRATIONCERTIFICATE

ForPTBasthebodyinchargeofthetoplevelofthetraceabilityhierarchy,developingadigitalcalibra-tioncertificateisthereforethemostimportanttask.Inaccordancewiththesecondwaveofdigitaliza-tion,acalibrationcertificateisnotonlytheelectronicdocumentactingasacounterparttothecurrenthardcopy,but rathera virtual representationof the informationwhich is relevant for thecalibrationcertificate.Inparticular,thismeansthatthedatafortheapplicationofthecalibration(e.g.scalingfac-

PTBNational Standards

Accredited Calibration Lab

Reference Standard

In-house Calibration Lab

Working Standard

Company’s testing equipment

Product

Traceability

Manufacturer, Calibration laboratory, date, data format, etc.

Measurement results in SI units, conventions, calibration

parameters, etc.

Measurement values, additional information and parameters

Leve

l of r

egul

atio

n

medium

high

14

tor, temperature ranges, linearity)must be available in such a format that they canbe readout andprocessedautomaticallybyamachine.Thisopensupthepossibilityofautomatingtheuseofthecali-brationinformationinindustry4.0scenarios.Forinstance,asensorcouldbeusedinaplantbysimplyadding it to theexistingsensornetwork; thecontrol softwareof theplantused in thiscontextwouldthenadaptautomatically,basedon thedigital calibration information ("plug’n’measure").The"digitaltwin" of the sensor is thus generated automatically from the digital calibration certificate. For digitalcalibrationcertificatestobedeveloped,toestablishthemselvesandtobecomewidelyused,itisneces-sarytolaydownruleswithregardtoaspectsconcerningthestructures,thecontent,permittedmeas-urementunits,interfaces,thevalidityandsecurityofthedatatransferaswellasthedigitalstampandsignatures.Hereby,authenticityandcryptographicsecurity(e.g.bydigitalsignaturemanagement)playadecisiverole.EUregulationeIDAS-VO910/2014hasrecentlysetthelegalframeworkfortheEU-widerecognitionandlegalassignmentofdigitalsignaturesandstamps.

"Thedigitalizationofallareasofscienceandthehighdynamicsofdigitaltechnologyrequirestand-ardizedprocedures,especiallywithregardtodataandmetadata,exchangeformats,interfaces,data

models,mark-uplanguagesandvocabulary."(CouncilforScientificInformationInfrastructures,2016)

Whereasadigital calibrationcertificate realizes thecorrectdisseminationof theunitsverticallyalongthetraceabilitychainwithinthecalibrationhierarchy,conceptsforthecorrecthorizontalexchangeofdataarealsonecessary.Thismeans,amongotherthings,thatconceptsfortheSI-baseddisseminationofinformationanddatainIoTnetworkshavetobedevelopedandimplemented.Theflawlessautomat-ed interpretationofdata requires,besides flawlessdata transfer,a reliable interpretationof thedatawithregardtotheirsize,dimension,unitand,ifapplicable,totheindicationofthemeasurementuncer-taintywhichcanbereadoutbyamachine.Todate,however,dataformatshavebeenusedeitherto-gether with the numerical values for data types without consistent implementation or existing ap-proacheshaveeitherbeenproprietary,specificallyforagivenscientificfieldorforaprogramminglan-guageandarethusnotinteroperable.Duetothedevelopmentofastandardizedmetadataformat,theinteroperable exchange ofmetrologically relevant information concerning the numerical data can beensuredforareliableautomatedinterpretationandevaluationofnumericalfactualdata.Themetadataformatusedforthispurposeshouldbeopen,widelyapplicableandflexiblewithregardtoitsimplemen-tationbyformulatingbasicrequirementswhicharenecessaryforthesmoothexchangeoffactualdatain automated informationnetworks. Suchmetadata formatswould also be helpfulwhen it comes toensuringtheinteroperabilityofdatabasesfortheanalysisofbigdata[42].Asarule,bigdataanalysesimplydatafromdifferentsourcesbeinganalysedforpurposessuchasdatacorrelation.Hereby,atten-tionmustbepaidtothedatabeingcompatiblewitheachother(unit,dimension,measurementuncer-tainty) inorder toobtain reliableanalysis results. Inmetrology, initialefforts (e.g.ofNIST,USA)havebeenlimitedtomakedifferentdatasourcesfindable,sinceinteroperabilityisconsideredasanextreme-lyhighobstacle.Forinstance,aninternationalcooperationprojectinvolvingseveralNationalMetrologyInstitutes (NMIs),with thesignificant involvementofPTB,hasbeenworkingonan"InternationalMe-trologyResourceRegistry"asadatabaseformetadatainordertoincreasethefindabilityofmetrologi-caldatabases[43].Asarule,application-specificsolutionsaredevelopedfortheinteroperabilityofda-tabases; theseare thenevaluated foraconcretesituation.Thecreationofadequateharmonized for-matswouldsignificantlysupportautomateddataanalysis.NIST'sfirsttrialwiththe"UnitsML"[44]dataformat,however, failedmainlydue toa lackofhuman resourcesaccording toNIST'sownstatement.Duringitsdevelopment,theinteroperablerepresentationoffactualdatahasalsoturnedouttobeveryhigh,whichrequirescorrespondingcapabilitiesandlong-termcommitment.

Furthermore,automatedapprovalsviadigital interfaceswillplayanimportantroleinsupportingbusi-ness-to-businessprocesses.WithTraCIM[45],forexample,PTBcurrentlyofferstheautomatedtestingofalgorithms,basedon referencedataofPTB, forcertain tasks incoordinatemetrology.This system

15

allows theautomated remote testingofanalgorithm followedby the issuingofa corresponding testmark. In the future,many industrial companieswill expect PTB to provide such services, since thesecompanieswillhavealreadydigitalizedtheirownprocessesinexactlythesameway.

