microsoft word - a38.wp.xxx.re ganp.clean.based on - icao

Post on 12-Feb-2022

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

GLOBAL AIR NAVIGATION PLAN Doc9750‐AN/963FourthEdition–2013

2013–2028GlobalAirNavigationPlan

©2013,InternationalCivilAviationOrganization

PublishedinMontréal,Canada

InternationalCivilAviationOrganization

999UniversityStreet

Montréal,Quebec,Canada

H3C5H7

www.icao.int

Disclaimer

Thisreportmakesuseofinformation,includingairtransportandsafetyrelateddataandstatistics,whichisfurnishedtotheInternationalCivilAviationOrganization(ICAO)bythirdparties.Allthirdpartycontentwasobtainedfromsourcesbelievedtobereliableandwasaccuratelyreproducedinthereportatthetimeofprinting.However,ICAOspecificallydoesnotmakeanywarrantiesorrepresentationsastotheaccuracy,completeness,ortimelinessofsuchinformationandacceptsnoliabilityorresponsibilityarisingfromrelianceuponoruseofthesame.TheviewsexpressedinthisreportdonotnecessarilyreflectindividualorcollectiveopinionsorofficialpositionsofICAOMemberStates.

Note:

TheUnitedNations’definitionsofregionsareusedinthereport.

Thisdocumentfocusesprimarilyonscheduledcommercialflightsasthistypeoftrafficaccountsformorethan60percentoftotalfatalities.

ThescheduledcommercialflightsdatawasobtainedfromtheOfficialAirlineGuide(OAG).

-2- ICAO’sVision

Achievesustainablegrowthoftheglobalcivilaviationsystem.

OurMission

TheInternationalCivilAviationOrganizationistheglobalforumofStatesforinternationalcivilaviation.ICAOdevelopspolicies,standards,undertakescomplianceaudits,performsstudiesandanalyses,providesassistanceandbuildsaviationcapacitythroughthecooperationofMemberStatesandstakeholders.

2014–2016StrategicObjectives

A. Safety:Enhanceglobalcivilaviationsafety.

B. AirNavigationCapacityandEfficiency:Increasecapacityandimproveefficiencyoftheglobalcivilaviationsystem.

C. SecurityandFacilitation:Enhanceglobalcivilaviationsecurityandfacilitation.

D. EconomicDevelopmentofAirTransport:Fosterthedevelopmentofasoundandeconomically‐viablecivilaviationsystem.

E. EnvironmentalProtection:Minimizetheadverseenvironmentaleffectsofcivilaviationactivities.

ICAO’s15‐yearPlanAddressingGlobalAirNavigation

-3-

TheICAOGlobalAirNavigationPlan(GANP)representsthefourtheditionoftheGANP.Itisdesignedtoguidecomplementaryandsector‐wideairtransportprogressover2013–2028andisapprovedtrienniallybytheICAOCouncil.

TheGANPrepresentsarolling,15‐yearstrategicmethodologywhichleveragesexistingtechnologiesandanticipatesfuturedevelopmentsbasedonState/industryagreedoperationalobjectives.TheBlockUpgradesareorganizedinfive‐yeartimeincrementsstartingin2013andcontinuingthrough2028andbeyond.ThisstructuredapproachprovidesabasisforsoundinvestmentstrategiesandwillgeneratecommitmentfromStates,equipmentmanufacturers,operatorsandserviceproviders.

AlthoughtheICAOworkprogrammeisendorsedbytheICAOAssemblyonatriennialbasis,theGlobalPlanoffersalong‐termvisionthatwillassistICAO,Statesandindustrytoensurecontinuityandharmonizationamongtheirmodernizationprogrammes.

ThisneweditionoftheGANPbeginsbyoutliningtheexecutive‐levelcontextfortheairnavigationchallengesahead,aswellastheneedforastrategic,consensus‐basedandtransparentapproachtoaddressthem.

TheGANPexplorestheneedformoreintegratedaviationplanningatboththeregionalandStatelevelandaddressesrequiredsolutionsbyintroducingtheconsensus‐drivenAviationSystemBlockUpgrade(ASBU)systemsengineeringmodernizationstrategy.

Inaddition,itidentifiesissuestobeaddressedinthenearfuturealongsidefinancialaspectsofaviationsystemmodernization.Theincreasingimportanceofcollaborationandpartnershipasaviationrecognizesandaddressesitsmultidisciplinarychallengesaheadisalsostressed.

TheGANPalsooutlinesimplementationissuesinvolvingthenear‐termPBNandBlock0ModulesandthePlanningandImplementationRegionalGroups(PIRGs)thatwillbemanagingregionalprojects.

DescriptionsofimplementationprogrammesbeingpursuedbyICAOcompletechapter2,whilethefinalchapterexplorestheroleofthenewICAOAirNavigationReportinconjunctionwiththeIFSETenvironmentalperformancemonitoringtool.

SevenappendicesprovidesupplementaryinformationrelatingtotheevolutionoftheGANP,onlinesupportdocumentation,detaileddescriptionofASBUmodules,andthetechnologyroadmapssupportingtheBlockUpgrades.

‐4‐

Contents

ExecutiveSummary AddressingGrowthandRealisingthePromiseofTwenty‐firstCenturyAirTrafficManagement5NewCapabilitiestoServetheATMCommunity 7 WhatdoestheGlobalAirNavigationPlan’sStrategicApproachmeanforMyState?11

Introduction PresentationoftheGlobalAirNavigationPlan 12

Chapter1 ICAO’s10KeyAirNavigationPolicyPrinciples 13

Chapter2 Implementation:TurningIdeasintoAction 15 OurPriorities 15 •PBN:OurHighestPriority 15 •ModulePriorities 19 ICAOe‐ToolssupportingBlock0Roll‐Out 20 FlexibilityofGANPImplementation 21ATMLogicalArchitecture 21GuidanceonBusinessCaseDevelopment 21

Chapter3 AviationSystemPerformance 22

GlobalAirNavigationReport 22 MeasuringEnvironmentalPerformance:ICAOFuelSavingEstimationTool(IFSET) 22

Appendix1 GlobalAirNavigationPlanEvolutionandGovernance 25

Appendix2 AviationSystemBlockUpgrades 32

Appendix3 HyperlinkedOnlineSupportDocumentation 83

Appendix4 FrequencySpectrumConsiderations 87

Appendix5 TechnologyRoadmaps 88

Appendix6 ModuleDependencies 117

Appendix7 AcronymGlossary 119

-5-

ExecutiveSummary

AddressingGrowthandRealizingthePromiseofTwenty‐firstCenturyAirTrafficManagement(ATM)TheOperationalandEconomicContextfortheGlobalAirNavigationPlan

Airtransporttodayplaysamajorroleindrivingsustainableeconomicandsocialdevelopment.Itdirectlyandindirectlysupportstheemploymentof56.6millionpeople,contributesover$2.2trilliontoglobalGrossDomesticProduct(GDP),andcarriesover2.9billionpassengersand$5.3trillionworthofcargoannually.

Aviationachievesitsimpressivelevelofmacro‐economicperformancebyservingcommunitiesandregionsthroughclearcyclesofinvestmentandopportunity.Infrastructuredevelopmentgeneratesinitialemploymentandtheensuingairportandairlineoperationsgeneratenewsuppliernetworks,tourisminfluxesandaccessforlocalproducerstodistantmarkets.Theseburgeoningtradeandtourismeconomiesthencontinuetoexpand,fosteringwiderandmoresustainableregionalgrowth.

It’snomysterythenwhyairtrafficgrowthhassoconsistentlydefiedrecessionarycyclessincethemid‐1970s,expandingtwo‐foldonceevery15years.Itresistedtheserecessionspreciselybecauseitservedasoneofourmosteffectivetoolsforendingthem–animportantconsiderationforgovernmentsateverylevelinachallengingeconomicenvironment.

Butevenasairtransport’sspeedandefficiencysignificantlyfacilitateeconomicprogress,itsgrowthundercertaincircumstancescanbeadouble‐edgedsword.Thoughasuresignofincreasedlivingstandards,socialmobilityandgeneralizedprosperityontheonehand,unmanagedairtrafficgrowthcanalsoleadtoincreasedsafetyrisksinthosecircumstanceswhenitoutpacestheregulatoryandinfrastructuredevelopmentsneededtosupportit.

Toensurethatcontinuoussafetyimprovementandairnavigationmodernizationcontinuetoadvancehand‐in‐hand,ICAOhasdevelopedastrategicapproachlinkingprogressinbothareas.ThiswillnowallowStatesandstakeholderstorealizethesafe,sustainedgrowth,increasedefficiencyandresponsibleenvironmentalstewardshipthatsocietiesandeconomiesgloballynowrequire.

Thisisaviation’scorechallengeasweprogressintotheensuingdecades.

Fortunately,manyoftheproceduresandtechnologiesbeingproposedtoaddresstoday’sneedforincreasedcapacityandefficiencyinourskiesalsoenhancemanypositivefactorsfromasafetystandpoint.

Additionally,themoreefficientroutesfacilitatedbyperformance‐basedproceduresandadvancedavionicsservetosignificantlyreduceaviationemissions–akeyfactorsupportingmorefuel‐efficientmodernaircraftasaviationpursuesitscommitmenttocomprehensivelyreduceitsenvironmentalimpacts.

-6-

Driving Economic RecoveryAviation’s Global Impacts Source: ATAG; ICAO $2.2 trillionContributed to global GDP annually 2.9 billionPassengers annually $5.3 trillionCargo by value annually

The Pace and Resilience of Modern Air Traffic Growth Global air traffic has doubled in size once every 15 years since 1977 and will continue to do so. This growth occurs despite broader recessionary cycles and helps illustrate how aviation investment can be a key factor supporting economic recovery. Source: Airbus

-7-

NewCapabilitiestoServetheAviationCommunityProvidingFlexibilityforMemberStatesthroughtheConsultativeandCooperativeAviationSystemBlockUpgradeMethodologyAirNavigationhaswitnessedsomeimportantimprovementsinrecentdecades,withanumberofStatesandoperatorshavingpioneeredtheadoptionofadvancedavionicsandsatellite‐basedprocedures.

Andyetdespitetheseimportant,localizedadvancesinimplementingwhatisknownasPerformance‐basedNavigation(PBN),aconsiderableremainderoftheglobalAirNavigationsystemisstilllimitedbyconceptualapproachesthataroseinthetwentiethcentury.TheselegacyAirNavigationcapabilitieslimitairtrafficcapacityandgrowthandareresponsibleforunnecessarygasemissionsbeingdepositedinouratmosphere.

Afully‐harmonizedglobalairnavigationsystembuiltonmodernperformance‐basedproceduresandtechnologiesisasolutiontotheseconcerns.ThisgoalhasbeenonthemindsofCommunications,NavigationandSurveillance/AirTrafficManagement(CNS/ATM)plannersformanyyears.Becausetechnologyneverstandsstill,therealizationofastrategicpathtosuchagloballyharmonizedsystemhasprovenelusive.

ThesolutiontothisimpasseliesattheheartofICAO’scoremissionandvalues.OnlybybringingtogethertheStatesandstakeholdersfromeverycorneroftheaviationcommunitycanaviablesolutiontotwenty‐firstcenturyAirNavigationbedetermined.

ICAOthereforebegananintenseroundofcollaborationincludingtheGlobalAirNavigationIndustrySymposium(GANIS),thefirsteventofitskind.TheGANIS,inadditiontotheseriesofoutreacheventsprecedingitwhichICAOheldineveryworldregion,allowedICAOtotakefeedbackonwhathasnowbecomeknownastheAviationSystemBlockUpgrademethodology.

TheBlockUpgradesandtheirModulesdefineaprogrammaticandflexibleglobalsystemsengineeringapproachallowingallStatestoadvancetheirAirNavigationcapacitiesbasedontheirspecificoperationalrequirements.

ThiswillpermitallStatesandstakeholderstorealizetheglobal‐harmonization,increasedcapacity,andenvironmentalefficiencythatmodernairtrafficgrowthnowdemandsineveryregionaroundtheworld.

Importantly,theBlockUpgradestrategyrepresentsthelogicaloutcomeoftheCNS/ATMplanningandconceptsfoundintheGANP’spreviousthreeeditions.ItadditionallyensurescontinuitywiththeperformanceandoperationalconceptspreviouslydefinedbyICAOinearlierAirNavigationmanualsanddocuments.

Iftheairtransportsystemistocontinuetodriveglobaleconomicprosperityandsocialdevelopmenttotheextentthattheaviationcommunityandtheworldhavegrownaccustomed,especiallyinthefaceofexpectedregionaltrafficgrowthprojectionsandthepressingneedformoredeterminedandeffectiveclimate‐relatedstewardship,StatesmustfullyembracethenewBlockUpgradeprocessandfollowaunifiedpathtothefutureglobalAirNavigationsystem.

TheGlobalAirNavigationPlan’sAviationSystemBlockUpgrademethodologyisaprogrammaticandflexibleglobalsystemsengineeringapproachthatallowsallMemberStatestoadvancetheirAirNavigationcapacitiesbasedontheirspecificoperationalrequirements.TheBlockUpgradeswillenableaviationtorealizetheglobalharmonization,increasedcapacity,andimprovedenvironmentalefficiencythatmodernairtrafficgrowthnowdemandsineveryregionaroundtheworld.

-8-

GANPFourthEditionAviationSystemBlockUpgradeMethodology

PerformanceImprovementAreas

Block0(2013)Block1(2018)Block2(2023)Block3(2028onward)

AirportOperations

GloballyInteroperableSystemsandData

OptimumCapacityandFlexibleFlights

EfficientFlightPaths

Modules(actualnumberofmodulesperBlock/PerformanceAreamayvary)

-9-

The ICAO Block Upgrades (blue columns) refer to the target availability timelines for a group of operational improvements (technologies and procedures) that will eventually realize a fully-harmonized global Air Navigation System. The technologies and procedures for each Block have been organized into unique ‘Modules’ (smaller white squares) which have been determined and cross-referenced based on the specific Performance Improvement Area they relate to. ICAO has produced the systems engineering for its Member States so that they need only consider and adopt the Modules appropriate to their operational need.

Bywayofexample,Block‘0’(2013)featuresModulescharacterizedbyoperationalimprovementswhichhavealreadybeendevelopedandimplementedinmanypartsoftheworldtoday.Itthereforehasanear‐termimplementationperiodof2013–2018,whereby2013referstotheavailabilityofallcomponentsofitsparticularperformanceModulesand2018thetargetimplementationdeadline.ItisnotthecasethatallStateswillneedtoimplementeveryModule,andICAOwillbeworkingwithitsMemberstohelpeachdetermineexactlywhichcapabilitiestheyshouldhaveinplacebasedontheiruniqueoperationalrequirements.

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

PerformanceImprovementAreas

Block0(2013)Block1(2018)Block2(2023)Block3(2028onward)

-10-

GloballyInteroperableSystemsandData

ModuleB0–FICE

B0=BlockNumber

FICE=ThreadAcronym

Performancecapability:

Increasedinteroperability,efficiencyandcapacitythroughground‐groundintegration.

ModuleB1–FICE

Performancecapability:

Increasedinteroperability,efficiencyandcapacitythroughFF‐ICE/1applicationbeforedeparture.

ModuleB2–FICE

Performancecapability:

Improvedcoordinationthroughmulti‐centreground‐groundintegration:(FF‐ICE/1&FlightObject,SWIM).

ModuleB3–FICE

Performancecapability:

ImprovedoperationalperformancethroughtheintroductionofFullFF‐ICE.

AModule‘Thread’isassociatedwithaspecificperformanceimprovementarea.SomeoftheModulesineachconsecutiveBlockfeaturethesameThreadAcronym,indicatingthattheyareelementsofthesameperformanceimprovementareaasitprogressestoward(inthiscase)itstargetof‘globallyinteroperablesystemsanddata’.EveryModuleundertheBlockUpgradeapproachwillsimilarlyservetoprogresstowardsoneofthefourtargetPerformanceImprovementAreas.

-11-

WhatdoestheGlobalAirNavigationPlan’sStrategicApproachmeanformyState?

UnderstandingNear‐termImplementationandReportingRequirements

The2013–2028ICAOGlobalAirNavigationPlanpresentsallStateswithacomprehensiveplanningtoolsupportingaharmonizedglobalAirNavigationsystem.Itidentifiesallpotentialperformanceimprovementsavailabletoday,detailsthenextgenerationofgroundandavionicstechnologiesthatwillbedeployedworldwide,andprovidestheinvestmentcertaintyneededforStatestomakestrategicdecisionsfortheirindividualplanningpurposes.

OngoingAirNavigationimprovementprogrammesbeingundertakenbyanumberofICAOMemberStates(SESARinEurope;NextGenintheUnitedStates;CARATSinJapan;SIRIUSinBrazil,andothersinCanada,China,IndiaandTheRussianFederation)areconsistentwiththeASBUMethodology.TheseStatesarenowmappingtheirplanningtorespectiveBlockUpgradeModulesinordertoensurethenear‐andlonger‐termglobalinteroperabilityoftheirAirNavigationsolutions.

TheGANP’sBlockUpgradeplanningapproachalsoaddressesuserneeds,regulatoryrequirementsandtheneedsofAirNavigationServiceProvidersandAirports.Thisensuresone‐stop,comprehensiveplanning.

BasicmodulestoimplementasaminimumtosupportglobalinteroperabilitywerediscussedattheAN‐Conf/12.TheywillbedefinedinthenexttrienniumandbetakeninaccountintheRegionalPrioritiesagreedtobythePIRGS.AstheGANPprogresses,Moduleimplementationwillbefine‐tunedthroughregionalagreementsintheICAOPlanningandImplementationRegionalGroup(PIRG)process.

ThePIRGprocesswillfurtherensurethatallrequiredsupportingprocedures,regulatoryapprovalsandtrainingcapabilitiesaresetinplace.ThesesupportingrequirementswillbereflectedinregionalonlineAirNavigationPlans(eANPs)developedbythePIRGs,ensuringstrategictransparency,coordinatedprogressandcertaintyofinvestment.

WithrespecttoalloftheseregionalandStateplanningefforts,thedetailedinformationavailableintheGANP’stechnologyroadmaps(Appendix5)andModuledescriptions(Appendix2)willsignificantlyfacilitatethedevelopmentofbusinesscasesforanyoperationalbenefitbeingconsidered.

The2013–2028GlobalAirNavigationPlan:

•ObligesStatestomaptheirindividualorregionalprogrammesagainsttheharmonizedGANP,butprovidesthemwithfargreatercertaintyofinvestment.

•RequiresactivecollaborationamongStatesthroughthePIRGsinordertoco‐ordinateinitiativeswithinapplicableregionalAirNavigationPlans.

•ProvidesrequiredtoolsforStatesandregionstodevelopcomprehensivebusinesscaseanalysesastheyseektorealizetheirspecificoperationalimprovements.

-12-

Introduction

PresentationoftheGlobalAirNavigationPlan

ICAOisanorganizationofMemberStateswiththeobjectivetodeveloptheprinciplesandtechniquesofinternationalairnavigation,tofostertheplanninganddevelopmentofinternationaltransportpromotingthedevelopmentofallaspectsofinternationalcivilaeronautics.