Inmanyareasdigitaltransformationiscurrentlythesourceofconflictsbetweentechnologicalpossibili-tiesandthelegalframeworkconditionsinplace.Examplesofsuchconflictsareproductionplantswhichare subject to explosion protection regulations, where PTB, according to its legal tasks, plays an im-portant(andinsomecasesevenagloballyleading)rolewhilesharingtheworkwithBAM(FederalInsti-tute for Materials Research and Testing). Pursuant to 2014/34/EU as the legal transposition ofIEC60079,manufacturersareobligedtosubjecttheelectronicdevicestheyusetoastrictconformityassessment procedure. The guidelines this procedure is based on presuppose that stationary instru-mentsareused,whereasanincreasingnumberofmobiledevices(e.g.tablets)areused,especiallyformaintenance purposes. In this context, PTB is required to develop suitable reference architecture toimplement the digital modernization of explosion protection. For example, by developing adequatesoftware-basedsolutions, it ispossible toofferalternativesbyapplyingasafetyclassificationwhich isadaptedtotheconcretecaseinsteadofapplyingrigidrules.Legallycompliantrequirementsandrefer-encesystemsatPTBcontributetopreventingtheuseofdevicesthathavenotbeenapproved.

Inasimilarmanner,newtasksariseinvariousotherfieldsfromPTB'slegalassignments.Anincreasingnumberofconnectedmeasuringsystemsandreal-timeanalysesareusedinfieldssuchasmedicineorenvironmentalmonitoring,whereastraceabilityisstillmainlygearedtolaboratorydiagnosis.Newdigi-tal technologies allowonlinemonitoring inmedicine (point-of-carediagnostics) and in environmentalanalyses(water,air,vehicles).Furthermore,digitalcommunicationchannelsopenupthepossibilityofremote maintenance, remote diagnostics and remote calibration. Monitoring the correctness of themeasuredvalues,especially inthefieldofmedicine, is justas important forsuchonlinesystemsas instationarylaboratorydiagnostics.Thiscallsforthedevelopmentofmethodsfortheremote-controlledcalibrationofmeasuringinstruments,butalsoforconceptsofreliabledatasecurityandtransferandforthetraceabilityofmeasurementresultsintheonlineorintheon-boardmode.PTBsuppliesthenationalstandards forqualityassurance in laboratorydiagnosticsand is thereforerequiredto furtherplaythisrole also formodern diagnostic and analyticalmethods. PTBmust expect new tasks, especially withregardtotheexhaustgasanalysisofcombustionengines,duetotheoccurrenceofdigitalmanipulation.

ThedisseminationoflegaltimeisoneofPTB'ssovereigntasks.Againstthebackgroundofdigitaltrans-formation, a seriesofnovel challenges, but alsoopportunitieshavearisen in this context. Thus, real-timecapablemethodsfortheanalysisof largeamountsofdata(bigdataanalysis)wouldprovidenewinsights intocontinuouslyrecordedmeasurementdatainordertoassesshigh-precisionopticalclocks.Atthesametime,the interconnectionofdigitalized industriesandmarketshas ledtonewchallengeswithregardtothedisseminationoftime.Hence,asearlyas2018,theEuropeanregulationofalgorithm-controlled financial tradewill come into force via theMiFIDII Directive, whichwill require traceabletimestampswith1µsresolutionandnomorethan100µsdeviationfromUTC.Thereisnometrologicalinfrastructure in the formof accredited laboratories for thispurpose inGermanyasof yet.NMIs arealreadyperforming interlaboratorymeasurementsof signal runtimesbymeansof transportable, cali-brateddetectorswith lowuncertainty inordertodeterminetheUTCcontributions.Onepossibility tosupporttheGermanfinancialindustrywouldthereforebetodevelopcalibrationproceduresforuseinthenetworkof financial institutes,basedon themethodused forcomparisonsbetweenNMIsand todevelopmonitoringanddocumentationmethods.Thankstothequalificationandaccreditationofcali-bration laboratories, this task could then be passed onto external laboratories on a long-term basis.PreparationsforthissupportbyPTBhavealreadybegun.

In"Internet-of-Things"networks,dataarepermanentlyacquiredandprocessedcentrally.Especially in"Industrie4.0"environmentswithareal-time-capabledataanalysisambitionforautomatedproduction,

16

timesynchronizationplaysadecisiverole[46].Inprinciple,adequatetimestampscanbederivedfromalocaltimereferencewhichcanthenbeassignedtothedata.Incompany-wideandglobalnetworks,thisapproach,however,requiressuchtimereferencestobesynchronizedifgloballyacquireddataaretobetemporallycorrelated.Inareaswheretimesynchronizationistechnicallynecessaryorlegallyrequired,likeintelecommunicationsorthepowerindustry,theefforttosynchronizethetimereferenceshastobemadebythecompanies,andcorrespondinghardwaremustbeused.Theprerequisiteforthewideuseofcorrespondingtechnologies,suchastheNTPprotocol(timeindicationvianetworkswithavaria-ble packet runtime) or the PTP protocol (with a focus on increased accuracy and locally limited net-works),isaneasyimplementation.Thus,numerousmanufacturersofactivenetworkcomponentsnowincreasingly use PTP hardware solutions in their devices. PTBwill have to reflect these changes ade-quatelywhendisseminatinglegaltime.Furthermore,developingamodifiedversionoftheWebSocketprotocol as a complement toNTP isuseful, since it supports variousbrowsersandprogramming lan-guagesandenablessimpleimplementationinsoftware.ItisthereforeperfectlydesignedforuseinIoT,even in the industrial field whereweb technologies arewidely used. By developing a correspondingWebSocketserviceofitsown,PTBwouldbeabletodisseminatetimeforlarge-scaleapplicationinIoTandothernetworks.

METROLOGYINTHEANALYSISOFLARGEQUANTITIESOFDATA

Allanalysesandstudieshaveonethingincommon,namelythatonlyadequatedataanalysiscangener-ateknowledge–orratherinformation.TheBMWiisthereforesupportingthe"SmartData–Innovationbasedondata" [6] promotion initiativewith 30million euros for thedevelopmentof efficient proce-dures geared to obtaining economically utilizable information from the flood of raw data. Besides ITsecurity,theefficienthandlingoftheincreasingquantitiesofdata isacoretopicofdigitalization[47].Theincreasinglyinterconnectedcorporatelandscapeequippedwithcheapdatastoragefacilities,digitalsensorsandinexpensivedatacommunicationsystemshasledtoanexponentialincreaseinthequantityofdata[48].Newphraseshaveevenbeencoinedtodesignatedata:theyarecalledthe"21stcentury'soil"or"fertilesoil".