TheICAOGlobalAirNavigationPlan(GANP)isanoverarchingframeworkthatincludeskeycivilaviationpolicyprinciplestoassistICAORegions,sub‐regionsandStateswiththepreparationoftheirRegionalandStateairnavigationplans.

TheobjectiveoftheGANPistoincreasecapacityandimproveefficiencyoftheglobalcivilaviationsystemwhilstimprovingoratleastmaintainingsafety.TheGANPalsoincludesstrategiesforaddressingtheotherICAOStrategicObjectives.

TheGANPincludestheAviationSystemBlockUpgrade(ASBU)framework,itsmodulesanditsassociatedtechnologyroadmapscoveringinteraliacommunications,surveillance,navigation,informationmanagementandavionics.

TheASBUsaredesignedtobeusedbytheRegions,sub‐regionsandStateswhentheywishtoadopttherelevantBlocksorindividualModulestohelpachieveharmonizationandinteroperabilitybytheirconsistentapplicationacrosstheRegionsandtheworld.

TheGANP,alongwithotherhigh‐levelICAOplans,willhelpICAORegions,sub‐regionsandStatesestablishtheirairnavigationprioritiesforthenext15years.

TheGANPoutlinesICAO’s10keycivilaviationpolicyprinciplesguidingglobal,regionalandStateairnavigationplanning.

-13-

Chapter1 ICAO’s10KeyAirNavigationPolicyPrinciples

01

CommitmenttotheImplementationofICAO’sStrategicObjectivesandKeyPerformanceAreas

ICAORegionalandStateAirNavigationPlanningwillcovereachofICAO’sStrategicObjectivesandall11ICAOKeyPerformanceAreas.

02

AviationSafetyisthehighestpriority

InAirNavigationplanningandinestablishingandupdatingtheirindividualAirNavigationPlans,ICAORegionsandStateswillgivedueconsiderationtothesafetyprioritiessetoutintheGlobalAviationSafetyPlan(GASP).

03

TieredApproachtoAirNavigationPlanning

ICAO’sGlobalAviationSafetyPlanandGlobalAirNavigationPlanwillguideandharmonizethedevelopmentofICAORegionalandindividualStateAirNavigationPlans.

ICAORegionalAirNavigationPlans,developedbytheRegionalPlanningandImplementationGroups(PIRGs),willalsoguideandharmonizethedevelopmentofindividualStateAirNavigationPlans.

WhendevelopingtheirRegionalAirNavigationPlans,PIRGSshouldaddresstheirintraandinter‐regionalissues.

04

GlobalAirTrafficManagementOperationalConcept(GATMOC)

TheICAOendorsedGATMOC(Doc9854)andcompanionmanuals,whichincludeinter‐alia,theManualonAirTrafficManagementSystemRequirements(Doc9882)andtheManualonGlobalPerformanceoftheAirNavigationSystem(Doc9883),willcontinuethroughtheirevolution,toprovideasoundglobalconceptualbasisforglobalairnavigationandairtrafficmanagementsystems.

05

GlobalAirNavigationPriorities

TheGlobalAirNavigationPrioritiesaredescribedintheGANP.ICAOshoulddevelopprovisions,supportingmaterialandprovidetraininginlinewiththeglobalprioritiesforairnavigation.

-14-

06

RegionalandStateAirNavigationPriorities

ICAOregions,sub‐regionsandindividualStatesthroughthePIRGsshouldestablishtheirownAirNavigationprioritiestomeettheirindividualneedsandcircumstancesinlinewiththeGlobalAirNavigationPriorities.

07

AviationSystemBlockUpgrades(ASBUs),ModulesandRoadmaps

TheASBUs,ModulesandRoadmapsformakeyAttachmenttotheGANP,notingthattheywillcontinuetoevolveasmoreworkisdoneonrefiningandupdatingtheircontentandinsubsequentdevelopmentofrelatedprovisions,supportmaterialandtraining.

08

UseofASBUBlocksandModules

AlthoughtheGANPhasaglobalperspective,itisnotintendedthatallASBUmodulesaretobeappliedaroundtheglobe.

WhentheASBUBlocksandModulesareadoptedbyregions,sub‐regionsorStatestheyshouldbefollowedincloseaccordancewiththespecificASBUrequirementstoensureglobalinteroperabilityandharmonizationofairtrafficmanagement.

ItisexpectedthatsomeASBUModuleswillbeessentialatthegloballevelandthereforemayeventuallybethesubjectofICAOmandatedimplementationdates.

09

CostBenefitandFinancialIssues

Theimplementationofairnavigationmeasures,includingthoseidentifiedintheASBUs,canrequiresignificantinvestmentoffiniteresourcesbyICAOregions,sub‐regions,Statesandtheaviationcommunity.

WhenconsideringtheadoptionofdifferentBlocksandModules,ICAOregions,sub‐regionsandStatesshouldundertakecost‐benefitanalysestodeterminethebusinesscaseforimplementationintheirparticularregionorState.

ThedevelopmentofguidancematerialoncostbenefitanalysiswillassistStatesinimplementingtheGANP.

10

ReviewandEvaluationofAirNavigationPlanning

ICAOshouldreviewtheGANPeverythreeyearsand,ifnecessary,allrelevantAirNavigationPlanningdocumentsthroughtheestablishedandtransparentprocess.

TheappendicestotheGANPshouldbeanalysedannuallybytheAirNavigationCommissiontoensuretheyremainaccurateandup‐to‐date.

-15-

TheprogressandeffectivenessofICAOregionsandStatesagainsttheprioritiessetoutintheirrespectiveregionalandStateairnavigationplansshouldbeannuallyreported,usingaconsistentreportingformat,toICAO.ThiswillassistregionsandStatesadjusttheirprioritiestoreflectactualperformanceandaddressanyemergingairnavigationissues.

Chapter2Implementation:TurningIdeasintoAction

OurPriorities

PBN:OurHighestPriority

PriortothedevelopmentoftheASBUModules,ICAOfocuseditseffortsonthedevelopmentandimplementationofPerformance‐basedNavigation(PBN),ContinuousDescentOperations(CDO),ContinuousClimbOperations(CCO)andRunwaySequencingcapabilities(AMAN/DMAN).

TheintroductionofPBNhasmettheexpectationsoftheentireaviationcommunity.Currentimplementationplansshouldhelpdeliveradditionalbenefitsbutremaincontingentuponadequatetraining,expertsupporttoStates,continuedmaintenanceanddevelopmentofinternationalSARPs,andclosercoordinationbetweenStatesandaviationstakeholders.

ConsideringtheflexibilitythatICAOhasintentionallybuiltintoitsBlockUpgradeapproach,thereareneverthelesssomeelementsoftheGANPthatwillneedtobeconsideredforworldwideapplicability.

ICAOAssemblyResolutionA37‐11,forexample,urgesallStatestoimplementairtrafficservices(ATS)routesandapproachproceduresinaccordancewiththeICAOPBNconcept.ThereforetheBlockModuleon‘Optimizationofapproachproceduresincludingverticalguidance’(B0‐APTA)shouldbeconsideredforimplementationbyallICAOMemberStatesinthenear‐term.

Additionally,fromtimetotimeitisessentialtoagreeonanextgenerationreplacementofexistingelementsthatnolongermeetglobalsystemrequirements.Themostrecentexampleistheadoptionofthe2012ICAOflightplan.Afutureexamplecouldbethereplacementfortheaeronauticalfixedtelecommunicationnetwork(AFTN),theglobalsystemthathasbeendistributingtheICAOflightplanforoverhalfacentury.

ThecharacterizationoftheparticularBlockModulesthatareconsiderednecessaryforthefuturesafetyorregularityofinternationalAirNavigation,andmayeventuallybecomeanICAOStandard,isessentialtothesuccessoftheGANP.Inthiscontext,awidesynchronizationofglobalorregionaldeploymenttimelineswillsometimesbenecessaryaswellasconsiderationwithrespecttopossibleimplementationagreementsormandates.

Approach‐relatedPBNProgress

ICAOA37‐11calledforimplementationofPBNRNPapproacheswithverticalguidance(APV)withsatellite‐basedaugmentationsystem(SBAS)orbarometricverticalnavigation(Baro‐VNAV).Whereverticalguidanceisnotavailable,lateralguidance,onlytomostinstrumentflightrules(IFR)runwayends,wasprescribedby2016.

AsaconsequenceofA37‐11,requirednavigationperformance(RNP)approaches(manyincorporatingverticalguidance)arebeingpublishedatagrowingratethroughouttheworld.MoreexactingRNPARapproacheshavealsobeendevelopedinanumberoflocationswhereterrainissuesmaylimitaccesstotheaerodrome.

WhilesomeStateswillbeabletoaddressA37‐11by2016,theobservedrateofimplementationofPBNRNPapproachesaroundtheworldcurrentlyindicatesthatthistargetisunlikelytobeachievedglobally.

-16-

EnvironmentalGainsthroughPBNTerminalProcedures.CDOandCCO

ManymajorairportsnowemployPBNproceduresand,inalargenumberofcases,judiciousdesignhasresultedinsignificantreductionsinenvironmentalimpacts.Thisisparticularlythecasewheretheairspacedesignhassupportedcontinuousdescentoperations(CDO)andcontinuousclimboperations(CCO).

CDOsfeatureoptimizedprofiledescentsthatallowaircrafttodescendfromthecruisetothefinalapproachtotheairportatminimumthrustsettings.Besidesthesignificantfuelsavingsthisachieves,CDOhastheadditionalenvironmentalbenefitofdecreasingairport/aircraftnoiselevels,significantlybenefitinglocalcommunities.Inadditiontothegeneralbenefitsinthisregard,derivedfromlessthrustbeingemployed,thePBNfunctionalityensuresthatthelateralpathcanalsoberoutedtoavoidmorenoise‐sensitiveareas.

ICAOhasestablishedguidancematerialontheimplementationofCDOsandisintheprocessofdevelopingtrainingmaterialandworkshopstofacilitateStateimplementations.BlockUpgradeModulesB0‐CDO,B1‐CDOandB2‐CDOwillservetoassistintheeffectiveoptimizationofperformancebenefitsachievableviaCDOimplementation.TheseModulesintegratewithotherairspaceandprocedurecapabilitiestoincreaseefficiency,safety,accessandpredictability.

AswithitsworkintheCDOarea,ICAOisalsointheprocessofdevelopingguidancematerialforCCOthatcanhavesimilarbenefitsfordepartures.BlockUpgradeModuleB0‐CCO,describedinAppendix2,hasbeendesignedtosupportandencourageCCOimplementation.

CCOdoesnotrequireaspecificairorgroundtechnology,butratherisanaircraftoperatingtechniqueaidedbyappropriateairspaceandproceduredesign.Operatingatoptimumflightlevelsisakeydrivertoimprovefuelefficiencyandminimizecarbonemissionsasalargeproportionoffuelburnoccursduringtheclimbphase.

Enablinganaircrafttoreachandmaintainitsoptimumflightlevelwithoutinterruptionwillthereforehelptooptimizeflightfuelefficiencyandreduceemissions.CCOcanprovideforareductioninnoise,fuelburnandemissions,whileincreasingflightstabilityandthepredictabilityofflightpathsforbothcontrollersandpilots.

Inbusyairspace,itisunlikelythatCCOcanbeimplementedwithoutthesupportofPBNtoensurestrategicseparationbetweenarrivinganddepartingtraffic.

ICAOhasrecentlypublishedManualsonCDOandCCO.Bothdocumentsprovideguidanceinthedesign,implementationandoperationofenvironmentallyfriendlyarrivalsanddepartures.

CDOsincombinationwithCCOscanensurethattheefficiencyofterminaloperationsissafelymaximizedwhiledeliveringsignificantlyreducedenvironmentalemissions.Inorderforthistobefullyimplemented,ATMtoolsandtechniques,especiallyArrivalandDepartureManagementtools,havetobeimplementedand/orupdatedtoensurethatarrivalanddepartureflowsaresmoothandappropriatelysequenced.

-17-

Fig.6:ContinuousDescentOperation(CDO).CDOsfeatureoptimizedprofilesthatallowaircrafttocomeinfromhighaltitudestotheairportatminimumthrustsettings,decreasingnoiseinlocalcommunitiesandusingupto30%lessfuelthanstandard‘stepped’approaches.

FAP

CDO

Steppedarrival/approach

AreaofMaximumNoiseBenefit

-18- NextSteps

PBNisacomplexandfundamentalchangeaffectingmultipledisciplinesandspecializationswithintheaviationworkforce.ItisalsoaStandards‐intensivearearequiringboththedevelopmentofnewStandardsandthefine‐tuningofexistingprovisions.

FutureimplementationofPBNinterminalairspaceisseenasakeyenablerfortheadvancedterminaloperationsenvisagedbyamatureATMmodernizationprogramme.

Inlightoftheseongoingareasofpriority,thefollowinghavebeenhighlightedasthekeyoutstandingareasofconcernforStatesandindustrytohelpensureeffectiveongoingimplementationofPBN:

Theneedforguidancematerial,workshopsandsymposia. Computer‐basedlearningpackages. FormaltrainingcoursestoensurethatPBNrequirementsandStandardsarefullyunderstoodand

properlyimplemented. Active,coordinatedsupportforcontinuingStandardsdevelopmentandamendment. Supportinordertoensureharmonizedandintegratedimplementationofrelatedtechnologiesand

supporttoolstooptimizeperformancecapabilityobjectives.

Fig.7:PBNasanenablerforoptimizationofcloselyspacedparallelrunwayoperations.

ThefirststageofPBNimplementationhasdrivenwidespreadconsolidationofexistingregionalrequirements.ICAOisnowfocusingonexpandingtheserequirementsinordertoachieveevengreaterefficienciesoverthenear‐andlonger‐term.

ThePBNconceptisbeingexpandedatpresenttoaccommodatenewapplications,twoofwhichaffectterminaloperations:

a)Advanced‐RNP(A‐RNP)willprovideasingleaircraftqualificationrequirementforallterminalanden‐routeapplications.Thissimplificationofapprovalsshould,intime,reducecoststooperatorsandimproveunderstandingamongpilotsandcontrollers.ThecorefunctionsofA‐RNPincludeRNP0.3onfinalapproach,RNP1inallotherterminalphasesandcontinentalen‐route,RNAVholdingandconstantradiusarctoafix(RF)functionalityoutsidefinalapproachinterminalairspace.Thiswillresultinimprovedtrackpredictabilityandshouldleadtocloserroutespacing.

b)A‐RNPoptionsinclude‘scalability’,TimeofArrivalControl,Baro‐VNAVandimprovedcontinuityrequirementsforoceanicandremoteoperations.

c)RNP0.3willenablehelicopteroperationswithreducedimpactonairspaceuseandimprovedaccessforbotharrivalsanddepartures.

Thefocusforen‐routeoperationswillbeonRNP2foroceanicandremoteapplicationsaswellasRNP1forcontinentalapplications.Essentialactivitywillbetheproductionofallnecessaryrequirementstosupportthenewapplications.

ItisanticipatedthatfuturePBNdevelopmentswillincludeRNPAR(authorizationrequired)departuresandnewoptionstoA‐RNP,includingtimeofarrivalcontrolinterminalairspace,improvedverticalnavigationoperationsandimprovedholdingperformance.

Tosupporthigh‐levelrequirementsonPBN,ICAOwillcontinuetocoordinatewithaviationstakeholderstodevelopmorein‐depthguidancematerialandassociatedtrainingdeliverables(on‐lineandclassroom).

-19-

PBNElectronicInformationKits

TocomplementthegrowingPBNrequirementsinairspace,ATM,flightcrew,andproceduredesigndomains,theOrganizationwillalsobefocusingonfacilitatingimplementationbyprovidinginstructionstoaviationprofessionalstailoredtotheirparticularresponsibilityanddomain.

Theseelectronicinformationpackageswillbemadeavailabletopilots,ANSPs,controllers,airspaceandproceduredesignersandanyotheraviationactorswithaspecificneedformoredetailedPBNreferencematerial.

ModulePriorities

TheneedtoprioritizePBNisclear.HowevertheinternationalcivilaviationcommunityhasalsomadeitclearthatICAOmustprovideguidancetoStatesonhowtoprioritizetheModules.TheTwelfthAirNavigationConferenceaffirmedthisbyrequestingICAOto“continuetoworkonguidancematerialforthecategorizationofBlockupgrademodulesforimplementationandprovideguidanceasnecessarytoPlanningandImplementationRegionalGroups(PIRGS)andStates”,(Recommendation6/12(c)).

Inadditiontothis,theConferencerequestedICAOtoidentifymodulesinBlock1consideredtobeessentialforimplementationatagloballevelintermsoftheminimumpathtoglobalinteroperabilityandsafetywithdueregardtoregionaldiversityforfurtherconsiderationbyStates”(Recommendation6.12(e)).

RespondingtotheaboveICAOhasdevelopedanewplanningflowchart(giveninAppendix1)fortheRegionswhichtakesintoaccounttheModulesaswellasRegionalPriorities.ThisinformationistobeusedbythePIRGstosettheprioritiesformoduleimplementationintheirRegion.

WhenestablishingRegionalPrioritiesforimplementation,theitemswhichareessentialforinter‐RegionalinteroperabilityandsafetyshallbetakeninaccountasstatedinConferenceRecommendation6.12(e).ItisexpectedthattheseitemsthereforemayeventuallybecomethesubjectofICAOStandardswithmandatedimplementationdates.

Electronic Information Package: PBN

Performance-based Navigation Executives Regulators ANSP A/C Operator Manufacturer

-20-

ICAOe‐ToolsSupportingBlock0Roll‐out

ICAOandglobalaviationstakeholdershavedevelopedaseriesofvideo‐basedandonlinetoolstoassistMemberStatesintheirunderstandingofwhattheBlock0Moduleswillconsistofandhowtheycanbeimplemented.

ICAO’swebsiteservesastheportalforcentralizedaccesstothesetools,inadditiontotheModule‐by‐ModuledescriptionsforMemberStatesandindustryreference.

TheOrganizationwillbeadvisingStatesandstakeholdersasadditionalreferenceandeducationalmaterialsbecomeaccessibleoverthenexttriennium.

ElectronicImplementationKits

ICAOhasdevelopedinformationkitsdescribingthecapabilitiesnowbeingimplementedforPerformance‐basedNavigation(PBN)andBlock0.

ThesekitswillserveasportablereferencesourcesprovidinganimationsillustratingthebenefitsoftheASBUModuleanddetailsonthedocumentedinformationneededtoimplementeach.

TrainingandHumanPerformanceConsiderations

Aviationprofessionalshaveanessentialroleinthetransitionto,andsuccessfulimplementationof,theGANP.Thesystemchangeswillaffecttheworkofmanyskilledpersonnelintheairandontheground,potentiallychangingtheirrolesandinteractionsandevenrequiringnewproficienciestobedeveloped.

ItiscriticalthereforethattheconceptsbeingdevelopedwithintheGANPtakeaccountofthestrengthsandweaknessesofexistingskilledpersonnelateveryjuncture.Allactorswithastakeinasafeairtransportationsystemwillneedtointensifyeffortstomanagerisksassociatedwithhumanperformanceandthesectorwillneedtoproactivelyanticipateinterfaceandworkstationdesign,trainingneedsandoperationalprocedureswhilepromulgatingbestpractices.