“Thevastmajorityofalldata(infactupto90%)hasbeengeneratedinthelasttwoyears.”(Realis-ingtheEuropeanOpenScienceCloud2016)

Hence,newmeasurementprocedures–suchasthoseusedinmedicalimaging,industrialCTorradiancemeasurementsof luminousand reflectingsurfaces–have led to rapidly increasingdataquantities. Inmanycases,thedimensionalityofthemeasurandtobedeterminedhasincreasedcorrespondingly.Forinstance,PTB'snear-fieldgoniophotometercanmeasuretheluminousfluxofalightsourcewithspatialresolution.Inthiscase,themeasurandisextremelyhigh-dimensionalandisthereforenotmanageablefor theestablishedproceduresof thequality infrastructure. Suchhigh-dimensionaldataareused, forexample, for virtual drafts of the geometry of light-transmitting building elements in simulations.Againstthebackgroundofdigitaltransformationinindustry,traceabilitytotheSI–andthusPTB–willhaveadecisiveroletoplayinthiscontextinthefuture.

InterdisciplinaryresearchatPTBispavingthewayforanumberofspecializedprojectsandguidelinesinfieldssuchasmathematicalmodelling,statisticaldataanalysisandproceduresforthedeterminationofmeasurementuncertainty.Theseareorganizedinacentraldepartmentcalled"MathematicalModellingandDataAnalysis".Bycooperating incommitteesfortheharmonizationofmetrologicaldataanalysis,PTB iscontinuing tosupport the intertwiningof thedifferentapplication fields.Due to the increasingquantitiesofdata,tothedimensionalityofthemeasurandsandtoanalyticalproceduresthathavebe-comemorecomplex,PTBisfacedwithrapidlygrowingrequirements.Anincreasingnumberofapplica-tions represent challenges for the evaluation ofmeasurement data by complex data structureswithhighdimensionality,variabilityandvolatilityaswellasstronglyvaryingdataquality.Proceduresforthe

17

determination of measurement uncertainties, which are widely accepted in metrology, are alreadyreachingtheirlimitsintermsofdimensionalityandcomputingtime.Digitalizationandcomputer-basedmeasurement procedures are enhancing this trend and leading to constantly increasing quantities ofdataandparameterspaces indistributedmeasuringsystems,complexcomputersimulationsormulti-parametermedical data (in imaging, protein and genetic analyses andbiochemistry). The connectionbetweenthemeasurementandtheevaluationofthemeasurementdataisbecomingcloserandcloser,leadingtothegrowingimportanceofmathematicalandstatisticalprocedures.Transferringestablishedandacceptedprocedurestosituationswithlargequantitiesofdata(e.g.bymeansofsimulations)andlongcomputingtimes(e.g.duetodemandingmodels) isahugechallenge.Scalablemathematicalandstatisticaltoolsmustthereforebedevelopedtoactascomplementstoestablishedproceduresinordertoenableasmoothtransitionbetweensmallandlargequantitiesofdata.

Onepossibilityhereisdimensionalityreduction,wherethestructuresexistinginthedataareexploitedina targetedmanner to reduce theamountofdatawhilstmaintaining the samecontent in termsofinformation. Inthiscontext,deepknowledgeof themeasurement is justas indispensableas the jointdevelopmentofmoreefficientmeasurementproceduresandevaluationmethods.Thisrequirescollab-oration between the "MathematicalModelling and Data Analysis" department and the experimentaldepartments in joint researchprojects. Innumerousapplications, newcomputer-aidedmeasurementproceduresinthe"PhotometryandAppliedRadiometry"departmenthaveledtoconsiderablequanti-tiesofdata incalibration,as is thecase,e.g., in themetrologicaldetectionof theso-called"radiatingbody"ofalightsource,whereasinglemeasurementgeneratesapprox.100GBofmeasurementdata.Extensionsof thebasicmeasurementprocedures,whichadditionallyenablespectrallyresolvedmeas-urements, are expected for the near future; they will result in another considerable increase in theamountofdata.TheGermanCouncilofScienceandHumanitiesalsoconsidersthatthereisasignificantneedforresearchinthisfield:

"Themeasurementsgeneratehugequantitiesofmultidimensionaldata;itis,however,notcertainwhatprocessableinformationcanbederivedfromthem.Itwouldbehelpfultointensifytheresearcheffortswithregardtodatainterpretationanddatause."(GermanCouncilofScienceandHumani-

ties,2017)

In applicationswhere it does notmake sense to reduce data dimensionality due to the applicationsaimedat,practicableandreliablemethodsmustbedevelopedforthetransferoflargeamountsofdata.Theproblemisnotsomuchthedatastorageorthedatatransmissionspeed,butratherfindingasuita-bledataformat.AtPTB,forexample,traceablemeasurementsofreflectionstandardsaresupplied,asneeded by a number of device developers and calibration and testing laboratories. Here, a uniform,standardizeddata format is necessary formeasurementsof thebi-directional reflectancedistributionfunctionofsurfaces;thisformatmustbeableto imagethehigh-dimensional,complexdata, includingthemeasurement uncertainties and the information about the surface suitably and to allow reliabledataanalysis.Thereby,aflawlesscomputer-aidedinterpretationofthedatamustbeensured.Basedonthemeasuringinfrastructureandonexperienceofthe"ImagingandWaveOptics"departmentaswellas on its long-standing, successful cooperationwith the "MathematicalModelling andData Analysis"department,itispossibletodevelopadequatedataformatsandanalyticalmethodsforthispurpose.

Dataminingmethodsandothercorrelationproceduresarewidelyusedmethodsinareassuchasreal-time analysis in "Industrie4.0". Thereby, sensor data are continuously evaluated and comparedwitheachother. Inmetrology, anexampleof this is thedata correlationanalysis of photovoltaicmodulesalongtheirvaluechain.Bydevelopingadequatemeasurementandtraceabilitymethods,dataanalysisprocedurescanbedevelopedwhichwould,forexample,enableanearlyreactionintheeventofafaultandallowa link tobeestablishedbetween lowerefficiency ina solarparkandwaferproduction, forexample.Sincethispresupposesprofoundknowledgeanddevelopmentswithregardtothemeasure-

18

mentproceduresaswellasthedevelopmentofsuitablemathematicalandstatisticalprocedures,hereagain, joint research of the "Photometry andApplied Radiometry" and "MathematicalModelling andDataAnalysis"departmentsisnecessary.

Examplesofhigh-dimensionalmeasurementresultsarealsoencounteredinmanyfieldsofnanometrol-ogy, like signal contrastmodelling bymeansofMonteCarlomethods for the evaluationofmeasure-mentsonnano-objectsinscanningelectronmicroscopes.Furthermore,imagingproceduresgeneratinglargeamountsofdata,whichalsohavetobeprocessed,areincreasinglyusedindimensionalmetrologyandoptical surfacemetrology.Determining the influencesofuncertainty in these fields is sometimesonly possible bymeansof demanding simulation calculations.As a rule, these requiredimensionalityreductiontofacilitatethehandlingofthedata.Similarapproachesareincreasinglyappliedinthefieldofproductionwhere,e.g.,opticalmeasurementmethodsareused.This requires thedevelopmentofmethodsallowingstatementsaboutthequalityofthemeasurementuncertaintywhenusingdimension-reducingprocedures.Thereby,genericproceduresmustalwaysbedevelopedbasedonconcreteappli-cations,andthusincooperationwiththeelaborationofthemeasurementprocedure.Byselectingthemeasurement points adequately, adaptedmeasurement procedures can even lead to a sufficient di-mensionalityreduction.

In research,a rapidlygrowingnumberofpublications isobserved in the fieldofbigdataanalysisandautomatedbigdataanalysis,dueto,e.g.,machinelearningandartificialneuralnetworks[11,49].Cur-rentlydevelopedmethodsareusuallybasedontheestablishedtheoryofartificialneuralnetworks,butuseanincreasingnumberofhiddenlayersbetweentheinputandtheoutput[11].Thesemethodsaregenerallydesignatedas "deep learning".Due to the increasingavailabilityof specializedhardware,ofopen-sourcesoftwareandofverylargeamountsofdata,"deeplearning"methodsarebecomingrele-vantinagrowingnumberoffields[40].Fromthequalityinfrastructureviewpoint–andespeciallyfromthe viewpoint ofmetrology – the aspect of the reliability of the results is highly relevant. Such dataanalysisprocedureshave,however,notyetbeendealtwithfromametrologypointofview.Investigat-ingthereliabilityofdataanalysisanddevelopingmethodsforthequantitativeevaluationoftheresults'quality are subjects that are currentlybeingdealtwith in research,outsidemetrologyaswell, for in-stanceattheFraunhoferInstituteforTelecommunications,HeinrichHertzInstitute(HHI)inBerlin[51].Asageneralrule,thedevelopmentofmethodsforthedeterminationofuncertaintiesandstatementsaboutthequalityin"deeplearning"is,however,stillinitsinfancy.Incriticalareas,thereistheaddition-al issueofthesusceptibilitytothemanipulationofresultsofmachine learningbytamperingwiththeinputdata.Thisfieldofresearchiscalled"adversariallearning"[52]andwillberelevantformetrologyinthefuture.

METROLOGYOFTHECOMMUNICATIONSYSTEMSFORDIGITALIZATION

Theavailabilityofreliable,efficientandflexiblecommunicationchannelsisafrequentlymentionedpre-requisiteforsuccessfuldigitaltransformation,seeforexample[38].Theexpansionof5Gtechnologyisbeing intensivelypushed forwards, inparticular.TheVerbandderElektrotechnik,Elektronikund Infor-mationstechnik (VDE – Association for Electrical, Electronic & Information Technologies) thus quotesexpertsfromthesesectorsasconsideringaroll-outof5GinGermanyasrealisticevenbefore2020[53].Intheiranalysis"Key IssuesforDigitalTransformation intheG20",theG20havealsoemphasizedtheneedforafastexpansionof5Gbymeansoftargetedpublicpromotionandhaveevenrecommendedthat the roll-out goal be fixed for2018 [39]. Currently, the term "5G technology" usually designatesradiofrequency communication technologies in the upper megahertz or in the gigahertz frequencyrange.There isno final5Gstandardatpresent,whichmeans that it isnotcertainyetwhatconcreterequirementsmustbemet.The"NextGenerationMobileNetworksAlliance",forinstance,definestherequirements placed on a 5G standard as follows: the availability of very high data rates (from

19

100Mbit/sto1Gbit/s),evenforlargegroupsofsimultaneoususers;severalhundredsofthousandsofsimultaneouswirelessconnections;aconsiderablymoreefficientexploitationof thespectral rangeascomparedto4G;considerablylowerlatencyascomparedtoLTE,andenhancedtransmissionefficiency[38].

"5Gwilloperateinahighlyheterogeneousenvironmentcharacterizedbytheexistenceofmultipletypesofaccesstechnologies,multi-layernetworks,multipletypesofdevices,multipletypesofuser

interactions,etc."(NGMNWhitePaper5G)

Asarule, in5Gcommunicationanddigitalmodulation,thehigh-frequencymeasurandsareverycom-plex,nonlinear,stochasticandhigh-dimensional.Forinstance,quadratureamplitudemodulation(QAM)withlargenumbersofconstellations(64–4096)isplayinganenhancedroleinhigh-frequencycommu-nicationengineering.Therequiredtransmissionandreceptiontechniquesmustbecharacterizedwithgreataccuracy inordertominimizetransmissionerrors.Anefficientuseoftheelectromagneticspec-trum in terms of range, channel capacity and channel density thus requires nonlinear and stochasticcharacteristics in the spectral range (harmonic content, signal-to-noise interval, degree of passive in-termodulation,oscillatorphasenoise,etc.) tobeknown.Traceablemeasurementsof thesenonlinearandstochasticmeasurandsarethereforethepreconditionforthecalibrationofhigh-frequencymeasur-inginstrumentsandforthesettingup/developmentofdigitalcommunicationsystems.

Traceability has, to date, nearly only been available for basicmeasurands (unmodulated continuous-wave signals, linear characterization), although commercial devices for nonlinear characteristics havealsobeendeveloped inGermany. Includingsuchmeasuring instruments intothecalibrationhierarchywouldprovidetherelevantcompanieswithasignificantcompetitiveadvantage.Theneedforanexten-sion of the accreditation scope of the DAkkS laboratories to nonlinear and stochasticmeasurands isthereforeincreasingduetodigitalization.Accordingtothecalibrationhierarchy,however,theprecondi-tionforthisisthetraceabilityofsuchmeasurandsatPTB.