ICAOhaslongrecognizedthesefactorsandtheconsiderationofhumanperformanceinthecontextoftheBlockUpgraderequirementswillcontinuetoevolvethroughStateSafetyProgramme(SSP)andIndustrySafetyManagementSystems(SMS)approaches.

Amongstotherpriorities,themanagementofchangepertinenttotheBlockUpgradeevolutionshouldincludehumanperformance‐relatedconsiderationsinthefollowingareas:

a) Initialtraining,competenceand/oradaptationofnew/activeoperationalstaff.

b) Newrolesandresponsibilitiesandtaskstobedefinedandimplemented.

c) Socialfactorsandmanagementoftheculturalchangeslinkedtoincreasedautomation.

Humanperformanceneedstobeembeddedbothintheplanninganddesignphasesofnewsystemsandtechnologiesaswellasduringimplementation.Earlyinvolvementofoperationalpersonnelisalsoessential.

Sharingofinformationregardingthevariousaspectsofhumanperformanceandtheidentificationofhumanperformanceriskmanagementapproacheswillbeaprerequisiteforimprovingsafetyoutcomes.Thisisparticularlytrueintoday’saviationoperationalcontextandthesuccessfulimplementationoftheBlockUpgradesandothernewsystemsintothefuture.

-21-

Widespreadandeffectivemanagementofhumanperformanceriskswithinanoperationalcontextcannotbeachievedwithoutacoordinatedeffortfromregulators,industryserviceproviders,andoperationalpersonnelrepresentingalldisciplines.

FlexibilityofGANPImplementation

ICAO’sGANPestablishesarollingfifteenyearglobalplanninghorizon.

Theresultantframeworkisintendedprimarilytoensurethattheaviationsystemwillbemaintainedandenhanced,thatairtrafficmanagement(ATM)improvementprogrammesareeffectivelyharmonized,andthatbarrierstofutureaviationefficiencyandenvironmentalgainscanberemovedatareasonablecost.InthissensetheadoptionoftheASBUmethodologywillsignificantlyclarifyhowtheANSPandairspaceusersshouldplanforfutureequipage.

AlthoughtheGANPhasaworldwideperspective,itisnotintendedthatallBlockModulesarerequiredtobeappliedineveryStateandregion.ManyoftheBlockUpgradeModulescontainedintheGANParespecializedpackagesthatshouldbeappliedonlywherethespecificoperationalrequirementexistsorcorrespondingbenefitscanberealisticallyprojected.

TheinherentflexibilityintheASBUmethodologyallowsStatestoimplementModulesbasedontheirspecificoperationalrequirements.UsingtheGANP,RegionalandStateplannersshouldidentifythoseModuleswhichprovideanyneededoperationalimprovements.AlthoughtheBlockupgradesdonotdictatewhenorwhereaparticularModuleistobeimplemented,thismaychangeinthefutureshouldunevenprogresshinderthepassageofaircraftfromoneregionofairspacetoanother.

Theregularreviewofimplementationprogressandtheanalysisofpotentialimpedimentswillultimatelyensuretheharmonioustransitionfromoneregiontoanotherfollowingmajortrafficflows,aswellaseasethecontinuousevolutiontowardstheGANP’sperformancetargets.

ATMLogicalArchitecture

TheTwelfthAirNavigationConferencerequestedICAOtodevelopaGlobalATMlogicalarchitecturetosupporttheGANPandplanningworkbyRegionsandStates.Thisworkwillbecarriedoutduringthenexttriennium.ThislogicalarchitecturewillcomplementtheBlockUpgradeswhilealsoprovidingagraphicallinkagebetween:

a) TheASBUModulesandtheelementsoftheGlobalOperationalConcept.

b) TheASBUModulesandtheintendedoperationalenvironmentandtheexpectedperformancebenefits.

GuidanceonBusinessCaseDevelopment

Duringthetriennium,ICAOwilldevelopguidancematerialonbusinesscaseanalysisanddevelopment.OncecompletethismanualwillbeavailabletoallStatestoassistinthedevelopmentofbusinesscasestodeterminethefinancialviabilityoftheBlockModulesselectedforimplementation.

-22-

Chapter3AviationSystemPerformanceGlobalAirNavigationReport

Followingtheendorsementofaperformance‐basedapproachtoAirNavigationplanningandimplementationbytheEleventhAirNavigationConferencein2003,aswellasthe35thSessionoftheICAOAssemblyin2004,ICAOcompletedthedevelopmentofrelevantguidancematerialinearly2008Doc9883‐ManualonGlobalPerformanceoftheAirNavigationSystem.

By2009,allPIRGs,whileadoptingaregionalperformanceframework,invitedStatestoimplementanationalperformanceframeworkforAirNavigationsystemsonthebasisofICAOguidancematerialandalignedwiththeregionalperformanceobjectives,existingRegionalAirNavigationPlans,andtheGlobalATMOperationalConcept.

Thenextstepcalledforperformancemonitoringthroughanestablishedmeasurementstrategy.WhilePIRGsareprogressivelyidentifyingasetofregionalperformancemetrics,Statesinthemeantimehaverecognizedthatdatacollection,processing,storageandreportingactivitiessupportingtheregionalperformancemetricsarefundamentaltothesuccessofperformance‐basedstrategies.

TheAirNavigationplanningandimplementationperformanceframeworkprescribesreporting,monitoring,analysisandreviewactivitiesbeingconductedonacyclical,annualbasis.TheAirNavigationreportingformwillbethebasisforperformancemonitoringrelatingtoBlockUpgradeimplementationattheregionalandnationallevels.

ReportingandmonitoringresultswillbeanalyzedbyICAOandaviationstakeholdersandthenutilizedindevelopingtheannualGlobalAirNavigationReport.

ThereportresultswillprovideanopportunityfortheworldcivilaviationcommunitytocompareprogressacrossdifferentICAOregionsintheestablishmentofAirNavigationinfrastructureandperformance‐basedprocedures.

TheywillalsoprovidetheICAOCouncilwithdetailedannualresultsonthebasisofwhichtacticaladjustmentswillbemadetotheworkprogramme,aswellastriennialpolicyadjustmentstotheGANP.

MeasuringEnvironmentalPerformance:ICAOFuelSavingsEstimationTool(IFSET)

RecognizingthedifficultyfacedbymanyStatesinassessingtheenvironmentalbenefitsoftheirinvestmentsinoperationalmeasurestoimprovefuelefficiency,ICAO,incollaborationwithsubjectmatterexpertsandotherinternationalorganizations,hasdevelopedtheICAOFuelSavingsEstimationTool(IFSET).

IFSEThelpstoharmonizeStatefuel‐savingsassessmentsconsistentwithmoreadvancedmodelsalreadyapprovedbytheCommitteeonAviationEnvironmentalProtection(CAEP).Itwillestimatethedifferenceinfuelmassconsumedbycomparingapre‐implementation(i.e.baseline)caseagainstapost‐implementationcase(i.e.afteroperationalimprovements),asillustratedbelow.

-23-

Fig.8:IFSETnotionalfluxogram.

Fig.9:Notionalillustrationoffuelsavings.

Theselectionofthebaselinecaseisanimportantstepoftheprocess.Itwillbedefinedbytheuserandcouldcorrespondto:

a) Thepublishedorplannedprocedure(AIP,flightplan)scenarios;

b) Dailypractices;

c) Acombinationofa)andb);

d) Othercriteriaasappropriate.

Current Operational Scenario Operational Improvement Improved Operational Scenario Aircraft Performance Database IFSET INTERFACE Aircraft Movements Information Estimated Fuel Consumption & Savings

Baseline Fuel Consumption Level segments Post-Operational Improvement Fuel Consumption Optimized descent Baseline minus Post-operational Consumption = Fuel Saved

-24- Inordertocomputethefuelconsumedintwodifferentscenarios,thenumberofoperationsbyaircraftcategorywillbenecessary,inadditiontoacombinationofthefollowingelementsthatdescribesbothscenarios:

a) Averagetaxitime;

b) Timespentordistanceflownataspecificaltitude;

c) Topofdescentandbottomofdescent;

d) Baseofclimbandtopofclimb;

e) Distanceflowninaclimbordescentprocedure.

IFSETwasrolled‐outtoICAOMemberStatesthroughaseriesofworkshopsduring2012.Itwasdevelopednottoreplacetheuseofdetailedmeasurementormodellingtoolsregardingfuelsavings,butrathertoassistthoseStateswithoutthefacilitytoestimatethebenefitsfromoperationalimprovementsinastraightforwardandharmonizedmanner.

-25-

Appendix1:GlobalAirNavigationPlanEvolution&Governance

ContinuedevolutionoftheGANP

ThenewGANPhasitsrootsinanappendixtoa1993reportonwhatwasthentermedtheFutureAirNavigationSystem(FANS).TheserecommendationswerefirstpresentedastheFANSConceptandlaterbecamereferredtomoregenerallyasCNS/ATM.

TheFANSinitiativehadansweredarequestfromICAO’sMemberStatesforplanningrecommendationsonhowtoaddressairtransport’ssteadyglobalgrowththroughthecoordinationofemergingtechnologies.Asresearchanddevelopmentintothesetechnologiesacceleratedrapidlyduringthe1990s,thePlananditsconceptsadvancedwiththem.

AstandaloneversionwaspublishedastheICAOGlobalAirNavigationPlanforCNS/ATMSystems(Doc9750)in1998,thesecondeditionofwhichwasreleasedin2001.DuringthisperiodthePlanservedtosupportStateandregionalplanningandprocurementneedssurroundingCNS/ATMsystems.

By2004,ICAO’sMemberStatesandtheairtransportindustryatlargehadbeguntoencouragethetransitioningofthePlan’sconceptsintomorepractical,real‐worldsolutions.TwoATMimplementationroadmaps,madeupofspecificoperationalinitiatives,wereconsequentlydevelopedonacollaborativebasisbydedicatedICAO/industryprojectteams.

TheoperationalinitiativescontainedintheroadmapswerelaterrenamedGlobalPlanInitiatives(GPIs)andincorporatedintotheThirdEditionoftheGANP.ThefollowingillustrationdepictsthePlan’sevolutionuptothe2013–2028GANP:

GlobalAirNavigationPlanApproval

TheGANPhasundergonesignificantchange,drivenmainlybyitsnewroleasahigh‐levelpolicydocumentguidingcomplementaryandsector‐wideairtransportprogressinconjunctionwiththeICAOGlobalAviationSafetyPlan.

TheGANPdefinesthemeansandtargetsbywhichICAO,StatesandaviationstakeholderscananticipateandefficientlymanageairtrafficgrowthwhileproactivelymaintainingorincreasingSafetyoutcomes.Theseobjectiveshavebeendevelopedthroughextensiveconsultationwithstakeholdersandconstitutethebasisforharmonizedactionattheglobal,regionalandnationallevel.

TheneedtoensureconsistencybetweentheGANPandtheStrategicObjectivesofICAOnecessitatesplacingthishigh‐levelpolicydocumentundertheauthorityoftheICAOCouncil.TheGANPanditsamendmentsarethereforeapprovedbytheCouncilpriortoeventualbudget‐relateddevelopmentsandendorsementbyanAssembly.

InlinewiththetenthICAOAirNavigationPolicyPrinciple,ICAOwillreviewtheGANPeverythreeyearsandifnecessary,allrelevantAirNavigationPlanningdocumentsthroughtheestablishedandtransparentprocess.

TheAppendicestotheGANPshouldbeanalysedannuallybytheAirNavigationCommissiontoensurethattheyremainaccurateandup‐to‐date.

-26-

Fig.10: Documentandoperationalconceptevolutionleadingtothe2013–2028GANP.

Appendix to FANS Report 1993 GANP Doc9750 Edition 1 1998 GANP Doc9750 Edition 2 2001 GANP Doc9750 Edition 3 2006 GANP Doc9750 Edition 4 2013 Global ATM Operational Concept Doc9854 2005 ATM System Requirements Doc9882 2008 Global Performance Manual Doc9883 2008

Includes ASBU Methodology Addresses ANSP, Regulator AND User requirements Encompasses Performance Framework

-27-

FromtheGANPtoRegionalPlanning

AlthoughtheGANPhasaglobalperspective,itisnotintendedthatallASBUmodulesareimplementedatallfacilitiesandinallaircraft.Nevertheless,coordinationofdeploymentactionsbythedifferentstakeholders,withinaState,andwithinoracrossregionsareexpectedtodelivermorebenefitsthanimplementationsconductedonanadhocorisolatedbasis.Furthermore,anoverallintegrateddeploymentofasetofmodulesfromseveralthreadsatanearlystagecouldgenerateadditionalbenefitsdownstream.

GuidedbytheGANP,theRegionalplanningprocessaswellasNationalplanningshouldbealignedandusedtoidentifythosemoduleswhichbestprovidesolutionstotheoperationalneedsidentified.Dependingonimplementationparameterssuchasthecomplexityoftheoperatingenvironment,theconstraintsandtheresourcesavailable,regionalandnationalimplementationplanswillbedevelopedinalignmentwiththeGANP.Thisplanningrequiresinteractionbetweenstakeholdersincludingregulators,usersoftheaviationsystem,theAirNavigationServiceProviders(ANSP’s)andAerodromeoperatorsinordertoobtaincommitmentstoimplementation.

Accordingly,deploymentsonaglobal,regionalandsub‐regionalbasisandultimatelyatStatelevelshouldbeconsideredasanintegralpartoftheglobalandregionalplanningprocessthroughtheplanningandimplementationregionalgroups(PIRGs).Inthisway,deploymentarrangementsincludingapplicabilitydatescanbeagreedandcollectivelyappliedbyallstakeholdersinvolved.

Forsomemodulesworldwideapplicabilitywillbeessential;theymay,therefore,eventuallybecomethesubjectofICAOStandardswithmandatedimplementationdates.

Inthesameway,somemodulesarewellsuitedforregionalorsub‐regionaldeploymentandtheregionalplanningprocessesunderthePIRGaredesignedtoconsiderwhichmodulestoimplementregionally,underwhichcircumstancesandaccordingtoagreedtimeframes.

Forothermodules,implementationshouldfollowcommonmethodologiesdefinedeitherasRecommendedPracticesorStandardsinordertoleaveflexibilityinthedeploymentprocessbutensureglobalinteroperabilityatahighlevel.

-28-

Regional situation Analysis GANP PIRG Human Resources Training Full life-Cycle Costs Stakeholder Commitments Monitoring Assessment Prioritization Identify & Mitigate Gaps Select Relevant Modules Elaborate/Refine Scenarios Options Perform initial CBA/Sensitivity Analysis Assess Impact on Priorities Set Strategies and Objectives Update Regional Implementation Plans Update National Plans Implementation

-29-

GANPUpdateProcess

TheGlobalAirNavigationPlanhasundergonesignificantchange,drivenmainlybyitsnewroleasahigh‐levelpolicydocumentguidingcomplementaryandsector‐wideairtransportprogress.

TheGlobalAirNavigationandSafetyPlansdefinethemeansandtargetsbywhichICAO,StatesandaviationstakeholderscananticipateandefficientlymanageairtrafficgrowthwhileproactivelymaintainingorincreasingSafetyoutcomes.Theseobjectiveshavebeendevelopedthroughextensiveconsultationwithstakeholdersandconstitutethebasisforharmonizedactionattheglobal,regionalandnationallevel.

TheneedtoensureconsistencybetweentheGANPandtheStrategicObjectivesofICAOnecessitatesplacingthishigh‐levelpolicydocumentundertheauthorityoftheICAOCouncil.TheGANPanditsamendmentsarethereforeapprovedbytheCouncilpriortoeventualbudgetrelateddevelopmentsandendorsementbyanAssembly.

InlinewiththetenthICAOAirNavigationPolicyPrinciple,ICAOshouldreviewtheGANPeverythreeyearsandifnecessary,allrelevantAirNavigationPlanningdocumentsthroughtheestablishedandtransparentprocess.

TheICAOAirNavigationCommissionwillreviewtheGANPaspartoftheannualworkprogramme,reportingtotheCounciloneyearinadvanceofeachICAOAssembly.TheANCreportwillperformthefollowingbasedonoperationalconsiderations:

1.ReviewglobalprogressmadeintheimplementationoftheASBUModulesandTechnologyRoadmapsandtheachievementofsatisfactoryairnavigationperformancelevels;

2.ConsiderlessonslearnedbyStatesandindustry;

3.Considerpossiblechangesinfutureaviationneeds,theregulatorycontextandotherinfluencingfactors;

4.Considerresultsofresearch,developmentandvalidationonoperationalandtechnologicalmatterswhichmayaffecttheASBUModulesandTechnologyRoadmapsand;

5.ProposeadjustmentstothecomponentsoftheGANP.

FollowingapprovalbytheCouncil,theupdatedGANPanditsspecifiedsupportingdocumentswillthenbesubmittedforendorsementbyICAOMemberStatesatthefollowingICAOAssembly.

FollowingRecommendation1/1b)ofthe12thAirNavigationConference,theGANPwillbesubmittedtoStatesbeforeapproval.

-30-

Regional Implementation, Monitoring and New Requirements GANP n ANC Review Proposals for change to the GANP

Review of the global progress Technological and regulatory developments Lessons learned by States and Industry

Consultation with States ANC Report to Council Council Approval Assembly Endorsement GANP n+1

-31-

ICAOCompanionPublicationssupportingthe2013–2028GANP

Asdetailedonpage89,theGlobalPlanningInitiatives(GPIs)andappendicesoftheThirdEditionoftheGANPcomprisepartofthesupportingdocumentationfortheGANP.ThreeICAOcompaniondocuments,reflectedinthefigure10onpage32anddescribedinmoredetailbelow,arealsoinstrumentalinpermittingICAOandtheaviationcommunitytodefinetheconceptsandtechnologiesthateventuallymadetheGANP’ssystemsengineeringapproachpossible:

GlobalAirTrafficManagementOperationalConcept(Doc9854)

TheGlobalATMOperationalConcept(GATMOC)waspublishedin2005.Itsetouttheparametersforanintegrated,harmonizedandgloballyinteroperableATMsystemplannedupto2025andbeyond.Doc9854canservetoguidetheimplementationofCNS/ATMtechnologybyprovidingadescriptionofhowtheemergingandfutureATMsystemshouldoperate.TheGATMOCalsointroducedsomenewconcepts:

a) PlanningbasedonATMsystemperformance.

b) Safetymanagementthroughthesystemsafetyapproach.

c) AsetofcommonperformanceexpectationsoftheATMcommunity.

ManualonAirTrafficManagementSystemRequirements(Doc9882)

Doc9882,publishedin2008,isusedbyPIRGsaswellasbyStatesastheydeveloptransitionstrategiesandplans.Itdefinesthehigh‐levelrequirements(i.e.ATMsystemrequirements)tobeappliedwhendevelopingStandardsandRecommendedPractices(SARPs)tosupporttheGATMOC.Thisdocumentprovideshigh‐levelsystemrequirementsrelatedto:

a) Systemperformance‐basedonATMcommunityexpectations.

b) Informationmanagementandservices.

c) Systemdesignandengineering.

d) ATMconceptelements(fromtheGATMOC).