Furthermore,antennaarrayswithMIMOtechnology(multipleinputmultipleoutput)upintothemilli-metrewaverange[54]areplayinganimportantroleinantennameasuringtechniquesduetothetrans-formationinto5Gnetworks.Ensuringthereliabilityofsuchsystemsrequirestheemittingandreceivingtechniqueusedtobemetrologicallycharacterizedandthemeasuringinstrumentsusedforcharacteri-zationtobetraceablycalibrated.Forinstance, it isnecessarytoinvestigatethetechnical implementa-tionof the signal focusingof time-varying channels at themost diverse frequencies andpropagationconditions("massiveMIMO").

Developments towards self-configuring, intelligent systems with great requirements being placed ontheinteroperabilityinhighlycomplexcommunicationprotocolsareleadingtotheneedforthetracea-bility of signal parameters such as the modulation level and modulation deviation, the error vectormagnitude(EVM)andtheerrorrates(modulation/bit/frameerrorrate).Inordertodevelopthemeas-uringequipmentandantennasystemscorrespondingly, it isnecessarytoknowthechannel runtimes,thechannel transmission lossand thepulsedriftofevery individualpropagationchannelexactly.TheavailabilityofcorrespondingmetrologicalservicesinGermanywouldrepresentacompetitiveadvantageinamarketthatiscurrentlystilldominatedbytheUSAandChina.PreliminaryworkdonebyPTBinthisarea concern theTHzCommunication Lab1, EVMmeasurementsbymeansofdigital real-timeoscillo-scopes, thecalibrationofvectorsignalanalysers, themeasurementofelectrically transformedopticalmodulationcharacteristics,andfirstactivitiesonthecharacterizationof"smartantennas".

OtherinstitutessuchasNISThavelongacknowledgedtherequiredresearcheffortandhavemassivelyinvested (approx.300millionUSdollars) into the "Communications Technology Lab" and into the

1http://www.tcl.tu-bs.de/

20

"mmWave, 5G & beyond" research programme [55]. NIST's activities are scheduled to take at least20years of research.NPL is alsomassively developing its research activities in this field and has justfounded the "NonlinearMicrowaveMeasurements andModelling Laboratories" joint research centrewiththeUniversityofSurrey2.

METROLOGYFORSIMULATIONSANDVIRTUALMEASURINGINSTRUMENTS

Inseveralapplicationfieldsofmetrology,simulationsandvirtualexperimentshavealreadybeenestab-lishedforsometime.Incoordinatemetrologyforexample,simulation-basedmeasurementuncertaintydetermination is covered by ISO 15530-4 forwell-definedmeasurement tasks [56].With the "VirtualCoordinate Measuring Machine VCMM", an evaluation software program for coordinate measuringinstruments, PTB has a reference procedure at its disposalwhich it developed itself andwhich largemanufacturingcompaniessuchasZeissandHexagonhaveimplementedintheircoordinatemeasuringinstruments andwhich has also already been transferred to DAkkS calibration laboratories [57]. Themeasurement data are evaluated automatically, and the measurement uncertainties are also deter-minedautomatically,efficientlyandwithdigital interfacesfor furtherprocessing insidetheconnectedinfrastructure.PTB,beingindependentofmanufacturersandenjoyingaleadingpositionasatrustwor-thy institutethroughouttheworldwhenitcomestodevelopingsimulation-basedevaluationsoftwarefor measurement uncertainty determination, can rely on ideal conditions for further developing theapplicationpossibilities.ThefinalobjectiveistotransferthemethodusedfortheVCCMtoallrelevantclassesofmeasuring instruments thatare relevant inproduction inorder toprovidevalidstatementsconcerningthemeasurementuncertaintiesobtainedwiththemeasuringinstrumentsandsensorsusedintheproductionindustrypursuantto"Industrie4.0".Inthiscontexttoo,strategiccooperationisenvis-aged between the "Coordinate Metrology" department and the "Mathematical Modelling and DataAnalysis"department inorder topush forwards thedevelopmentof genericmethods for the simula-tion-basedevaluationofmeasurementdata.

Inthefieldofopticalmeasurementprocedures,PTBhastheidealpreconditionsforthedevelopmentofaholisticsimulationtoolforopticalformmeasuringdevices[58].ThesepreconditionstaketheformofPTB'sworldwideleadingpositioninoptical,two-dimensionalaspheretechnologyanditssimulationtool"SimOptDevice",whichhasalreadybeen successfullyused innumerous researchprojects; this tool isused foroptical ray tracing takingstaticmechanical influences intoaccount. Inprinciple, themodularsetupandtheavailabilityofthesoftwaresourcesallowthewideuseofthistoolforvirtualexperimentsinsidePTB.Certainmeasurementproceduresmustevencategoricallybebasedonaphysicallycorrectsimulation. The "tiltedwave interferometer",whichwasdevelopedat theUniversityof Stuttgart andhasalsobeenoperatedatPTBforaspheremetrology,usesasimulationofthebeampathtodeterminethedeviationoftheobjectundertestfromadigitallydetermineddesigntemplate[59,60].Hereby,thevirtualmeasurementresultobtainedbymeansofthesimulationiscomparedwiththeactualresult inordertoobtaintheactualsurfacestructureoftheobjectundertestfromthesedeviations.OneofthegreatestchallengesofsuchexperimentsistoensuretraceabilitytotheSIunits.Duetothecomplexityofthephysicalsetupandofthesimulationproceduresused,thereisasignificantneedforresearchinthisarea.

Algorithms are also increasingly being used to acquire and exploit data from integrated connectedmeasuringsystemsofqualitymonitoringandautomatedproductioncontrol,forexampleintheintegra-tionofmethodsofadditivemanufacturing in theproduction industry, theobjectivebeing to increaseefficiencyandtomaintaincompetitiveness.Thisresultsinnewtasksfortraceabilityandmeasurementuncertainty influencesof integratedconnectedmeasuringsystems,amongotherthingsbydeveloping

2http://n3m-labs.org

21

standards foruse inapplication-orientedmeasurementandcontrol.Especiallyadditivemanufacturingproceduresarebecoming increasinglyusedasacomplement toestablishedmethods in the industrialenvironment–forexampleinordertoincreaseefficiency.Duetotheirlayer-likemanufacturingcharac-teristics, suchproceduresoffergood leeway formore freedom in thedesignand foroptimizationac-cordingtodifferentcriteria.Thedevelopmentofappropriate"in-processmeasurementprocedures"tocontrol additivemanufacturing and themetrological characterization of themanufacturing precision,however,representhugechallenges.PTBiscurrentlyinvestingincorrespondingproductionfacilities–for one thing for efficient andmore flexiblemanufacturing in PTB's own "Scientific Instrumentation"department, foranotherfortherealizationofmetrologicalresearchprojects. InitialresearchactivitiesatPTBhavealreadybeenrealizedwithinthescopeofthe"Traceablein-processdimensionalmeasure-ments"researchprojectwhichwasfundedbytheEUandwascompletedin2016.

As a consequence of the connectedmeasuring systems, the customers of sensormanufacturers areincreasinglyasking for intelligentmeasuringsystemswhich–whenequippedwith thenecessarysoft-ware–generateresultsautomaticallyandpartlyautonomously,andcaninteractwithothersensorsandfacilities (purchasingmeasurement values rather thanmeasuring instruments). The further increasingneedforaccuracyandreliabilityofthemeasurementresults leadstoagrowingnumberofmeasuringinstrumentshaving tobe calibratedwithdigital interfacesand integratedevaluation software (e.g. inacousticsanddynamicapplications).Themeasuringequipmentandmeasurementproceduresavailableatmetrologyinstitutestodatearenotnormallyequippedtoexaminemeasuringinstrumentsinwhichtheindicatedvaluehasalreadybeenpre-processed.ThispresentsNMIswithnewchallenges,especiallywhen neither the evaluation algorithms, nor the analogous raw data can be directly retrieved.Here,bothnewmeasuringcapabilitiesandnovelapproachesofconformityevaluationarebecomingneces-sary.

TECHNOLOGICALINFRASTRUCTURE

ThenewsetsoftasksidentifiedforPTBforthemajorpartpresupposeachangeintheITinfrastructure.For instance, theplanned creationof a "metrology cloud" requiresefficient server systemswith veryhigh IT security and continuousmaintenance in order to sustain the existing confidence in PTB as a"trustworthycore"withintheconcept.ThesameistrueofthedigitalcalibrationcertificateconceptandofthedigitalinterfacestoreferencedataofPTB.

Inordertosetupanelectronicdocumentfilingsystem,asrequiredbythedigitaltransformation,PTBhasalready startedpreparing for the introductionofane-file system.Theplanneddocumentadmin-istrationmakes a central, server-based administration of internal documents availablewhich encom-passescooperativeworking,digitalsignatures,accesscontrolandarchivingmethods.Forthispurpose,theworkflowforallofPTB's internaldocument-basedbusinessprocesseshasbeenadaptedtothee-filing system by an interdisciplinary organization working group. Initial internal pilot projects are ex-pectedtostartatthebeginningof2018withaprogressiveroll-outuntilapprox.theendof2020.Theplannedconceptsofadigitalcalibrationcertificateandofdigitalcustomerinterfacesarealreadytobetakenintoconsiderationfortherequiredprocessstructuretoensurethatthesystemsarecompatible.

Analysinglargeamountsofdataanddealingwithhigh-dimensionalmathematicalandstatistical issuesrequireanadequateITserviceforcomputationallyintensiveprocesses.Inthiscontext,itisnecessarytobeabletoofferhigh-performancecomputing(HPC)solutionsavailableacrossthebordersofdivisionsanddepartments,parallelcomputing,high-availabilityscalablestorageandspecial ITservices. If thesetechnologies are developed sustainably, this could be realized for specialized services by developinginternal pricing schemes. The Federal Institute forMaterials Research and Testing (BAM) is currentlyalsoelaboratingsuchaconcept.PTBandBAMhavealreadystartedexchanginginformationandexperi-ences,and it isplannedtopursuethisexchange inthefuture.AtNIST intheUSA,there isalreadyan

22

internalrangeofITservicesforthecloud-basedstorageandarchivingofpublicallyaccessibleresearchdata; these servicesarebasedonan internalpricing scheme.NIST'sexperiencehas,however, shownthattheprerequisitesforsuchservicestoactuallybeusedareaccesstotheservicesbeingassimpleaspossibleandagoodcost/benefit ratio.Thiscanberealized forexamplebyestablishingcapabilities inthedevelopmentofsoftwareinordertocentralizetheworkdonetodevelopinterfacestodata,data-bases and parallel computing, and the standardization of the software libraries for scientific cross-sectionaltasks.Atthenationallevel,therearecurrentlyseveralinitiatives(suchasthatoftheGermanNationalResearchandEducationNetwork–Deutsches Forschungsnetzwerk (DFN)) aiming todevelopcloudinfrastructuresintheformof"infrastructureasaservice"(IaaS)andtomakethemcentrallyavail-able[61].PTBcouldimmenselybenefitfromsuchstructuresintheformofbasicagreements.WhatIaaSoffers,however,doesnotreplacethenecessitytodevelopsoftware interfacesandtoservicetheminthelongterm.Otherwise,theservicespurchasedcannotbeexploitedtothefull,sincethetechnologicalrequirementsfortheirprofitableutilizationarecomparablyhigh.

Inadditiontotheperformanceofthecomputingsystemsandtheirstoragecapacity,asustainableanduniformresearchdatamanagementconceptisconsidereda"conditionforexcellentresearch"(GermanRectors'Conference;anassociationofuniversities inGermany).Correspondingly, thereareagrowingnumberofpromotioninitiatives,suchasthatoftheBMBFforresearchandtheelaborationofsolutionsto the challenges of research data management. In addition, the Deutsche Forschungsgemeinschaft(DFG)atthenationallevelandtheEuropeanCommissionareelaboratingspecificationstoobligefundedprojectstomaketheresearchdataobtainedwithinthescopeoftheprojectspubliclyavailable.AttheEuropean level, theEuropeanOpenScienceCloud initiative is thestartofaground-breakingadvancetowardsaharmonizedEuropean researchdata landscape.Thecompetent committee's recommenda-tion therefore reads: "We recommend that use of present and future instruments in research pro-gramming,includingHorizon2020,shouldonlysupportprojectsthatproperlyaddressdatastewardshipissues for open data." An efficient infrastructure for the handling of research datawill thus becomeindispensable in the near future for PTB as an important project partner in numerous Horizon2020projects.Correspondinginternalpreliminarytalksonthissubjecthavealreadybegun.Thereby,thefirstrequirementsidentifiedwerethatcentralizedITservicesshouldbemadeavailabletoensurethesecuri-tyofresearchdatainthelongterm;moreoverflexibleaccess(forpersonsorgroupsofpersons)todatashouldbegrantedandinterfacesforexternalaccesstoappropriatedatashouldbeenabled.