ManualonGlobalPerformanceoftheAirNavigationSystem(Doc9883)

Thisdocument,publishedin2008,isaimedatpersonnelresponsiblefordesigning,implementingandmanagingperformanceactivities.Itachievestwokeyobjectives:

a) Itoutlinesperformanceframeworkandperformance‐basedstrategyfromtheperformanceconceptsprovidedintheGATMOC.

b) ItanalyzesATMcommunityexpectationsandcategorizestheseintokeyperformanceareas(KPAs)fromwhichpracticalmetricsandindicatorscanbedeveloped.

Doc9883alsoprovidesorganizationswiththetoolstodevelopanapproachtoperformancemanagementsuitedtotheirlocalconditions.

-32-

Appendix2:AviationSystemBlockUpgrades

Introduction:AviationSystemBlockUpgrades

TheGlobalAirNavigationPlanintroducesasystemsengineeringplanningandimplementationapproachwhichhasbeentheresultofextensivecollaborationandconsultationbetweenICAO,itsMemberStatesandindustrystakeholders.

ICAOdevelopedtheBlockUpgradeglobalframeworkprimarilytoensurethataviationSafetywillbemaintainedandenhanced,thatATMimprovementprogrammesareeffectivelyharmonized,andthatbarrierstofutureaviationefficiencyandenvironmentalgainscanberemovedatreasonablecost.

TheBlockUpgradesincorporatealong‐termperspectivematchingthatofthethreecompanionICAOAirNavigationplanningdocuments.Theycoordinateclearaircraft‐andground‐basedoperationalobjectivestogetherwiththeavionics,datalinkandATMsystemrequirementsneededtoachievethem.Theoverallstrategyservestoprovideindustry‐widetransparencyandessentialinvestmentcertaintyforoperators,equipmentmanufacturersandANSPs.

Thecoreoftheconceptislinkedtofourspecificandinterrelatedaviationperformanceimprovementareas,namely:

a) Airportoperations.

b) Globally‐interoperablesystemsanddata.

c) Optimumcapacityandflexibleflights.

d) Efficientflightpaths.

TheperformanceimprovementareasandtheASBUModulesassociatedwitheachhavebeenorganizedintoaseriesoffourBlocks(Blocks0,1,2and3)basedontimelinesforthevariouscapabilitiestheycontain,asillustratedbelow.

-33-

Fig.3:DepictingBlock0–3availabilitymilestones,PerformanceImprovementAreas,andtechnology/procedure/capabilityModules.

PerformanceImprovementAreas

Block0(2013)Block1(2018)Block2(2023)Block3(2028onward)

AirportOperations

GloballyInteroperableSystemsandData

OptimumCapacityandFlexibleFlights

EfficientFlightPaths

Modules(actualnumberofmodulesperBlock/PerformanceAreamayvary)

-34-

Block0featuresModulescharacterizedbytechnologiesandcapabilitieswhichhavealreadybeendevelopedandimplementedinmanypartsoftheworldtoday.Itthereforefeaturesanear‐termavailabilitymilestone,orInitialOperatingCapability(IOC),of2013basedonregionalandStateoperationalneed.Blocks1through3arecharacterizedbybothexistingandprojectedperformanceareasolutions,withavailabilitymilestonesbeginningin2018,2023and2028respectively.

Associatedtimescalesareintendedtodepicttheinitialdeploymenttargetsalongwiththereadinessofallcomponentsneededfordeployment.ItmustbestressedthataBlock’savailabilitymilestoneisnotthesameasadeadline.ThoughBlock0’smilestoneissetat2013,forexample,itisexpectedthatthegloballyharmonizedimplementationofitscapabilities(aswellastherelatedStandardssupportingthem)willbeachievedoverthe2013to2018timeframe.ThesameprincipleappliesfortheotherBlocksandthereforeprovidesforsignificantflexibilitywithrespecttooperationalneed,budgetingandrelatedplanningrequirements.

WhilethetraditionalAirNavigationplanningapproachaddressesonlyANSPneeds,theASBUmethodologycallsforaddressingregulatoryaswellasuserrequirements.TheultimategoalistoachieveaninteroperableglobalsystemwherebyeachStatehasadoptedonlythosetechnologiesandprocedurescorrespondingtoitsoperationalrequirements.

UnderstandingModulesandThreads

EachblockismadeupofdistinctModules,asshowninthepreviousillustrationsandthosebelow.ModulesonlyneedtobeimplementedifandwhentheysatisfyanoperationalneedinagivenState,andtheyaresupportedbyprocedures,technologies,regulationsorStandardsasnecessary,aswellasabusinesscase.

AModuleisgenerallymadeupofagroupingofelementswhichdefinerequiredCNSUpgradecomponentsintendedforaircraft,communicationsystems,airtrafficcontrol(ATC)groundcomponents,decisionsupporttoolsforcontrollers,etc.ThecombinationofelementsselectedensuresthateachModuleservesasacomprehensiveandcohesivedeployableperformancecapability.

AseriesofdependentModulesacrossconsecutiveBlocksisthereforeconsideredtorepresentacoherenttransition‘Thread’intime,frombasictomoreadvancedcapabilityandassociatedperformance.ModulesarethereforeidentifiedbybothaBlocknumberandaThreadacronym,asillustratedbelow.

EachThreaddescribestheevolutionofagivencapabilitythroughthesuccessiveBlocktimelinesaseachModuleisimplementedrealizingaperformancecapabilityaspartoftheGlobalAirTrafficManagementOperationalConcept(Doc9854).

-35-

Fig.4: AModuleThreadisassociatedwithaspecificperformanceimprovementarea.NotethattheModulesineachconsecutiveBlockfeaturethesameThreadAcronym(FICE),indicatingthattheyareelementsofthesameOperationalImprovementprocess.

PerformanceImprovementAreas

Block0(2013)Block1(2018)Block2(2023)Block3(2028onward)

GloballyInteroperableSystemsandData

ModuleB0–FICE

B0=BlockNumber

FICE=ThreadAcronym

Performancecapability:

Increasedinteroperability,efficiencyandcapacitythroughground‐groundintegration.

ModuleB1–FICE

Performancecapability:

Increasedinteroperability,efficiencyandcapacitythroughFF‐ICE/1applicationbeforedeparture.

-36- ModuleB2–FICE

Performancecapability:

Improvedcoordinationthroughmulti‐centreground‐groundintegration:(FF‐ICE/1&FlightObject,SWIM).

ModuleB3–FICE

Performancecapability:

ImprovedoperationalperformancethroughtheintroductionofFullFF‐ICE.

-37-

StandardsandRecommendedPracticesDevelopmentPlan

Duringthetriennium,ICAOwilldevelopacomprehensiveplanforthedevelopmentofSARPsandGuidancematerialtosupporttheASBUs.OncecompletethiswillbecomeanappendixtotheFifthEditionoftheGlobalAirNavigationPlantobepresentedtothe39thAssemblyofICAO.

Aspartofthedevelopmentofthisplan,ICAOwill:

a) Establishprioritiesforstandardsdevelopment

b) CoordinatedevelopmentofICAOstandardsinrelationtoIndustry‐developedTechnicalSpecifications.

BlockUpgradeTechnologyRoadmaps

TechnologyroadmapscomplementtheASBUmodulesbyprovidingtimelinesforthetechnologythatwillsupporttheCommunications,NavigationandSurveillance(CNS),InformationManagement(IM)andavionicsrequirementsoftheglobalAirNavigationsystem.

Theseroadmapsprovideguidanceforinfrastructureplanning(andstatus)byindicatingonaper‐technologybasistheneedforandreadinessof:

a) Existinginfrastructure.

b) ICAOStandardsandguidancematerial.

c) Demonstrationsandvalidations.

d) InitialOperationalCapability(IOC)ofemergingtechnologies.

e) Globalimplementation.

WhilethevariousBlockUpgradeModulesdefinetheexpectedoperationalimprovementsanddrivethedevelopmentofallthatisrequiredforimplementation,thetechnologyroadmapsdefinethelifespanofthespecifictechnologiesneededtoachievethoseimprovements.Mostimportantly,theyalsodriveglobalinteroperability.

Investmentdecisionsareneededwellinadvanceoftheprocurementanddeploymentoftechnologyinfrastructure.Thetechnologyroadmapsprovidecertaintyfortheseinvestmentdecisionsastheyidentifythepre‐requisitetechnologiesthatwillprovidetheoperationalimprovementsandrelatedbenefits.Thisiscriticallyimportantasinvestmentsinaviationinfrastructurearehardlyreversibleandanygapintechnologicalinteroperabilitygeneratesconsequencesinthemedium‐andlong‐term.

Theyarealsousefulindeterminingequipmentlifecycleplanning,i.e.maintenance,replacementandeventualdecommissioning.TheCNSinvestmentsrepresentthenecessarybaselineuponwhichtheoperationalimprovementsandtheirassociatedbenefitscanbeachieved.

Itmustbenotedthataccordingtotheachievementsoverthepastthirtyyears,thetypicalCNSdeploymentcycleforlargescaleobjectiveshasbeenoftheorderof20to25years(includinggrounddeploymentandaircraftforwardandretrofits).

-38- Sincenostrategycantakeintoaccountalldevelopmentsthatoccurinaviationovertime,thetechnologyroadmapswillbesystematicallyreviewedandupdatedonatrienniumcycle.AninteractiveonlineversionoftheroadmapswillalsoallowuserstoretrievedetailedinformationonspecificBlockModulesandadditionalcross‐references.

TheroadmapsarepresentedinAppendix5asdiagramswhichidentifytherelationshipsbetweenthespecificModulesandassociatedenablingtechnologiesandcapabilities.Theyareaccompaniedbybriefexplanationstosupporttheirunderstandingandthatofthechallengesfaced.

-39-

SchematicDiagramofBlockUpgrades

PerformanceImprovementArea1:AirportOperations

Block0

B0‐APTA

OptimizationofApproachProceduresincludingverticalguidance

ThisisthefirststeptowarduniversalimplementationofGNSS‐basedapproaches.

B0‐WAKE

IncreasedRunwayThroughputthroughOptimizedWakeTurbulenceSeparation

ImprovedthroughputondepartureandarrivalrunwaysthroughtherevisionofcurrentICAOwakevortexseparationminimaandprocedures.

B0‐RSEQ

ImprovedTrafficFlowthroughSequencing(AMAN/DMAN)

Time‐basedmeteringtosequencedepartingandarrivingflights.

B0‐SURF

SafetyandEfficiencyofSurfaceOperations(A‐SMGCSLevel1‐2)

AirportsurfacesurveillanceforANSP.

B0‐ACDM

ImprovedAirportOperationsthroughAirport‐CDM

Airportoperationalimprovementsthroughthewayoperationalpartnersatairportsworktogether.

Block1

-40-

B1‐APTA

OptimisedAirportAccessibility

ThisisthenextstepintheuniversalimplementationofGNSS‐basedapproaches.

B1‐WAKE

IncreasedRunwayThroughputthroughDynamicWakeTurbulenceSeparation

Improvedthroughputondepartureandarrivalrunwaysthroughthedynamicmanagementofwakevortexseparationminimabasedonthereal‐timeidentificationofwakevortexhazards.

B1‐RSEQ

ImprovedAirportoperationsthroughDeparture,SurfaceandArrivalManagement

Extendedarrivalmetering,Integrationofsurfacemanagementwithdeparturesequencingbringrobustnesstorunwaysmanagementandincreaseairportperformancesandflightefficiency.

B1‐SURF

EnhancedSafetyandEfficiencyofSurfaceOperations‐SURF,SURFIAandEnhancedVisionSystems(EVS)

AirportsurfacesurveillanceforANSPandflightcrewswithsafetylogic,cockpitmovingmapdisplaysandvisualsystemsfortaxioperations.

B1‐ACDM

OptimizedAirportOperationsthroughAirport‐CDM

Airportoperationalimprovementsthroughthewayoperationalpartnersatairportsworktogether.

B1‐RATS

RemotelyOperatedAerodromeControl

RemotelyoperatedAerodromeControlTowercontingencyandremoteprovisionofATStoaerodromesthroughvisualisationsystemsandtools.

-41-

Block2

B2‐WAKE(*)

AdvancedWakeTurbulenceSeparation

(Time‐based)

Theapplicationoftime‐basedaircraft‐to‐aircraftwakeseparationminimaandchangestotheprocedurestheANSPusestoapplythewakeseparationminima.

B2‐RSEQ

LinkedAMAN/DMAN

SynchronisedAMAN/DMANwillpromotemoreagileandefficienten‐routeandterminaloperations.

B2‐SURF

OptimizedSurfaceRoutingandSafetyBenefits(A‐SMGCSLevel3‐4andSVS)

Taxiroutingandguidanceevolvingtotrajectorybasedwithground/cockpitmonitoringanddatalinkdeliveryofclearancesandinformation.Cockpitsyntheticvisualizationsystems.

Block3

B3‐RSEQ

IntegratedAMAN/DMAN/SMAN

Fullysynchronizednetworkmanagementbetweendepartureairportandarrivalairportsforallaircraftintheairtrafficsystematanygivenpointintime.

-42- PerformanceImprovementArea2:

GloballyInteroperableSystemsandData–ThroughGloballyInteroperableSystemWideInformationManagement

Block0

B0‐FICE

IncreasedInteroperability,EfficiencyandCapacitythroughGround‐GroundIntegration

Supportsthecoordinationofground‐grounddatacommunicationbetweenATSUbasedonATSInter‐facilityDataCommunication(AIDC)definedbyICAODocument9694.

B0‐DATM

ServiceImprovementthroughDigitalAeronauticalInformationManagement

Initialintroductionofdigitalprocessingandmanagementofinformation,bytheimplementationofAIS/AIMmakinguseofAIXM,movingtoelectronicAIPandbetterqualityandavailabilityofdata.

B0‐AMET

Meteorologicalinformationsupportingenhancedoperationalefficiencyandsafety

Global,regionalandlocalmeteorologicalinformationprovidedbyworldareaforecastcentres,volcanicashadvisorycentres,tropicalcycloneadvisorycentres,aerodromemeteorologicalofficesandmeteorologicalwatchofficesinsupportofflexibleairspacemanagement,improvedsituationalawarenessandcollaborativedecisionmaking,anddynamically‐optimizedflighttrajectoryplanning.

Block1

B1‐FICE

IncreasedInteroperability,EfficiencyandCapacitythoughFF‐ICE,Step1applicationbeforeDeparture

IntroductionofFF‐ICEstep1,toimplementground‐groundexchangesusingcommonflightinformationreferencemodel,FIXM,XMLandtheflightobjectusedbeforedeparture.

-43-

B1‐DATM

ServiceImprovementthroughIntegrationofallDigitalATMInformation

ImplementationoftheATMinformationreferencemodelintegratingallATMinformationusingUMLandenablingXMLdatarepresentationsanddataexchangebasedoninternetprotocolswithWXXMformeteorologicalinformation.

B1‐SWIM

PerformanceImprovementthroughtheapplicationofSystem‐WideInformationManagement(SWIM)

ImplementationofSWIMservices(applicationsandinfrastructure)creatingtheaviationintranetbasedonstandarddatamodels,andinternet‐basedprotocolstomaximizeinteroperability.

B1‐AMET

EnhancedOperationalDecisionsthroughIntegratedMeteorologicalInformation(PlanningandNear‐termService)

Meteorologicalinformationsupportingautomateddecisionprocessoraidsinvolving:meteorologicalinformation,meteorologicaltranslation,ATMimpactconversionandATMdecisionsupport.

Block2

B2‐FICE

ImprovedCoordinationthroughmulti‐centreGround‐GroundIntegration:(FF‐ICE/1andFlightObject,SWIM)

FF‐ICEsupportingtrajectory‐basedoperationsthroughexchangeanddistributionofinformationformulticentreoperationsusingflightobjectimplementationandIOPstandards.

B2‐SWIM

EnablingAirborneParticipationincollaborativeATMthroughSWIM

ConnectionoftheaircraftaninformationnodeinSWIMenablingparticipationincollaborativeATMprocesseswithaccesstorichvoluminousdynamicdataincludingmeteorology.

-44- Block3

B3‐FICE

ImprovedOperationalPerformancethroughtheintroductionofFullFF‐ICE

AlldataforallrelevantflightssystematicallysharedbetweenairandgroundsystemsusingSWIMinsupportofcollaborativeATMandtrajectory‐basedoperations.

B3‐AMET

EnhancedOperationalDecisionsthroughIntegratedMeteorologicalInformation(Near‐termandImmediateService)

Metoeroligicalinformationsupportingbothairandgroundautomateddecisionsupportaidsforimplementingweathermitigationstrategies.

PerformanceImprovementArea3:

OptimumCapacityandFlexibleFlights–ThroughGlobalCollaborativeATM

Block0

B0‐FRTO

ImprovedOperationsthroughEnhancedEn‐RouteTrajectories

Toallowtheuseofairspacewhichwouldotherwisebesegregated(i.e.militaryairspace)alongwithflexibleroutingadjustedforspecifictrafficpatterns.Thiswillallowgreaterroutingpossibilities,reducingpotentialcongestionontrunkroutesandbusycrossingpoints,resultinginreducedflightlengthandfuelburn.

-45-

B0‐NOPS

ImprovedFlowPerformancethroughPlanningbasedonaNetwork‐Wideview

CollaborativeATFMmeasuretoregulatepeakflowsinvolvingdepartureslots,managedrateofentryintoagivenpieceofairspacefortrafficalongacertainaxis,requestedtimeataway‐pointoranFIR/sectorboundaryalongtheflight,useofmiles‐in‐trailtosmoothflowsalongacertaintrafficaxisandre‐routingoftraffictoavoidsaturatedareas.

B0‐ASUR

InitialCapabilityforGroundSurveillance

GroundsurveillancesupportedbyADS‐BOUTand/orwideareamultilaterationsystemswillimprovesafety,especiallysearchandrescueandcapacitythroughseparationreductions.ThiscapabilitywillbeexpressedinvariousATMservices,e.g.trafficinformation,searchandrescueandseparationprovision.

B0‐ASEP

AirTrafficSituationalAwareness(ATSA)

TwoATSA(AirTrafficSituationalAwareness)applicationswhichwillenhancesafetyandefficiencybyprovidingpilotswiththemeanstoachievequickervisualacquisitionoftargets:

• AIRB(EnhancedTrafficSituationalAwarenessduringFlightOperations).

• VSA(EnhancedVisualSeparationonApproach).

B0‐OPFL

ImprovedaccesstoOptimumFlightLevelsthroughClimb/DescentProceduresusingADS‐B

Thispreventsanaircraftbeingtrappedatanunsatisfactoryaltitudeandthusincurringnon‐optimalfuelburnforprolongedperiods.ThemainbenefitofITPissignificantfuelsavingsandtheupliftofgreaterpayloads.

B0‐ACAS

ACASImprovements

Toprovideshorttermimprovementstoexistingairbornecollisionavoidancesystems(ACAS)toreducenuisancealertswhilemaintainingexistinglevelsofsafety.Thiswillreducetrajectoryperturbationandincreasesafetyincaseswherethereisabreakdownofseparation.