"Againstthebackgroundoftheincreasingdataintensityofscience,datacuration–asaprerequisiteforthelaterre-useofthedata–israpidlygaininginimportance."(CouncilforScientificInformation

Infrastructures,2016)

OneofthegoalsoftheEuropeaninitiativesistodocumentdataandtomakethemfindable.Oneoftheessential prerequisite for this is to have harmonizedmetadata structures and data standards. At thenational level, theGovData initiative,whichaims todefineauniformformat forpublicadministrativedata, represents the first step in that direction. In themeantime, various kinds of data formats andmetadatastructureshavebecomeavailable.Itis,inpart,possibletodevelopautomatedprocedurestogenerateso-called"richmetadata"–forexamplebasedonwell-definedprocessesconcerningthegen-erationofthedata.This,however,usuallyrepresentsacontinuoustaskfor

"highlyqualifiedstaffwithbothtechnicalandITskillstoensuretheinteroperabilityofthedatasetsinsidearepository.Thesecriteriacannotbemetbythemeredepositingofuncurateddatabyre-searchers,whichreducesthevaluecreationpotentialwithinthelifecycleofthedata"(Councilfor

ScientificInformationInfrastructures,2016)

23

LITERATURE[1] „Digitalisierung,“ [Online]. Available: https://de.wikipedia.org/wiki/Digitalisierung. [Zugriff am

2932017].

[2] RfII-Ratfür Informationsinfrastrukturen,„LeistungausVielfalt.EmpfehlungenzuStrukturen,Prozessen und Finanzierung des Forschungsdatenmanagements in Deutschland,“ Göttingen,2016.

[3] BITKOM, „Industrie 4.0 – Volkswirtschaftliches Potenzial für Deutschland,“ BundesverbandInformationswirtschaft,TelekommunikationundneueMediene.V.,Berlin,2014.

[4] F.ThielundM.Esche, „Digitalisierung imgesetzlichenMesswesen,“PTB-Mitteilungen,Nr.4,2016.

[5] D.Schaudel,„Sensor4.0fürIndustrie4.0,“in12.DresnderSensorSymposium,2015.

[6] BundesministeriumfürWirtschaftundEnergie,„SmartData-InnovationausDaten,“2016.

[7] BITKOM,„BigDataimPraxiseinsatz–Szenarien,Beispiele,Effekte,“2012.

[8] McKinseyGlobalInstitute,„Theinternetofthings:mappingthevaluebeyondthehype,“2015.

[9] R.P.A.P.M.a.W.D.H.G.P.Sullivan,Operations&MaintenanceBestPractices:AGuidetoAchieving Operational Efficiency, 3 Hrsg., Pacific Northwest National Laboratory, U.S.DepartmentofEnergy,2010.

[10]pwc,„Industry4.0:Buildingthedigitalenterprise,“2016GlobalIndustry4.0Survey.

[11]Y.B.a.G.H.YannLeCun,„DeepLearning,“Nature,Bd.521,pp.436-444,2015.

[12]C.Eckert,„IT-Sicherheitund Industrie4.0,“ IM+ioFachzeitschrift für Innovation,OrganisationundManagement,Nr.1,2014.

[13]VDECybersecurity,„FunktionaleSicherheitundInformationssicherheitinZeitenvonIndustrie4.0 und Smart Home,“ [Online]. Available: https://www.vde.com/topics-de/cyber-security/aktuelles/erfurter-tage-2017-nachbericht.[Zugriffam29.3.2017].

[14]M.Vickers,„CalibrationLabVectorsofVulnerability,“CALLAB:THEINTERNATIONALJOURNALOFMETROLOGY,p.40,September2016.

[15]U.G.u.R.Meyer,„KonfigurationsanforderungenanBetriebssysteme,“inMetrologischeIT,Bd.4,PTBMitteilungen,2016,pp.33-43.

[16]VDMA,„IMPULS-DigitalvernetztesDenkeninderProduktion,“2016.

[17]Optech Consulting, „Industry Report of Photonic 2013,“ [Online]. Available:http://www.spectaris.de/photonik-praezisionstechnik/presse/artikel/seite/branchenreport-photonik-2013-wirtschaftsdaten-einer-schluesseltechnologie/presse-1.html.

[18]BMBF Photonik Forschung Deutschland, „2020 Agenda Photonik,“ VDI Technologiezentrum,

24

2016.

[19]N.u.T.F. Leffler, „ImGeschäftsverkehrdas richtigeMaß -DasneueMess-undEichgesetz,“SchlaglichterderWirtschaftspolitik,2013.

[20]BMJV, „Gesetz über das Inverkehrbringen und die Bereitstellung vonMessgeräten auf demMarkt, ihre Verwendung und Eichung sowie über Fertigpackungen,“ [Online]. Available:http://www.gesetze-im-internet.de/messeg/index.html.[Zugriffam30.3.2017].

[21]BMJV, „Verordnung über das Inverkehrbringen und die Bereitstellung vonMessgeräten aufdem Markt sowie über ihre Verwendung und Eichung,“ [Online]. Available:http://www.gesetze-im-internet.de/messev/index.html.[Zugriffam30.3.2017].

[22]European Commission, CEN, CENELEC, ETSI, „New Approach Standardisation in the InternalMarket,“[Online].Available:http://www.newapproach.org.[Zugriffam2932017].

[23]Plattform Industrie 4.0, „Landkarte Industrie 4.0,“ [Online]. Available: http://www.plattform-i40.de/I40/Navigation/DE/In-der-Praxis/Karte/karte.html.[Zugriffam2932017].

[24]atos,„Journey2020-DigitalShockwavesinBusiness,“2017.

[25]BMWi, BMBF, „Plattform Industrie 4.0,“ [Online]. Available: http://www.plattform-i40.de.[Zugriffam2932017].

[26]BundesministeriumfürWirtschaftundEnergie,„Montoring-ReportWirtschaftDIGITAL2016,“2016.

[27]PlattformIndustrie4.0,„LabsNetworksIndustrie4.0,“[Online].Available:http://lni40.de.

[28]BMWi, „Mittelstand 4.0,“ [Online]. Available: http://www.mittelstand-digital.de/DE/Foerderinitiativen/mittelstand-4-0.html.[Zugriffam2932017].

[29]DKE, VDE, DIN, „Standardization Council Industrie 4.0,“ [Online]. Available: http://sci40.de.[Zugriffam2932017].

[30]European Commission, „Digital Single Market,“ [Online]. Available:https://ec.europa.eu/digital-single-market/en/digitising-european-industry. [Zugriff am 29 32017].

[31]BMBF, „Horizon 2020,“ [Online]. Available: http://www.horizont2020.de. [Zugriff am 29 32017].

[32]EFRA, „European Factories of the Future Research Association,“ [Online]. Available:http://www.effra.eu.[Zugriffam2932017].

[33]EuropeanCommission,„RealisingtheEuropeanOpenScienceCloud,“2017.

[34]FinanzbehördeGeschäfts-undKoordinierungsstelleGovData,„GovData-DasDatenportalfürDeutschland,“[Online].Available:http://www.govdata.org.[Zugriffam2932017].

[35]Physikalisch-Technische Bundesanstalt, Metrologische IT, Bd. 4, Braunschweig: PTB

25

Mitteilungen,2016.

[36]NIST,„USGovernmentCloudComputingTechnologyRoadmapVolumeI&II,“2014.

[37]BMWi,„LeitplankendigitalerSouveränität,“NationalerIT-Gipfel,2015.

[38]ngnm,„NGNM5GWhitePaper,“2015.

[39]OECD,„KeyissuesfordigitaltransformationintheG20,“2017.

[40]IEC, „IoT 2020: Smart and secure IoT platform,“ International Electrotechnical Commission,2016.

[41]DIN,EN,ISO,IEC,„DINENISO/IEC17025:2005-08,“2005.

[42]NIST,„BigDataInteroperabilityFramework-NISTSP1500,“NISTSpecialPublication,2015.

[43]R.Hanisch,InternationMetrologyResourceRegistry,Sèvres:NIST,2016.

[44]NIST,„UnitsMarkupLanguage(UnitsML),“[Online].Available:http://unitsml.nist.gov.[Zugriffam2932017].

[45]TraCIM e.V., „TraCIM Service,“ [Online]. Available: https://tracim.ptb.de/tracim/index.jsf.[Zugriffam2932017].

[46]IntelligenteTechnischeSystemeOstWestfalenLippe(it'sowl),„AufdemWegzuIndustrie4.0-ErfolgsfaktorReferenzarchitektur,“it'sOWLClustermanagementGmbH,Paderborn,2015.

[47]V.Markl,„BreakingtheChains:OnDeclarativeDataAnalysisandDataIndependenceintheBigDataEra,“inProceedingsoftheVLDBEndowment,2014.

[48]FraunhoferIAIS,„BigData-VorsprungdurchWissen,“SanktAugustin,2016.

[49]L. Wassermann, „Statistics versus Machine Learning,“ [Online]. Available:https://normaldeviate.wordpress.com/2012/06/12/statistics-versus-machine-learning-5-2/.[Zugriffam30.3.2017].

[50]BITKOM,„Germany-ExcellenceinBigData,“2016.

[51]Fraunhofer,„DemComputerbeimDenkenzuschauen,“Forschungkompakt,2017.

[52]C. M. Daniel Lowd, „Adversarial Learning,“ in Proceedings of the eleventh ACM SIGKDDinternationalconferenceonKnowledgediscoveryindatamining,2005.

[53]VDE, „VDE-Umfrage: Digitale Transformation bis 2025 abgeschlossen,“ [Online]. Available:https://www.vde.com/de/presse/pressemitteilungen/mitgliedsumfrage-5g. [Zugriff am 29 32017].

[54]VDE ITG, „Intelligente Mobilfunkantennen, VDE ITG Positionspapier,“ März 2014. [Online].Available:https://shop.vde.com/de/vde-positionspapier-intelligente-mobilfunkantennen.

26

[55]NIST,„5G&beyond,“[Online].Available:https://www.nist.gov/programs-projects/5g-beyond.[Zugriffam2932017].

[56]ISO, „Geometrical Product Specifications (GPS) -- Coordinate measuring machines (CMM):Techniquefordeterminingtheuncertaintyofmeasurement--Part4:Evaluatingtask-specificmeasurementuncertaintyusingsimulation,“2008.

[57]Carl Zeiss GmbH , „Zeiss Tastersysteme,“ [Online]. Available:https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwiq582_xvvSAhUFrRQKHVhvB9YQFggkMAE&url=https%3A%2F%2Ftaster.zeiss.de%2Fforce-download.php%3Ffile%3Dartifacts%2Fen%2Fartifacts&usg=AFQjCNFaEpwKlFSzZ08RKOoCHnTa6xIsgA&sig2=da_wMy2cWq2epODq05jjNA&bvm=bv.150729734,d.d24.[Zugriffam2932017].

[58]PTB, „Formmessung gekrümmter optischer Oberflächen,“ [Online]. Available:https://www.ptb.de/cms/nc/ptb/fachabteilungen/abt8/fb-84/ag-842/formmessung-8421.html#c68736.[Zugriffam2932017].

[59]Mahr, „Tilted Wave Interferometer zur schnellen und flexiblen Messung und Analyseasphärischer Linsen,“ [Online]. Available:https://www.mahr.com/de/Leistungen/Fertigungsmesstechnik/Produkte/MarOpto---Messgeräte-für-die-Optikindustrie/MarOpto-Tilted-Wave-Interferometer/. [Zugriff am 29 32017].

[60]PTB, „Tilted-Wave Interferometer,“ [Online]. Available:https://www.ptb.de/cms/de/ptb/fachabteilungen/abt4/fb-42/ag-421/tilted-wave-interferometer.html.[Zugriffam2932017].

[61]Deutsches Forschungsnetzwerk, „Material der 66. Betriebstagung,“ [Online]. Available:https://www.dfn.de/dfn-cloud/weiterentwicklung/workshop-maerz-2017/. [Zugriff am 31. 3.2017].

top related