-46- B0‐SNET

IncreasedEffectivenessofGround‐basedSafetyNets

Thismoduleprovidesimprovementstotheeffectivenessoftheground‐basedsafetynetsassistingtheAirTrafficControllerandgenerating,inatimelymanner,alertsofanincreasedrisktoflightsafety(suchasshorttermsconflictalert,areaproximitywarningandminimumsafealtitudewarning).

Block1

B1‐FRTO

ImprovedOperationsthroughOptimizedATSRouting

Introductionoffreeroutingindefinedairspace,wheretheflightplanisnotdefinedassegmentsofapublishedroutenetworkortracksystemtofacilitateadherencetotheuser‐preferredprofile.

B1‐NOPS

EnhancedFlowPerformancethroughNetworkOperationalPlanning

ATFMtechniquesthatintegratethemanagementofairspace,trafficflowsincludinginitialuserdrivenprioritizationprocessesforcollaborativelydefiningATFMsolutionsbasedoncommercial/operationalpriorities.

B1‐ASEP

IncreasedCapacityandEfficiencythroughIntervalManagement

IntervalManagement(IM)improvesthemanagementoftrafficflowsandaircraftspacing.PrecisemanagementofintervalsbetweenaircraftwithcommonormergingtrajectoriesmaximizesairspacethroughputwhilereducingATCworkloadalongwithmoreefficientaircraftfuelburn.

B1‐SNET

Ground‐basedSafetyNetsonApproach

ThismoduleenhancesthesafetyprovidebythepreviousmodulebyreducingtheriskofcontrolledflightintoterrainaccidentsonfinalapproachthroughtheuseofApproachPathMonitor(APM).

-47-

Block2

B2‐NOPS

Increaseduserinvolvementinthedynamicutilizationofthenetwork

IntroductionofCDMapplicationssupportedbySWIMthatpermitairspaceusersmanagecompetitionandprioritizationofcomplexATFMsolutionswhenthenetworkoritsnodes(airports,sector)nolongerprovidecapacitycommensuratewithuserdemands.

B2‐ASEP

AirborneSeparation(ASEP)

Creationofoperationalbenefitsthroughtemporarydelegationofresponsibilitytotheflightdeckforseparationprovisionwithsuitablyequippeddesignatedaircraft,thusreducingtheneedforconflictresolutionclearanceswhilereducingATCworkloadandenablingmoreefficientflightprofiles.

B2‐ACAS

NewCollisionAvoidanceSystem

ImplementationofAirborneCollisionAvoidanceSystem(ACAS)adaptedtotrajectory‐basedoperationswithimprovedsurveillancefunctionsupportedbyADS‐Baimedatreducingnuisancealertsanddeviations.Thenewsystemwillenablemoreefficientoperationsandprocedureswhilecomplyingwithsafetyregulations.

Block3

B3‐FRTO

TrafficComplexityManagement

Introductionofcomplexitymanagementtoaddresseventsandphenomenathataffecttrafficflowsduetophysicallimitations,economicreasonsorparticulareventsandconditionsbyexploitingthemoreaccurateandrichinformationenvironmentofa

SWIM‐basedATM.

-48- PerformanceImprovementArea4:

EfficientFlightPath–ThroughTrajectory‐basedOperations

Block0

B0‐CDO

ImprovedFlexibilityandEfficiencyinDescentProfiles(CDO)

Deploymentofperformance‐basedairspaceandarrivalproceduresthatallowtheaircrafttoflytheiroptimumaircraftprofiletakingaccountofairspaceandtrafficcomplexitywithcontinuousdescentoperations(CDOs)

B0‐TBO

ImprovedSafetyandEfficiencythroughtheinitialapplicationofDataLinkEn‐Route

ImplementationofaninitialsetofdatalinkapplicationsforsurveillanceandcommunicationsinATC.

B0‐CCO

ImprovedFlexibilityandEfficiencyinDepartureProfiles‐ContinuousClimbOperations(CCO)

Deploymentofdepartureproceduresthatallowtheaircrafttoflytheiroptimumaircraftprofiletakingaccountofairspaceandtrafficcomplexitywithcontinuousclimboperations(CCOs).

Block1

B1‐CDO

ImprovedFlexibilityandEfficiencyinDescentProfiles(CDOs)usingVNAV

Deploymentofperformance‐basedairspaceandarrivalproceduresthatallowtheaircrafttoflytheiroptimumaircraftprofiletakingaccountofairspaceandtrafficcomplexitywithOptimisedProfileDescents(OPDs).

-49-

B1‐TBO

ImprovedTrafficSynchronizationandInitialTrajectory‐BasedOperation

Improvethesynchronizationoftrafficflowsaten‐routemergingpointsandtooptimizetheapproachsequencethroughtheuseof4DTRADcapabilityandairportapplications,e.g.;D‐TAXI,viatheairgroundexchangeofaircraftderiveddatarelatedtoasinglecontrolledtimeofarrival(CTA).

B1‐RPAS

InitialIntegrationofRemotelyPilotedAircraft(RPA)Systemsintonon‐segregatedairspace

ImplementationofbasicproceduresforoperatingRPAinnon‐segregatedairspaceincludingdetectandavoid.

Block2

B2‐CDO

ImprovedFlexibilityandEfficiencyinDescentProfiles(CDOs)usingVNAV,requiredspeedandtimeatarrival

DeploymentofperformancebasedairspaceandarrivalproceduresthatoptimizetheaircraftprofiletakingaccountofairspaceandtrafficcomplexityincludingOptimizedProfileDescents(OPDs),supportedbyTrajectory‐BasedOperationsandself‐separation.

B2‐RPAS

RPAIntegrationinTraffic

Implementsrefinedoperationalproceduresthatcoverlostlink(includingauniquesquawkcodeforlostlink)aswellasenhanceddetectandavoidtechnology.

-50- Block3

B3‐TBO

Full4DTrajectory‐basedOperations

Trajectory‐basedoperationsdeploysanaccuratefour‐dimensionaltrajectorythatissharedamongalloftheaviationsystemusersatthecoresofthesystem.Thisprovidesconsistentandup‐to‐dateinformationsystem‐widewhichisintegratedintodecisionsupporttoolsfacilitatingglobalATMdecision‐making.

B3‐RPAS

RPATransparentManagement

RPAoperateontheaerodromesurfaceandinnon‐segregatedairspacejustlikeanyotheraircraft.

-51-

Fig.5:GraphicdepictingtheASBUModulesconvergingovertimeontheirtargetoperationalconceptsandperformanceimprovements.

MODULE CAPABILITY

REALIZED OPERATIONAL CONCEPT

TARGET PERFORMANCE BENEFIT

Airport AccessibilityRunway SequencingAirport Collaborative Decision-MakingSurface OperationsWake Turbulence SeparationRemote ATS

FULL AMAN/DMAN/SMAN

AIRPORT OPERATIONS

Advanced MET Information

Digital Aeronautical Information Management

FF/ICE

System-Wide InformationManagement

FULL FF/ICE

INTEROPERABLE SYSTEMS & DATA

Free Route Operations

Airborne Separation

Alternative Surveillance

Optimum Flight Levels

Network Operations

Airborne Collision Avoidance Systems

Safety Nets

COMPLEXITY MANAGEMENT

GLOBALLY COLLABORATIVE ATM

Trajectory-Based Operations

Continuous Descent Operations

Continuous Climb Operations

Remotely Piloted Aircraft Systems

FULL TRAJECTORY-BASEDOPERATIONS

EFFICIENT FLIGHT PATHS

-52-

Block0

Block0iscomposedofModulescontainingtechnologiesandcapabilitieswhichhavealreadybeendevelopedandcanbeimplementedfrom2013.BasedonthemilestoneframeworkestablishedundertheoverallBlockUpgradestrategy,ICAOMemberStatesareencouragedtoimplementthoseBlock0Modulesapplicabletotheirspecificoperationalneeds.

PerformanceImprovementArea1:AirportOperations

B0‐APTA OptimizationofApproachProceduresincludingVerticalGuidance

Theuseofperformance‐basednavigation(PBN)andground‐basedaugmentationsystem(GBAS)landingsystem(GLS)procedurestoenhancethereliabilityandpredictabilityofapproachestorunways,thusincreasingsafety,accessibilityandefficiency.Thisispossiblethroughtheapplicationofbasicglobalnavigationsatellitesystem(GNSS),Baro‐verticalnavigation(VNAV),satellite‐basedaugmentationsystem(SBAS)andGLS.TheflexibilityinherentinPBNapproachdesigncanbeexploitedtoincreaserunwaycapacity.

Applicability

ThisModuleisapplicabletoallinstrument,andprecisioninstrumentrunwayends,andtoalimitedextent,non‐instrumentrunwayends.

Benefits

AccessandEquity: Increasedaerodromeaccessibility.

Capacity: Incontrastwithinstrumentlandingsystems(ILS),theGNSS‐basedapproaches(PBNandGLS)donotrequirethedefinitionandmanagementofsensitiveandcriticalareas.Thisresultsinincreasedrunwaycapacitywhereapplicable.

Efficiency: Costsavingsrelatedtothebenefitsoflowerapproachminima:fewerdiversions,overflights,cancellationsanddelays.Costsavingsrelatedtohigherairportcapacityincertaincircumstances(e.g.closelyspacedparallels)bytakingadvantageoftheflexibilitytooffsetapproachesanddefinedisplacedthresholds.

Environment: Environmentalbenefitsthroughreducedfuelburn.

Safety: Stabilizedapproachpaths.

Cost: AircraftoperatorsandAirNavigationServiceProviders(ANSPs)canquantifythebenefitsoflowerminimabyusinghistoricalaerodromeweatherobservationsandmodellingairportaccessibilitywithexistingandnewminima.Eachaircraftoperatorcanthenassessbenefitsagainstthecostofanyrequiredavionicsupgrade.UntilthereareGBAS(CATII/III)Standards,GLScannotbeconsideredasacandidatetogloballyreplaceILS.TheGLSbusinesscaseneedstoconsiderthecostofretainingILSorMLStoallowcontinuedoperationsduringaninterferenceevent.

B0‐WAKE IncreasedRunwayThroughputthroughOptimizedWakeTurbulenceSeparation

Improvesthroughputondepartureandarrivalrunwaysthroughoptimizedwaketurbulenceseparationminima,revisedaircraftwaketurbulencecategoriesandprocedures.

-53-

Applicability

Leastcomplex–Implementationofrevisedwaketurbulencecategoriesismainlyprocedural.Nochangestoautomationsystemsareneeded.

Benefits

AccessandEquity: Increasedaerodromeaccessibility.

Capacity:

a) Capacityanddeparture/arrivalrateswillincreaseatcapacityconstrainedaerodromesaswakecategorizationchangesfromthreetosixcategories.

b) Capacityandarrivalrateswillincreaseatcapacityconstrainedaerodromesasspecializedandtailoredproceduresforlandingoperationsforon‐parallelrunways,withcentrelinesspacedlessthan760m(2500ft)apart,aredevelopedandimplemented.

c) Capacityanddeparture/arrivalrateswillincreaseasaresultofnewprocedureswhichwillreducethecurrenttwo‐threeminutesdelaytimes.Inaddition,runwayoccupancytimewilldecreaseasaresultofthesenewprocedures.

Flexibility Aerodromescanbereadilyconfiguredtooperateonthree(i.e.existingH/M/L)orsixwaketurbulencecategories,dependingondemand.

Cost: MinimalcostsareassociatedwiththeimplementationinthisModule.Thebenefitsaretotheusersoftheaerodromerunwaysandsurroundingairspace,ANSPsandoperators.Conservativewaketurbulenceseparationstandardsandassociatedproceduresdonottakefulladvantageofthemaximumutilityofrunwaysandairspace.U.S.aircarrierdatashowsthat,whenoperatingfromacapacity‐constrainedaerodrome,againoftwoextradeparturesperhourhasamajorbeneficialeffectinreducingdelays.

TheANSPmayneedtodeveloptoolstoassistcontrollerswiththeadditionalwaketurbulencecategoriesanddecisionsupporttools.Thetoolsnecessarywilldependontheoperationateachairportandthenumberofwaketurbulencecategoriesimplemented.

B0‐SURF SafetyandEfficiencyofSurfaceOperations(A‐SMGCSLevel1‐2)

Basicadvanced‐surfacemovementguidanceandcontrolsystems(A‐SMGCS)providessurveillanceandalertingofmovementsofbothaircraftandvehiclesattheaerodrome,thusimprovingrunway/aerodromesafety.Automaticdependentsurveillance‐broadcast(ADS‐B)informationisusedwhenavailable(ADS‐BAPT).

Applicability

A‐SMGCSisapplicabletoanyaerodromeandallclassesofaircraft/vehicles.Implementationistobebasedonrequirementsstemmingfromindividualaerodromeoperationalandcost‐benefitassessments.ADS‐BAPT,whenappliedisanelementofA‐SMGCS,isdesignedtobeappliedataerodromeswithmediumtrafficcomplexity,havinguptotwoactiverunwaysatatimeandtherunwaywidthofminimum45m.

Benefits

AccessandEquity: A‐SMGCSimprovesaccesstoportionsofthemanoeuvringareaobscuredfromviewofthecontroltowerforvehiclesandaircraft.Sustainsanimprovedaerodromecapacityduringperiodsofreducedvisibility.EnsuresequityinATChandlingofsurfacetrafficregardlessofthetraffic’spositionontheaerodrome.

ADS‐BAPT,asanelementofanA‐SMGCSsystem,providestrafficsituationalawarenesstothecontrollerintheformofsurveillanceinformation.Theavailabilityofthedataisdependentontheaircraftandvehiclelevelofequipage.

-54- Capacity: A‐SMGCS:sustainedlevelsofaerodromecapacityforvisualconditionsreducedtominimalowerthanwouldotherwisebethecase.

ADS‐BAPT:asanelementofanA‐SMGCSsystem,potentiallyimprovescapacityformediumcomplexityaerodromes.

Efficiency: A‐SMGCS:reducedtaxitimesthroughdiminishedrequirementsforintermediateholdingsbasedonrelianceonvisualsurveillanceonly.

ADS‐BAPT:asanelementofanA‐SMGCS,potentiallyreducesoccurrenceofrunwaycollisionsbyassistinginthedetectionoftheincursions.

Environment: Reducedaircraftemissionsstemmingfromimprovedefficiencies.

Safety: A‐SMGCS:reducedrunwayincursions.Improvedresponsetounsafesituations.ImprovedsituationalawarenessleadingtoreducedATCworkload.

ADS‐BAPT:asanelementofanA‐SMGCSsystem,potentiallyreducestheoccurrenceofoccurrenceofrunwaycollisionsbyassistinginthedetectionoftheincursions.

Cost: A‐SMGCS:apositiveCBAcanbemadefromimprovedlevelsofsafetyandimprovedefficienciesinsurfaceoperationsleadingtosignificantsavingsinaircraftfuelusage.Aswell,aerodromeoperatorvehicleswillbenefitfromimprovedaccesstoallareasoftheaerodrome,improvingtheefficiencyofaerodromeoperations,maintenanceandservicing.

ADS‐BAPT:asanelementofanA‐SMGCSsystemlesscostlysurveillancesolutionformediumcomplexityaerodromes.

B0‐ACDM ImprovedAirportOperationsthroughAirport‐CDM

Implementscollaborativeapplicationsthatwillallowthesharingofsurfaceoperationsdataamongthedifferentstakeholdersontheairport.Thiswillimprovesurfacetrafficmanagementreducingdelaysonmovementandmanoeuvringareasandenhancesafety,efficiencyandsituationalawareness.

Applicability

Localforequipped/capablefleetsandalreadyestablishedairportsurfaceinfrastructure.

Benefits

Capacity: Enhanceduseofexistinginfrastructureofgateandstands(unlocklatentcapacity).Reducedworkload,betterorganizationoftheactivitiestomanageflights.

Efficiency: IncreasedefficiencyoftheATMsystemforallstakeholders.Inparticularforaircraftoperators:improvedsituationalawareness(aircraftstatusbothhomeandaway);enhancedfleetpredictabilityandpunctuality;improvedoperationalefficiency(fleetmanagement);andreduceddelay.

Environment: Reducedtaxitime;reducedfuelandcarbonemission;andloweraircraftengineruntime.

Cost: Thebusinesscasehasproventobepositiveduetothebenefitsthatflightsandtheotherairportoperationalstakeholderscanobtain.However,thismaybeinfluenceddependingupontheindividualsituation(environment,trafficlevelsinvestmentcost,etc.).

AdetailedbusinesscasehasbeenproducedinsupportoftheEUregulationwhichwassolidlypositive.

-55-

B0‐RSEQ ImproveTrafficFlowthroughSequencing(AMAN/DMAN)

Managearrivalsanddepartures(includingtime‐basedmetering)toandfromamulti‐runwayaerodromeorlocationswithmultipledependentrunwaysatcloselyproximateaerodromes,toefficientlyutilizetheinherentrunwaycapacity.

Applicability

Runwaysandterminalmanoeuvringareainmajorhubsandmetropolitanareaswillbemostinneedoftheseimprovements.

Theimprovementisleastcomplex–runwaysequencingproceduresarewidelyusedinaerodromesglobally.HoweversomelocationsmighthavetoconfrontenvironmentalandoperationalchallengesthatwillincreasethecomplexityofdevelopmentandimplementationoftechnologyandprocedurestorealizethisModule.

Benefits

Capacity: Time‐basedmeteringwilloptimizeusageofterminalairspaceandrunwaycapacity.Optimizedutilizationofterminalandrunwayresources.

Efficiency: Efficiencyispositivelyimpactedasreflectedbyincreasedrunwaythroughputandarrivalrates.Thisisachievedthrough:

a) Harmonizedarrivingtrafficflowfromen‐routetoterminalandaerodrome.Harmonizationisachievedviathesequencingofarrivalflightsbasedonavailableterminalandrunwayresources.

b) Streamlineddeparturetrafficflowandsmoothtransitionintoen‐routeairspace.Decreasedleadtimefordeparturerequestandtimebetweencallforreleaseanddeparturetime.Automateddisseminationofdepartureinformationandclearances.

Predictability: Decreaseduncertaintiesinaerodrome/terminaldemandprediction.

Flexibility Byenablingdynamicscheduling.

Cost: Adetailedpositivebusinesscasehasbeenbuiltforthetime‐basedflowmanagementprogrammeintheUnitedStates.Thebusinesscasehasproventhebenefit/costratiotobepositive.Implementationoftime‐basedmeteringcanreduceairbornedelay.Thiscapabilitywasestimatedtoprovideover320,000minutesindelayreductionand$28.37millioninbenefitstoairspaceusersandpassengersovertheevaluationperiod.

ResultsfromfieldtrialsofDFM,adepartureschedulingtoolintheUnitedStates,havebeenpositive.Compliancerate,ametricusedtogaugetheconformancetoassigneddeparturetime,hasincreasedatfieldtrialsitesfromsixty‐eighttoseventy‐fivepercent.Likewise,theEUROCONTROLDMANhasdemonstratedpositiveresults.Departureschedulingwillstreamlineflowofaircraftfeedingtheadjacentcenterairspacebasedonthatcenter’sconstraints.Thiscapabilitywillfacilitatemoreaccurateestimatedtimeofarrivals(ETAs).Thisallowsforthecontinuationofmeteringduringheavytraffic,enhancedefficiencyintheNASandfuelefficiencies.Thiscapabilityisalsocrucialforextendedmetering.

-56-

PerformanceImprovementArea2:GloballyInteroperableSystemsandData

B0‐FICEIncreasedInteroperability,EfficiencyandCapacitythoughGround‐GroundIntegration

Improvescoordinationbetweenairtrafficserviceunits(ATSUs)byusingATSinterfacilitydatacommunication(AIDC)definedbyICAO’sManualofAirTrafficServicesDataLinkApplications(Doc9694).Thetransferofcommunicationinadatalinkenvironmentimprovestheefficiencyofthisprocess,particularlyforoceanicATSUs.

Applicability

Applicabletoatleasttwoareacontrolcentres(ACCs)dealingwithen‐routeand/orterminalcontrolarea(TMA)airspace.AgreaternumberofconsecutiveparticipatingACCswillincreasethebenefits.

Benefits

Capacity: Reducedcontrollerworkloadandincreaseddataintegritysupportingreducedseparationstranslatingdirectlytocrosssectororboundarycapacityflowincreases.

Efficiency: Thereducedseparationcanalsobeusedtomorefrequentlyofferaircraftflightlevelsclosertotheflightoptimum;incertaincases,thisalsotranslatesintoreduceden‐routeholding.

Interoperability: Seamlessness:theuseofstandardizedinterfacesreducesthecostofdevelopment,allowsairtrafficcontrollerstoapplythesameproceduresattheboundariesofallparticipatingcentresandbordercrossingbecomesmoretransparenttoflights.

Safety: Betterknowledgeofmoreaccurateflightplaninformation.

Cost: IncreaseofthroughputatATSunitboundaryandreducedATCOworkloadwilloutweighthecostofFDPSsoftwarechanges.Thebusinesscaseisdependentontheenvironment.

B0‐DATM ServiceImprovementthroughDigitalAeronauticalInformationManagement

Theinitialintroductionofdigitalprocessingandmanagementofinformationthrough,aeronauticalinformationservice(AIS)/aeronauticalinformationmanagement(AIM)implementation,useofaeronauticalexchangemodel(AIXM),migrationtoelectronicaeronauticalinformationpublication(AIP0andbetterqualityandavailabilityofdata.

Applicability

ApplicableatStatelevelwithincreasedbenefitsasmoreStatesparticipate.

Benefits

Environment: Reducingthetimenecessarytopromulgateinformationconcerningairspacestatuswillallowformoreeffectiveairspaceutilizationandallowimprovementsintrajectorymanagement.

Safety: Reductioninthenumberofpossibleinconsistencies.Moduleallowsreducingthenumberofmanualentriesandensuresconsistencyamongdatathroughautomaticdatacheckingbasedoncommonlyagreedbusinessrules.

Interoperability: Essentialcontributiontointeroperability.

-57-

Cost: Reducedcostsintermsofdatainputsandchecks,paperandpost,especiallywhenconsideringtheoveralldatachain,fromoriginators,throughAIStotheendusers.Thebusinesscasefortheaeronauticalinformationconceptualmodel(AIXM)hasbeenconductedinEuropeandintheUnitedStatesandhasshowntobepositive.TheinitialinvestmentnecessaryfortheprovisionofdigitalAISdatamaybereducedthroughregionalcooperationanditremainslowcomparedwiththecostofotherATMsystems.Thetransitionfrompaperproductstodigitaldataisacriticalpre‐requisitefortheimplementationofanycurrentorfutureATMorAirNavigationconceptthatreliesontheaccuracy,integrityandtimelinessofdata.

B0‐AMET MeteorologicalInformationSupportingEnhancedOperationalEfficiencyandSafety

Global,regionalandlocalmeteorologicalinformation:

a) Forecastsprovidedbyworldareaforecastcentres(WAFCs),volcanicashadvisorycentres(VAACs)andtropicalcycloneadvisorycentres(TCAC).

b) Aerodromewarningstogiveconciseinformationofmeteorologicalconditionsthatcouldadverselyaffectallaircraftatanaerodrome,includingwindshear.

c) SIGMETstoprovideinformationonoccurrenceorexpectedoccurrenceofspecificen‐routeweatherphenomenawhichmayaffectthesafetyofaircraftoperationsandotheroperationalmeteorological(OPMET)information,includingMETAR/SPECIandTAF,toprovideroutineandspecialobservationsandforecastsofmeteorologicalconditionsoccurringorexpectedtooccurattheaerodrome.

Thisinformationsupportsflexibleairspacemanagement,improvedsituationalawarenessandcollaborativedecision‐making,anddynamically‐optimizedflighttrajectoryplanning.ThisModuleincludeselementswhichshouldbeviewedasasubsetofallavailablemeteorologicalinformationthatcanbeusedtosupportenhancedoperationalefficiencyandsafety

Applicability

Applicabletotrafficflowplanning,andtoallaircraftoperationsinalldomainsandflightphases,regardlessoflevelofaircraftequipage.

Benefits

Capacity: Optimizeduseofairspacecapacity.Metric:ACCandaerodromethroughput.

Efficiency: Harmonizedarrivingairtraffic(en‐routetoterminalareatoaerodrome)andharmonizeddepartingairtraffic(aerodrometoterminalareatoen‐route)willtranslatetoreducedarrivalanddepartureholdingtimesandthusreducedfuelburn.Metric:Fuelconsumptionandflighttimepunctuality.

Environment: Reducedfuelburnthroughoptimizeddepartureandarrivalprofiling/scheduling.Metric:Fuelburnandemissions.

Safety: Increasedsituationalawarenessandimprovedconsistentandcollaborativedecisionmaking.Metric:Incidentoccurrences.

Interoperability: Gate‐to‐gateseamlessoperationsthroughcommonaccessto,anduseof,theavailableWAFS,IAVWandtropicalcyclonewatchforecastinformation.Metric:ACCthroughput.

Predictability: Decreasedvariancebetweenthepredictedandactualairtrafficschedule.Metric:Blocktimevariability,flight‐timeerror/bufferbuiltintoschedules.

Participation: Commonunderstandingofoperationalconstraints,capabilitiesandneeds,basedonexpected(forecast)meteorologicalconditions.Metric:Collaborativedecision‐makingattheaerodromeandduringallphasesofflight.

-58- Flexibility: Supportspre‐tacticalandtacticalarrivalanddeparturesequencingandthusdynamicairtrafficscheduling.Metric:ACCandaerodromethroughput.

Cost: Reductionincoststhroughreducedarrivalanddeparturedelays(viz.reducedfuelburn).Metric:Fuelconsumptionandassociatedcosts.

PerformanceImprovementArea3:OptimumCapacityandFlexibleFlights

B0‐FRTO ImprovedOperationsthroughEnhancedEn‐routeTrajectories

Allowtheuseofairspacewhichwouldotherwisebesegregated(i.e.SpecialUseAirspace)alongwithflexibleroutingadjustedforspecifictrafficpatterns.Thiswillallowgreaterroutingpossibilities,reducingpotentialcongestionontrunkroutesandbusycrossingpoints,resultinginreducedflightlengthsandfuelburn.

Applicability

Applicabletoen‐routeairspace.Benefitscanstartlocally.Thelargerthesizeoftheconcernedairspacethegreaterthebenefits,inparticularforflextrackaspects.Benefitsaccruetoindividualflightsandflows.Applicationwillnaturallyspanoveralongperiodastrafficdevelops.Itsfeaturescanbeintroducedstartingwiththesimplestones.

Benefits

AccessandEquity: Betteraccesstoairspacebyareductionofthepermanentlysegregatedvolumes.

Capacity: Theavailabilityofagreatersetofroutingpossibilitiesallowsreducingpotentialcongestionontrunkroutesandatbusycrossingpoints.Theflexibleuseofairspacegivesgreaterpossibilitiestoseparateflightshorizontally.PBNhelpstoreduceroutespacingandaircraftseparations.Thisinturnallowsreducingcontrollerworkloadbyflight.

Efficiency: Thedifferentelementsconcurtotrajectoriesclosertotheindividualoptimumbyreducingconstraintsimposedbypermanentdesign.InparticulartheModulewillreduceflightlengthandrelatedfuelburnandemissions.ThepotentialsavingsareasignificantproportionoftheATMrelatedinefficiencies.TheModulewillreducethenumberofflightdiversionsandcancellations.Itwillalsobetterallowavoidanceofnoisesensitiveareas.

Environment: Fuelburnandemissionswillbereduced;however,theareawhereemissionsandcontrailswillbeformedmaybelarger.

Predictability: Improvedplanningallowsstakeholderstoanticipateonexpectedsituationsandbebetterprepared.

Flexibility: Thevarioustacticalfunctionsallowrapidreactiontochangingconditions.

Cost: FUA:IntheUnitedArabEmirates(UAE)overhalfoftheairspaceismilitary.Openingupthisairspacecouldpotentiallyenableyearlysavingsintheorderof4.9millionlitresoffueland581flighthours.IntheUnitedStatesastudyforNASAbyDattaandBaringtonshowedmaximumsavingsofdynamicuseofFUAof$7.8M(1995$).

Flexiblerouting:Earlymodellingofflexibleroutingsuggeststhatairlinesoperatinga10‐hourintercontinentalflightcancutflighttimebysixminutes,reducefuelburnbyasmuchas2%andsave3,000kilogramsofCO2emissions.IntheUnitedStatesRTCANextGenTaskForceReport,itwasfoundthatbenefitswouldbeabout20%reductioninoperationalerrors;5‐8%productivityincrease(nearterm;growingto8‐14%later);capacity

-59-

increases(butnotquantified).Annualoperatorbenefitin2018of$39,000perequippedaircraft(2008dollars)growingto$68,000peraircraftin2025basedontheFAAInitialinvestmentDecision.Forthehighthroughput,highcapacitybenefitcase(in2008dollars):totaloperatorbenefitis$5.7Bacrossprogrammelifecycle(2014‐2032,basedontheFAAinitialinvestmentdecision).

B0‐NOPS ImprovedFlowPerformancethroughPlanningbasedonaNetwork‐wideview

Airtrafficflowmanagement(ATFM)isusedtomanagetheflowoftrafficinawaythatminimizesdelaysandmaximizestheuseoftheentireairspace.ATFMcanregulatetrafficflowsinvolvingdepartureslots,smoothflowsandmanageratesofentryintoairspacealongtrafficaxes,managearrivaltimeatwaypointsorflightinformationregion(FIR)/sectorboundariesandreroutetraffictoavoidsaturatedareas.ATFMmayalsobeusedtoaddresssystemdisruptionsincludingcrisiscausedbyhumanornaturalphenomena.

Applicability

Regionorsubregion.

Benefits

AccessandEquity: Improvedaccessbyavoidingdisruptionofairtrafficinperiodsofdemandhigherthancapacity.ATFMprocessestakecareofequitabledistributionofdelays.

Capacity: Betterutilizationofavailablecapacity,network‐wide;inparticularthetrustofATCnotbeingfacedbysurprisetosaturationtendstoletitdeclare/useincreasedcapacitylevels;abilitytoanticipatedifficultsituationsandmitigatetheminadvance.

Efficiency: Reducedfuelburnduetobetteranticipationofflowissues;apositiveeffecttoreducetheimpactofinefficienciesintheATMsystemortodimensionitatasizethatwouldnotalwaysjustifyitscosts(balancebetweencostofdelaysandcostofunusedcapacity).Reducedblocktimesandtimeswithengineson.

Environment: Reducedfuelburnasdelaysareabsorbedontheground,withshutengines;reroutinghowevergenerallyputflightonalongerdistance,butthisisgenerallycompensatedbyotherairlineoperationalbenefits.

Safety: Reducedoccurrencesofundesiredsectoroverloads.

Predictability: IncreasedpredictabilityofschedulesastheATFMalgorithmstendtolimitthenumberoflargedelays.

Participation: Commonunderstandingofoperationalconstraints,capabilitiesandneeds.

Cost: Thebusinesscasehasproventobepositiveduetothebenefitsthatflightscanobtainintermsofdelayreduction.

B0‐ASUR InitialCapabilityforGroundSurveillance

ProvidesinitialcapabilityforlowercostgroundsurveillancesupportedbynewtechnologiessuchasADS‐BOUTandwideareamultilateration(MLAT)systems.ThiscapabilitywillbeexpressedinvariousATMservices,e.g.trafficinformation,searchandrescueandseparationprovision.

Applicability

Thiscapabilityischaracterizedbybeingdependent/cooperative(ADS‐BOUT)andindependent/cooperative(MLAT).TheoverallperformanceofADS‐Bisaffectedbyavionicsperformanceandcompliantequipagerate.

-60- Benefits

Capacity: Typicalseparationminimaare3NMor5NMenablingasignificantincreaseintrafficdensitycomparedtoproceduralminima.Improvedcoverage,capacity,velocityvectorperformanceandaccuracycanimproveATCperformanceinbothradarandnon‐radarenvironments.Terminalareasurveillanceperformanceimprovementsareachievedthroughhighaccuracy,bettervelocityvectorandimprovedcoverage.

Efficiency: Availabilityofoptimumflightlevelsandprioritytotheequippedaircraftandoperators.ReductionofflightdelaysandmoreefficienthandlingofairtrafficatFIRboundaries.Reducesworkloadofairtrafficcontrollers.

Safety: Reductionofthenumberofmajorincidents.Supporttosearchandrescue.

Cost: Eithercomparisonbetweenproceduralminimaand5NMseparationminimawouldallowanincreaseoftrafficdensityinagivenairspace;orcomparisonbetweeninstalling/renewingSSRModeSstationsusingModeStranspondersandinstallingADS‐BOUT(and/orMLATsystems).

B0‐ASEP AirTrafficSituationalAwareness(ATSA)

Twoairtrafficsituationalawareness(ATSA)applicationswhichwillenhancesafetyandefficiencybyprovidingpilotswiththemeanstoenhancetrafficsituationalawarenessandachievequickervisualacquisitionoftargets:

a) AIRB(basicairbornesituationalawarenessduringflightoperations).

b) VSA(visualseparationonapproach).

Applicability

Thesearecockpit‐basedapplicationswhichdonotrequireanysupportfromthegroundhencetheycanbeusedbyanysuitablyequippedaircraft.ThisisdependentuponaircraftbeingequippedwithADS‐BOUT.AvionicsavailabilityatlowenoughcostsforGAisnotyetavailable.

Benefits

Efficiency: Improvesituationalawarenesstoidentifylevelchangeopportunitieswithcurrentseparationminima(AIRB)andimprovevisualacquisitionandreductionofmissedapproaches(VSA).

Safety: Improvesituationalawareness(AIRB)andreducethelikelihoodofwaketurbulenceencounters(VSA).

Cost: Thecostbenefitislargelydrivenbyhigherflightefficiencyandconsequentsavingsincontingencyfuel.

ThebenefitanalysisoftheEUROCONTROLCRISTALITPprojectoftheCASCADEProgrammeandsubsequentupdatehadshownthatATSAWAIRBandITPtogetherarecapableofprovidingthefollowingbenefitsoverN.Atlantic:

a) Saving36millionEuro(50KEuroperaircraft)annually.

b) Reducingcarbondioxideemissionsby160,000tonnesannually.

ThemajorityofthesebenefitsareattributedtoAIRB.FindingswillberefinedafterthecompletionofthepioneeroperationsstartinginDecember2011.

-61-

B0‐OPFL ImprovedAccesstoOptimumFlightLevelsthroughClimb/DescentProceduresusingADSB)

Enablesaircrafttoreachamoresatisfactoryflightlevelforflightefficiencyortoavoidturbulenceforsafety.ThemainbenefitofITPissignificantfuelsavingsandtheupliftofgreaterpayloads.

Applicability

Thiscanbeappliedtoroutesinproceduralairspaces.

Benefits

Capacity: Improvementincapacityonagivenairroute.

Efficiency: Increasedefficiencyonoceanicandpotentiallycontinentalen‐route.

Environment: Reducedemissions.

Safety: Areductionofpossibleinjuriesforcabincrewandpassengers.

B0‐ACAS AirborneCollisionAvoidanceSystems(ACAS)Improvements

Providesshort‐termimprovementstoexistingairbornecollisionavoidancesystems(ACAS)toreducenuisancealertswhilemaintainingexistinglevelsofsafety.Thiswillreducetrajectorydeviationsandincreasesafetyincaseswherethereisabreakdownofseparation.

Applicability

Safetyandoperationalbenefitsincreasewiththeproportionofequippedaircraft.

Benefits

Efficiency: ACASimprovementwillreduceunnecessaryresolutionadvisory(RA)andthenreducetrajectorydeviations.

Safety: ACASincreasessafetyinthecaseofbreakdownofseparation.

B0‐SNET IncreasedEffectivenessofGround‐BasedSafetyNets

Monitorstheoperationalenvironmentduringairbornephasesofflighttoprovidetimelyalertsonthegroundofanincreasedrisktoflightsafety.Inthiscase,short‐termconflictalert,areaproximitywarningsandminimumsafealtitudewarningsareproposed.Ground‐basedsafetynetsmakeanessentialcontributiontosafetyandremainrequiredaslongastheoperationalconceptremainshumancentred.

Applicability

Benefitsincreaseastrafficdensityandcomplexityincrease.Notallground‐basedsafetynetsarerelevantforeachenvironment.DeploymentofthisModuleshouldbeaccelerated.

Benefits

Safety: Significantreductionofthenumberofmajorincidents.

Cost: ThebusinesscaseforthiselementisentirelymadearoundsafetyandtheapplicationofALARP(aslowasreasonablypracticable)inriskmanagement.

-62-

PerformanceImprovementArea4:EfficientFlightPaths

B0‐CDOImprovedFlexibilityandEfficiencyinDescentProfilesusingContinuousDescentOperations(CDOs)

Performance‐basedairspaceandarrivalproceduresallowingaircrafttoflytheiroptimumprofileusingcontinuousdescentoperations(CDOs).Thiswilloptimizethroughput,allowfuelefficientdescentprofiles,andincreasecapacityinterminalareas.

Applicability

Regions,Statesorindividuallocationsmostinneedoftheseimprovements.Forsimplicityandimplementationsuccess,complexitycanbedividedintothreetiers:

a) Leastcomplex–regional/States/locationswithsomefoundationalPBNoperationalexperiencethatcouldcapitalizeonnear‐termenhancements,whichincludeintegratingproceduresandoptimizingperformance.

b) Morecomplex–regional/State/locationsthatmayormaynotpossessPBNexperience,butwouldbenefitfromintroducingneworenhancedprocedures.However,manyoftheselocationsmayhaveenvironmentalandoperationalchallengesthatwilladdtothecomplexitiesofproceduredevelopmentandimplementation.

c) Mostcomplex–regional/State/locationsinthistierwillbethemostchallengingandcomplextointroduceintegratedandoptimizedPBNoperations.Trafficvolumeandairspaceconstraintsareaddedcomplexitiesthatmustbeconfronted.OperationalchangestotheseareascanhaveaprofoundeffectontheentireState,regionorlocation.

Benefits

Efficiency: Costsavingsandenvironmentalbenefitsthroughreducedfuelburn.Authorizationofoperationswherenoiselimitationswouldotherwiseresultinoperationsbeingcurtailedorrestricted.Reductioninthenumberofrequiredradiotransmissions.Optimalmanagementofthetop‐of‐descentintheen‐routeairspace.

Safety: Moreconsistentflightpathsandstabilizedapproachpaths.Reductionintheincidenceofcontrolledflightintoterrain(CFIT).Separationwiththesurroundingtraffic(especiallyfree‐routing).Reductioninthenumberofconflicts.

Predictability: Moreconsistentflightpathsandstabilizedapproachpaths.Lessneedforvectors.

Cost: ItisimportanttoconsiderthatCDObenefitsareheavilydependentoneachspecificATMenvironment.Nevertheless,ifimplementedwithintheICAOCDOmanualframework,itisenvisagedthatthebenefit/costratio(BCR)willbepositive.AfterCDOimplementationinLosAngelesTMA(KLAX)therewasa50%reductioninradiotransmissionsandfuelsavingsaveraging125poundsperflight(13.7millionpounds/year;41millionpoundsofCO2emission).

TheadvantageofPBNtotheANSPisthatPBNavoidstheneedtopurchaseanddeploynavigationaidsforeachnewrouteorinstrumentprocedure.

B0‐TBOImprovedSafetyandEfficiencythroughtheInitialApplicationofDataLinkEn‐route

Implementsaninitialsetofdatalinkapplicationsforsurveillanceandcommunicationsinairtrafficcontrol(ATC),supportingflexiblerouting,reducedseparationandimprovedsafety.

-63-

Applicability

Requiresgoodsynchronizationofairborneandgrounddeploymenttogeneratesignificantbenefits,inparticulartothoseequipped.Benefitsincreasewiththeproportionofequippedaircraft.

Benefits

Capacity: Element1:Abetterlocalizationoftrafficandreducedseparationsallowincreasingtheofferedcapacity.

Element2:Reducedcommunicationworkloadandbetterorganizationofcontrollertasksallowingincreasedsectorcapacity.

Efficiency: Element1:Routes/tracksandflightscanbeseparatedbyreducedminima,allowingflexibleroutingsandverticalprofilesclosertotheuser‐preferredones.

Safety: Element1:Increasedsituationalawareness;ADS‐Cbasedsafetynetslikeclearedleveladherencemonitoring,routeadherencemonitoring,dangerareainfringementwarning;andbettersupporttosearchandrescue.

Element2:Increasedsituationalawareness;reducedoccurrencesofmisunder‐standings;solutiontostuckmicrophonesituations.

Flexibility: Element1:ADS‐Cpermitseasierroutechange.

Cost: Element1:Thebusinesscasehasproventobepositiveduetothebenefitsthatflightscanobtainintermsofbetterflightefficiency(betterroutesandverticalprofiles;betterandtacticalresolutionofconflicts).

Tobenoted,theneedtosynchronizegroundandairbornedeploymentstoensurethatservicesareprovidedbythegroundwhenaircraftareequipped,andthataminimumproportionofflightsintheairspaceunderconsiderationaresuitablyequipped.

Element2:TheEuropeanbusinesscasehasprovedtobepositivedueto:

a) thebenefitsthatflightsobtainintermsofbetterflightefficiency(betterroutesandverticalprofiles;betterandtacticalresolutionofconflicts);and

b) reducedcontrollerworkloadandincreasedcapacity.

AdetailedbusinesscasehasbeenproducedinsupportoftheEUregulationwhichwassolidlypositive.Tobenoted,thereisaneedtosynchronizegroundandairbornedeploymentstoensurethatservicesareprovidedbythegroundwhenaircraftareequipped,andthataminimumproportionofflightsintheairspaceunderconsiderationaresuitablyequipped.

-64- B0‐CCO ImprovedFlexibilityandEfficiencyDepartureProfiles–ContinuousClimbOperations(CCO)

Implementscontinuousclimboperations(CCO)inconjunctionwithperformance‐basednavigation(PBN)toprovideopportunitiestooptimizethroughput,improveflexibility,enablefuel‐efficientclimbprofiles,andincreasecapacityatcongestedterminalareas.

Applicability

Regions,Statesorindividuallocationsmostinneedoftheseimprovements.Forsimplicityandimplementationsuccess,complexitycanbedividedintothreetiers:

a) Leastcomplex–regional/States/locationswithsomefoundationalPBNoperationalexperiencethatcouldcapitalizeonnear‐termenhancements,whichincludeintegratingproceduresandoptimizingperformance.

b) Morecomplex–regional/State/locationsthatmayormaynotpossessPBNexperience,butwouldbenefitfromintroducingneworenhancedprocedures.However,manyoftheselocationsmayhaveenvironmentalandoperationalchallengesthatwilladdtothecomplexitiesofproceduredevelopmentandimplementation.

c) Mostcomplex–regional/State/locationsinthistierwillbethemostchallengingandcomplextointroduceintegratedandoptimizedPBNoperations.Trafficvolumeandairspaceconstraintsareaddedcomplexitiesthatmustbeconfronted.OperationalchangestotheseareascanhaveaprofoundeffectontheentireState,regionorlocation.

Benefits

Efficiency: Costsavingsthroughreducedfuelburnandefficientaircraftoperatingprofiles.Reductioninthenumberofrequiredradiotransmissions.

Environment: Authorizationofoperationswherenoiselimitationswouldotherwiseresultinoperationsbeingcurtailedorrestricted.Environmentalbenefitsthroughreducedemissions.

Safety: Moreconsistentflightpaths.Reductioninthenumberofrequiredradiotransmissions.Lowerpilotandairtrafficcontrolworkload.

Cost: ItisimportanttoconsiderthatCCObenefitsareheavilydependentonthespecificATMenvironment.Nevertheless,ifimplementedwithintheICAOCCOmanualframework,itisenvisagedthatthebenefit/costratio(BCR)willbepositive.

Block1

TheBlock1ModuleswillintroducenewconceptsandcapabilitiessupportingthefutureATMSystem,namely:FlightandFlowInformationforaCollaborativeEnvironment(FF‐ICE);Trajectory‐BasedOperations(TBO);System‐WideInformationManagement(SWIM)andtheintegrationofRemotelyPilotedAircraft(RPAs)intonon‐segregatedairspace.

Theseconceptsareatvariousstagesofdevelopment.Somehavebeensubjecttoflighttrialsinacontrolledenvironmentwhileothers,suchasFF‐ICE,existasaseriesofstepsleadingtotheimplementationofwellunderstoodconcepts.Assuch,confidenceishighthattheywillbesuccessfullyimplementedbutthenear‐termstandardizationisexpectedtobechallenging,asoutlinedbelow.

HumanPerformancefactorswillhaveastrongimpactonthefinalimplementationofconceptssuchasFF‐ICEandTBO.Closerintegrationofairborneandground‐basedsystemswillcallforathoroughend‐to‐endconsiderationofHumanPerformanceimpacts.

Similarly,technologicalenablerswillalsoaffectthefinalimplementationoftheseconcepts.Typicaltechnologicalenablersincludeair‐grounddatalinkandtheexchangemodelsforSWIM.Everytechnologyhaslimitsonits

-65-

performanceandthiscould,inturn,impacttheachievableoperationalbenefits—eitherdirectlyorthroughtheireffectonHumanPerformance.

Thestandardizationeffortwillthereforeneedtofollowthreeparallelcourses:

a) Thedevelopmentandrefinementofthefinalconcept.

b) Considerationofend‐to‐endHumanPerformanceimpactsandtheireffectontheultimateconceptandthenecessarytechnologicalenablers.

c) Furtherconsiderationofthetechnologicalenablerstoensurethattheirperformancecansupportoperationsbasedonthenewconceptsand,ifnot,whatproceduralorotherchangeswillbeneeded.

d) HarmonizationoftherelevantStandardsonagloballevel.

Forexample,RPAswillrequirea‘detectandavoid’capabilityaswellasaCommandandControllinkwhichismorerobustthanthepilot‐ATClinkavailabletoday.Ineachcase,thesearemeanttoreplicatethecockpitexperiencefortheremotepilot.Therewillclearlybesomelimitstowhattechnologycanprovideinthisregard,henceconsiderationwillneedtobegiventolimitsonoperations,specialprocedures,etc.

Thisistheessenceofthestandardizationchallengeahead.StakeholdersneedtobesensitizedandbroughttogethertodevelopunifiedsolutionsandICAOwilladdressthisthroughaseriesofevents:

• In2014,ICAOwillsupport,incollaborationwithindustryandStates,end‐to‐enddemonstrationsofnewconceptssuchasTBOandFF‐ICE,includingtheHumanPerformanceaspects.

• In2014,ICAOwillhostasymposiumonAviationDatalink.Thiseventwillhelpusidentifythenextstepsfordatalink—bothintermsoftechnology,servicesandimplementation.

• In2015,ICAOwillholdanAirNavigationInformationManagementDivisionalMeetingfocusedonSWIM.

Block1thereforerepresentstheprimaryICAOtechnicalworkprogrammeonairnavigationandefficiencyforthenexttriennium.Itwillrequirecollaborationwithindustryandregulators,inordertoprovideacoherentgloballyharmonisedsetofoperationalimprovementsintheproposedtimeframe.

Block1

TheModulescomprisingBlock1,whichareintendedtobeavailablebeginningin2018,satisfyoneofthefollowingcriteria:

a) Theoperationalimprovementrepresentsawellunderstoodconceptthathasyettobetrialed.

b) Theoperationalimprovementhasbeentrialedsuccessfullyinasimulatedenvironment.

c) Theoperationalimprovementhasbeentrialedsuccessfullyinacontrolledoperationalenvironment.

d) Theoperationalimprovementisapprovedandreadyforroll‐out.

-66-

PerformanceImprovementArea1:AirportOperations

B1‐APTA OptimizedAirportAccessibility

Progressesfurtherwiththeuniversalimplementationofperformance‐basednavigation(PBN)approaches.PBNandGLS(CATII/III)procedurestoenhancethereliabilityandpredictabilityofapproachestorunwaysincreasingsafety,accessibilityandefficiency.

Applicability

ThisModuleisapplicabletoallrunwayends.

Benefits

Efficiency: Costsavingsrelatedtothebenefitsoflowerapproachminima:fewerdiversions,overflights,cancellationsanddelays.Costsavingsrelatedtohigherairportcapacitybytakingadvantageoftheflexibilitytooffsetapproachesanddefinedisplacedthresholds.

Environment: Environmentalbenefitsthroughreducedfuelburn.

Safety: Stabilizedapproachpaths.

Cost: AircraftoperatorsandANSPscanquantifythebenefitsoflowerminimabymodellingairportaccessibilitywithexistingandnewminima.Operatorscanthenassessbenefitsagainstavionicsandothercosts.TheGLSCATII/IIIbusinesscaseneedstoconsiderthecostofretainingILSorMLStoallowcontinuedoperationsduringaninterferenceevent.ThepotentialforincreasedrunwaycapacitybenefitswithGLSiscomplicatedatairportswhereasignificantproportionofaircraftarenotequippedwithGLSavionics.

B1‐WAKE IncreasedRunwayThroughputthroughDynamicWakeTurbulenceSeparation

Improvedthroughputondepartureandarrivalrunwaysthroughthedynamicmanagementofwaketurbulenceseparationminimabasedonthereal‐timeidentificationofwaketurbulencehazards.

Applicability

Leastcomplex–implementationofre‐categorizedwaketurbulenceismainlyprocedural.Nochangestoautomationsystemsareneeded.

Benefits

Capacity: Element1:Betterwindinformationaroundtheaerodrometoenactreducedwakemitigationmeasuresinatimelymanner.Aerodromecapacityandarrivalrateswillincreaseastheresultofreducedwakemitigationmeasures.

Environment: Element3:Changesbroughtaboutbythiselementwillenablemoreaccuratecrosswindprediction.

Flexibility: Element2:Dynamicscheduling.ANSPshavethechoiceofoptimizingthearrival/departurescheduleviapairingnumberofunstableapproaches.

-67-

Cost: Element1’schangetotheICAOwaketurbulenceseparationminimawillyieldanaveragenominalfourpercentadditionalcapacityincreaseforairportrunways.Thefourpercentincreasetranslatestoonemorelandingperhourforasinglerunwaythatnormallycouldhandlethirtylandingsperhour.Oneextraslotperhourcreatesrevenuefortheaircarrierthatfillsthemandfortheairportthathandlestheextraaircraftoperationsandpassengers.

TheimpactoftheElement2Upgradeisthereducedtimethatanairport,duetoweatherconditions,mustoperateitsparallelrunways,withcentrelinesspacedlessthan760m(2,500feet)apart,asasinglerunway.Element2Upgradeallowsmoreairportstobetterutilizesuchparallelrunwayswhentheyareconductinginstrumentflightrulesoperations–resultinginanominaleighttotenmoreairportarrivalsperhourwhencrosswindsarefavourableforWTMAreducedwakeseparations.FortheElement2Upgrade,theadditionofacrosswindpredictionandmonitoringcapabilitytotheANSPautomationisrequired.FortheElement2and3Upgrades,additionaldownlinkandreal‐timeprocessingofaircraftobservedwindinformationwillberequired.TherearenoaircraftequipagecostsbesidescostsincurredforotherModuleUpgrades.

ImpactoftheElement3Upgradeisreducedtimethatanairportmustspacedeparturesonitsparallelrunways,withcentrelinesspacedlessthan760m(2,500feet)apart,bytwotothreeminutes,dependingonrunwayconfiguration.Element3UpgradewillprovidemoretimeperiodsthatanairportANSPcansafelyuseWTMDreducedwakeseparationsontheirparallelrunways.TheairportdeparturecapacityincreasesfourtoeightmoredepartureoperationsperhourwhenWTMDreducedseparationscanbeused.Downlinkandrealtimeprocessingofaircraftobservedwindinformationwillberequired.TherearenoaircraftequipagecostsbesidescostsincurredforotherModuleUpgrades.

B1‐SURF EnhancedSafetyandEfficiencyofSurfaceOperations–SURF,SURF‐IAandEnhancedVisionSystems(EVS)

Providesenhancementsforsurfacesituationalawareness,includingbothcockpitandgroundelements,intheinterestofrunwayandtaxiwaysafety,andsurfacemovementefficiency.Cockpitimprovementsincludingtheuseofsurfacemovingmapswithtrafficinformation(SURF),runwaysafetyalertinglogic(SURF‐IA),andenhancedvisionsystems(EVS)forlowvisibilitytaxioperations.

Applicability

ForSURFandSURF‐IA,applicabletolargeaerodromes(ICAOcodes3and4)andallclassesofaircraft;cockpitcapabilitiesworkindependentlyofgroundinfrastructure,butotheraircraftequipageand/orgroundsurveillancebroadcastwillimprove.

Benefits

Efficiency: Element1:Reducedtaxitimes.

Element2:FewernavigationerrorsrequiringcorrectionbyANSP.

Safety: Element1:Reducedriskofcollisions.

Element2:Improvedresponsetimestocorrectionofunsafesurfacesituations(SURF‐IAonly).

Element3:Fewernavigationerrors.

-68- Cost: Thebusinesscaseforthiselementcanbelargelymadearoundsafety.Currently,theaerodromesurfaceisoftentheregimeofflightwhichhasthemostriskforaircraftsafety,duetothelackofgoodsurveillanceonthegroundactinginredundancywithcockpitcapabilities.Visualscanningaugmentationinthecockpitactinginconjunctionwithserviceprovidercapabilitiesenhancesoperationsonthesurface.Efficiencygainsareexpectedtobemarginalandmodestinnature.

Improvingflightcrewsituationalawarenessofaircraftpositionduringperiodsofreducedvisibilitywillreduceerrorsintheconductoftaxioperations,whichleadtobothsafetyandefficiencygains.

B1‐ACDM OptimizedAirportOperationsthroughA‐CDMTotalAirportManagement

Enhancestheplanningandmanagementofairportoperationsandallowstheirfullintegrationforairtrafficmanagementusingperformancetargetscompliantwiththoseofthesurroundingairspace.Thisentailsimplementingcollaborativeairportoperationsplanning(AOP)andwhereneeded,anairportoperationscentre(APOC).

Applicability

AOP:foruseatalltheairports(sophisticationwilldependonthecomplexityoftheoperationsandtheirimpactonthenetwork).

APOC:willbeimplementedatmajor/complexairports(sophisticationwilldependonthecomplexityoftheoperationsandtheirimpactonthenetwork).

Notapplicabletoaircraft.

Benefits

Efficiency: Throughcollaborativeprocedures,comprehensiveplanningandpro‐activeactiontoforeseeableproblemsamajorreductioninon‐groundandin‐airholdingisexpectedtherebyreducingfuelconsumption.Theplanningandpro‐activeactionswillalsosupportefficientuseofresources;however,someminorincreaseinresourcesmaybeexpectedtosupportthesolution(s).

Environment: Throughcollaborativeprocedures,comprehensiveplanningandpro‐activeactiontoforeseeableproblemsamajorreductioninon‐groundandin‐airholdingisexpectedtherebyreducingnoiseandairpollutioninthevicinityoftheairport.

Predictability: Throughtheoperationalmanagementofperformance,reliabilityandaccuracyofthescheduleanddemandforecastwillincrease(inassociationwithinitiativesbeingdevelopedinotherModules).

Cost: Throughcollaborativeprocedures,comprehensiveplanningandpro‐activeactiontoforeseeableproblems,amajorreductioninon‐groundandin‐airholdingisexpectedtherebyreducingfuelconsumption.Theplanningandpro‐activeactionswillalsosupportefficientuseofresources;however,someminorincreaseinresourcesmaybeexpectedtosupportthesolution(s).

B1‐RATS RemotelyOperatedAerodromeControl

Providesasafeandcost‐effectiveairtrafficservices(ATS)fromaremotefacilitytooneormoreaerodromeswherededicated,localATSarenolongersustainableorcost‐effective,butthereisalocaleconomicandsocialbenefitfromaviation.Thiscanalsobeappliedtocontingencysituationsanddependsonenhancedsituationalawarenessoftheaerodromeunderremotecontrol.

-69-

Applicability

Themaintargetforthesingleandmultipleremotetowerservicesaresmallruralairports,whichtodayarestrugglingwithlowbusinessmargins.BothATCandAFISaerodromesareexpectedtobenefit.

Themaintargetsforthecontingencytowersolutionaremediumtolargeairports–thosethatarelargeenoughtorequireacontingencysolution,butwhorequireanalternativetoA‐SMGCSbased“headsdown”solutionsorwheremaintainingavisualviewisrequired.

AlthoughsomecostbenefitsarepossiblewithremoteprovisionofATStoasingleaerodrome,maximumbenefitisexpectedwiththeremoteofATStomultipleaerodromes.

Benefits

Capacity: Capacitymaybeincreasedthroughtheuseofdigitalenhancementsinlowvisibility.

Efficiency: Efficiencybenefitsthroughtheabilitytoexploittheuseoftechnologyintheprovisionoftheservices.Digitalenhancementscanbeusedtomaintainthroughputinlowvisibilityconditions.

Safety: Sameorgreaterlevelsofsafetyasiftheserviceswereprovidedlocally.TheuseofthedigitalvisualtechnologiesusedintheRVTshouldprovidesafetyenhancementsinlowvisibility.

Flexibility: Flexibilitymaybeincreasedthroughagreaterpossibilitytoextendopeninghourswhenthroughremoteoperations.

Cost: Therearenocurrentoperationalremotetowers,thereforethecost/benefitanalyses(CBAs)arenecessarilybasedonsomeassumptionsdevelopedbysubjectmatterexperts.Costsincurredareassociatedwithprocurementandinstallationofequipmentandadditionalcapitalcostsintermsofnewhardwareandadaptationofbuildings.Newoperatingcostsincludefacilitiesleases,repairsandmaintenanceandcommunicationlinks.Therearethenshorttermtransitioncostssuchasstaffre‐training,re‐deploymentandrelocationcosts.

Againstthis,savingsarederivedfromremotetowerimplementation.Asignificantportionoftheseresultfromsavingsinemploymentcostsduetoreductioninshiftsize.PreviousCBAsindicatedareductioninstaffcostsof10‐35%dependingonthescenario.Othersavingsarisefromreducedcapitalcosts,particularlysavingsfromnothavingtoreplaceandmaintaintowerfacilitiesandequipmentandfromareductionintoweroperatingcosts.

TheCBAconcludedthatremotetowersdoproducepositivefinancialbenefitsforANSPs.FurtherCBAswillbeconductedduring2012and2013usingarangeofimplementationscenarios(single,multiple,contingency).

B1‐RSEQ ImprovedAirportOperationsthroughDeparture,SurfaceandArrivalManagement

Extensionofarrivalmeteringandintegrationofsurfacemanagementwithdeparturesequencingwillimproverunwaymanagementandincreaseairportperformanceandflightefficiency.

Applicability

Runwaysandterminalmanoeuvringareasinmajorhubsandmetropolitanareaswillbemostinneedoftheseimprovements.ComplexityinimplementationofthisModuledependsonseveralfactors.SomelocationsmighthavetoconfrontenvironmentalandoperationalchallengesthatwillincreasethecomplexityofdevelopmentandimplementationoftechnologyandprocedurestorealizethisModule.Performance‐basedNavigation(PBN)routesneedtobeinplace.

Benefits

Capacity: Time‐basedmeteringwilloptimizeusageofterminalairspaceandrunwaycapacity.

-70- Efficiency: Surfacemanagementdecreasesrunwayoccupancytime,introducesmorerobustdepartureratesandenablesdynamicrunwayrebalancingandre‐configuration.Departure/surfaceintegrationenablesdynamicrunwayrebalancingtobetteraccommodatearrivalanddeparturepatterns.Reductioninairbornedelay/holding.Trafficflowsynchronizationbetweenen‐routeandterminaldomain.RNAV/RNPprocedureswilloptimizeaerodrome/terminalresourceutilization.

Environment: Reductioninfuelburnandenvironmentimpact(emissionandnoise).

Safety: Greaterprecisioninsurfacemovementtracking.

Predictability: Decreaseuncertaintiesinaerodrome/terminaldemandprediction.Increasedcompliancewithassigneddeparturetimeandmorepredictableandorderlyflowintometeringpoints.Greatercompliancetocontrolledtimeofarrival(CTA)andmoreaccurateassignedarrivaltimeandgreatercompliance.

Flexibility: Enablesdynamicscheduling.

Cost: Cost‐benefitsmaybereasonablyprojectedformultiplestakeholdersduetoincreasedcapacity,predictabilityandefficiencyofairlineandairportoperations.

PerformanceImprovementArea2:GloballyInteroperableSystemsandData

B1‐FICEIncreasedInteroperability,EfficiencyandCapacitythroughFlightandFlowInformationforaCollaborativeEnvironmentStep‐1(FF‐ICE/1)applicationbeforeDeparture

IntroducesFF‐ICE,Step1providingground‐groundexchangesusingacommonflightinformationreferencemodel(FIXM)andextensiblemarkuplanguage(XML)standardformatsbeforedeparture.

Applicability

ApplicablebetweenATSunitstofacilitateexchangebetweenATMserviceprovider(ASP),airspaceuseroperationsandairportoperations.

Benefits

Capacity: Reducedairtrafficcontroller(ATC)workloadandincreaseddataintegritysupportingreducedseparationstranslatingdirectlytocrosssectororboundarycapacityflowincreases.

Efficiency: Betterknowledgeofaircraftcapabilitiesallowstrajectoriesclosertoairspaceuserpreferredtrajectoriesandbetterplanning.

Safety: Moreaccurateflightinformation.

Interoperability: TheuseofanewmechanismforFPLfilingandinformationsharingwillfacilitateflightdatasharingamongtheactors.

Participation: FF‐ICE,Step1forground‐groundapplicationwillfacilitatecollaborativedecision‐making(CDM),theimplementationorthesystemsinterconnectionforinformationsharing,trajectoryorslotnegotiationbeforedepartureprovidingbetteruseofcapacityandbetterflightefficiency.

Flexibility: TheuseofFF‐ICE,Step1allowsaquickeradaptationofroutechanges.

-71-

Cost: ThenewserviceshavetobebalancedbythecostofsoftwarechangesintheATMserviceprovider(ASP),airlineoperationscenter(AOC)andairportgroundsystems.

B1‐DATM ServiceImprovementthroughIntegrationofallDigitalATMInformation

ImplementstheATMinformationreferencemodel,integratingallATMinformation,usingcommonformats(UML/XMLandWXXM)formeteorologicalinformation,FIXMforflightandflowinformationandinternetprotocols.

Applicability

ApplicableattheStatelevel,withincreasedbenefitsasmoreStatesparticipate.

Benefits

AccessandEquity: Greaterandtimelieraccesstoup‐to‐dateinformationbyawidersetofusers.

Efficiency: Reducedprocessingtimefornewinformation;increasedabilityofthesystemtocreatenewapplicationsthroughtheavailabilityofstandardizeddata.

Safety: Reducedprobabilityofdataerrorsorinconsistencies;reducedpossibilitytointroduceadditionalerrorsthroughmanualinputs.

Interoperability: Essentialforglobalinteroperability.

Cost: Businesscasetobeestablishedinthecourseoftheprojectsdefiningthemodelsandtheirpossibleimplementation.

B1‐SWIM PerformanceImprovementthroughtheApplicationofSystem‐WideInformationManagement(SWIM)

Implementationofsystem‐wideinformationmanagement(SWIM)services(applicationsandinfrastructure)creatingtheaviationintranetbasedonstandarddatamodelsandinternet‐basedprotocolstomaximizeinteroperability.

Applicability

ApplicableatStatelevel,withincreasedbenefitsasmoreStatesparticipate.

Benefits

Efficiency: Usingbetterinformationallowsoperatorsandserviceproviderstoplanandexecutebettertrajectories.

Environment: Furtherreductionofpaperusage,morecost‐efficientflightsasthemostup‐to‐dateinformationisavailabletoallstakeholdersintheATMsystem.

Safety: Accessprotocolsanddataqualitywillbedesignedtoreducecurrentlimitationsintheseareas.

Cost: Furtherreductionofcosts;allinformationcanbemanagedconsistentlyacrossthenetwork,limitingbespokedevelopments,flexibletoadapttostate‐of‐the‐artindustrialproductsandmakinguseofscaleeconomiesfortheexchangedvolumes.

-72- ThebusinesscaseistobeconsideredinthefulllightofotherModulesofthisBlockandthenextone.PureSWIMaspectsunlockATMinformationmanagementissues;operationalbenefitsaremoreindirect.

B1‐AMET EnhancedOperationalDecisionsthroughIntegratedMeteorologicalInformation(PlanningandNear‐termService)

Enablesthereliableidentificationofsolutionswhenforecastorobservedmeteorologicalconditionsimpactaerodromesorairspace.FullATM‐Meteorologyintegrationisneededtoensurethat:meteorologicalinformationisincludedinthelogicofadecisionprocessandtheimpactofthemeteorologicalconditions(theconstraints)areautomaticallycalculatedandtakenintoaccountThedecisiontime‐horizonsrangefromminutes,toseveralhoursordaysaheadoftheATMoperation(thisincludesoptimumflightprofileplanningandtacticalin‐flightavoidanceofhazardousmeteorologicalconditions)totypicallyenablenear‐termandplanning(>20minutes)typeofdecisionmaking.ThisModulealsopromotestheestablishmentofstandardsforglobalexchangeoftheinformation.

Appreciatingthatthenumberofflightsoperatingoncross‐polarandtrans‐polarroutescontinuestosteadilygrowandrecognizingthatspaceweatheraffectingtheearth’ssurfaceoratmosphere(suchassolarradiationstorms)poseahazardtocommunicationsandnavigationsystemsandmayalsoposearadiationrisktoflightcrewmembersandpassengers,thismoduleacknowledgestheneedforspaceweatherinformationservicesinsupportofsafeandefficientinternationalairnavigation.Unliketraditionalmeteorologicaldisturbanceswhichtendtobelocalorsub‐regionalinscale,theeffectsofspaceweatherdisturbancescanbeglobalinnature(althoughtendtobemoreprevalentinthepolarregions),withmuchmorerapidonset

ThisModulebuilds,inparticular,uponModuleB0‐AMET,whichdetailedasub‐setofallavailablemeteorologicalinformationthatcanbeusedtosupportenhancedoperationalefficiencyandsafety.

Applicability

Applicabletotrafficflowplanning,andtoallaircraftoperationsinalldomainsandflightphases,regardlessofthelevelofaircraftequipage.

Benefits

Capacity: Enablesmorepreciseestimatesofexpectedcapacityofagivenairspace.

Efficiency: Reducesthenumberofdeviationsfromuser‐preferredflightprofiles.DecreaseinthevariabilityandnumbersofATMresponsestoagivenmeteorologicalsituation,alongwithreducedcontingencyfuelcarriageforthesamemeteorologicalsituation.

Environment: Lessfuelburn,andreductionofemissionsduetofewergroundhold/delayactions.

Safety: Increasedsituationalawarenessbypilots,AOCsandANSPs,includingenhancedsafetythroughtheavoidanceofhazardousmeteorologicalconditions.Reducedcontingencyfuelcarriageforthesamemeteorologicalcondition.

Predictability: Moreconsistentevaluationsofmeteorologicalconstraints,whichinturnwillallowuserstoplantrajectoriesthataremorelikelytobeacceptablefromthestandpointoftheANSP.Fewerreroutesandlessvariabilityinassociatedtrafficmanagementinitiatives(TMIs)canbeexpected.

Flexibility: Usershavegreaterflexibilityinselectingtrajectoriesthatbestmeettheirneeds,takingintoaccounttheobservedandforecastmeteorologicalconditions.

Cost: ThebusinesscaseforthiselementisstilltobedeterminedaspartofthedevelopmentofthisoverallModule,whichisintheresearchphase.CurrentexperiencewithutilizationofATMdecisionsupporttools,with

-73-

basicmeteorologicalinputparameterstoimproveATMdecisionmakingbystakeholdershasproventobepositiveintermsofproducingconsistentresponsesfromboththeANSPandusercommunity.

PerformanceImprovementArea3:OptimumCapacityandFlexibleFlights

B1‐FRTO ImprovedOperationsthroughOptimizedATSRouting

Provides,throughperformance‐basednavigation(PBN),closerandconsistentroutespacing,curvedapproaches,paralleloffsetsandthereductionofholdingareasize.Thiswillallowthesectorizationofairspacetobeadjustedmoredynamically.Thiswillreducepotentialcongestionontrunkroutesandbusycrossingpointsandreducecontrollerworkload.Themaingoalistoallowflightplanstobefiledwithasignificantpartoftheintendedroutespecifiedbytheuser‐preferredprofile.Maximumfreedomwillbegrantedwithinthelimitsposedbytheothertrafficflows.Theoverallbenefitsarereducedfuelburnandemissions.

Applicability

Regionorsub‐region:thegeographicalextentoftheairspaceofapplicationshouldbelargeenough;significantbenefitsarisewhenthedynamicroutescanapplyacrossflightinformationregion(FIR)boundariesratherthanimposingtraffictocrossboundariesatfixedpredefinedpoints.

Benefits

Capacity: Theavailabilityofagreatersetofroutingpossibilitiesallowsforreductionofpotentialcongestionontrunkroutesandatbusycrossingpoints.Thisinturnallowsforreductionofcontrollerworkloadbyflight.

Freeroutingsnaturallyspreadstrafficintheairspaceandthepotentialinteractionsbetweenflights,butalsoreducesthe“systematization”offlowsandthereforemayhaveanegativecapacityeffectindenseairspaceifitisnotaccompaniedbysuitableassistance.

Reducedroutespacingmeansreducedconsumptionofairspacebytheroutenetworkandagreaterpossibilitytomatchitwithflows.

Efficiency: Trajectoriesclosertotheindividualoptimumbyreducingconstraintsimposedbypermanentdesignand/orbythevarietyofaircraftbehaviours.InparticulartheModulewillreduceflightlengthandrelatedfuelburnandemissions.

ThepotentialsavingsareasignificantproportionoftheATM‐relatedinefficiencies.Wherecapacityisnotanissue,fewersectorsmayberequiredasthespreadingoftrafficorbetterroutingsshouldreducetheriskofconflicts.

Easierdesignofhigh‐leveltemporarysegregatedairspace(TSAs).

Environment: Fuelburnandemissionswillbereduced;however,theareawhereemissionsandcontrailswillbeformedmaybelarger.

Flexibility: Choiceofroutingbytheairspaceuserwouldbemaximized.Airspacedesignerswouldalsobenefitfromgreaterflexibilitytodesignroutesthatfitthenaturaltrafficflows.

Cost: Thebusinesscaseoffreeroutinghasprovedtobepositiveduetothebenefitsthatflightscanobtainintermsofbetterflightefficiency(betterroutesandverticalprofiles;betterandtacticalresolutionofconflicts).

-74-

B1‐NOPS EnhancedFlowPerformancethroughNetworkOperationalPlanning

Introducesenhancedprocessestomanageflowsorgroupsofflightsinordertoimproveoverallflow.Theresultingincreasedcollaborationamongstakeholdersinreal‐time,regardinguserpreferencesandsystemcapabilitieswillresultinbetteruseofairspacewithpositiveeffectsontheoverallcostofATM.

Applicability

Regionorsub‐regionformostapplications;specificairportsincaseofinitialuserdrivenprioritizationprocess(UDPP).ThisModuleismoreparticularlyneededinareaswiththehighesttrafficdensity.However,thetechniquesitcontainswouldalsobeofbenefittoareaswithlessertraffic,subjecttothebusinesscase.

Benefits

Capacity: BetteruseofairspaceandATMnetwork,withpositiveeffectsontheoverallcostefficiencyofATM.OptimizationofDCBmeasuresbyusingassessmentofworkload/complexityasacomplementtocapacity.

Efficiency: Reductionofflightpenaltiessupportedbyairspaceusers.

Environment: SomeminorimprovementisexpectedcomparedtotheModule’sbaseline.

Safety: TheModuleisexpectedtofurtherreducethenumberofsituationswherecapacityoracceptableworkloadwouldbeexceeded.

Predictability: Airspaceusershavegreatervisibilityandsayonthelikelihoodtorespecttheirscheduleandcanmakebetterchoicesbasedontheirpriorities.

Cost: Thebusinesscasewillbearesultofthevalidationworkbeingundertaken.

B1‐ASEP IncreasedCapacityandEfficiencythroughIntervalManagement

Intervalmanagement(IM)improvestheorganizationoftrafficflowsandaircraftspacing.Thiscreatesoperationalbenefitsthroughprecisemanagementofintervalsbetweenaircraftwithcommonormergingtrajectories,thusmaximizingairspacethroughputwhilereducingATCworkloadalongwithmoreefficientaircraftfuelburnreducingenvironmentalimpact.

Applicability

En‐routeandterminalareas.

Benefits

Capacity: Consistent,lowvariancespacingbetweenpairedaircraft(e.g.attheentrytoanarrivalprocedureandonfinalapproach)resultinginreducedfuelburn.

Efficiency: Earlyspeedadvisoriesremovingrequirementforlaterpath‐lengthening.Continuedoptimizedprofiledescents(OPDs)inmediumdensityenvironmentsexpectedtoallowOPDswhendemand<=70%.Resultinginreducedholdingtimesandflighttimes.

Environment: Reducedemissionsduetoreducedspacingsandoptimizedprofiles.

Safety: ReducedATCinstructionsandworkloadwithoutunacceptableincreaseinflightcrewworkload.

Cost: LaboursavingsduetoreducedATCworkload.

-75-

B1‐SNET Ground‐basedSafetyNetsonApproach

Enhancessafetybyreducingtheriskofcontrolledflightintoterrainaccidentsonfinalapproachthroughtheuseofanapproachpathmonitor(APM).APMwarnsthecontrollerofincreasedriskofcontrolledflightintoterrainduringfinalapproaches.Themajorbenefitisasignificantreductionofthenumberofmajorincidents.

Applicability

ThisModulewillincreasesafetybenefitsduringfinalapproachparticularlywhereterrainorobstaclesrepresentsafetyhazards.Benefitsincreaseastrafficdensityandcomplexityincrease.

Benefits

Safety: Significantreductionofthenumberofmajorincidents.

Cost: ThebusinesscaseforthiselementisentirelymadearoundsafetyandtheapplicationofALARP(aslowasreasonablypracticable)inriskmanagement.

PerformanceImprovementArea4:EfficientFlightPaths

B1‐CDOImprovedFlexibilityandEfficiencyinDescentProfiles(CDOs)usingVNAV

Enhancesverticalflightpathprecisionduringdescent,arrival,andenablesaircrafttoflyanarrivalprocedurenotreliantonground‐basedequipmentforverticalguidance.Themainbenefitishigherutilizationofairports,improvedfuelefficiency,increasedsafetythroughimprovedflightpredictabilityandreducedradiotransmission,andbetterutilizationofairspace.

Applicability

Terminalarrivalanddepartureprocedures.

Benefits

Capacity: PBNwithVNAVallowsforaddedaccuracyinacontinuousdescentoperation(CDO).Thiscapabilityallowsforthepotentialtoexpandtheapplicationsofstandardterminalarrivalanddepartureproceduresforimprovedcapacityandthroughput,andimprovetheimplementationofprecisionapproaches.

Efficiency: Enablinganaircrafttomaintainaverticalpathduringdescentallowsfordevelopmentofverticalcorridorsforarrivinganddepartingtrafficthusincreasingtheefficiencyoftheairspace.Additionally,VNAVpromotestheefficientuseofairspacethroughtheabilityforaircrafttoflyamorepreciselyconstraineddescentprofileallowingthepotentialforfurtherreducedseparationandincreasedcapacity.

Environment: Reducedfuelburnsfrommoreaccurateprecisiondescentsresultsinloweremissions.

Safety: Precisealtitudetrackingalongaverticaldescentpathleadstoimprovementsinoverallsystemsafety.

Predictability: VNAVallowsforenhancedpredictabilityofflightpathswhichleadstobetterplanningofflightsandflows.

Cost: VNAVallowsforreducedaircraftlevel‐offs,resultinginfuelandtimesavings.

-76-

B1‐TBOImprovedTrafficSynchronizationandInitialTrajectory‐basedOperation

Improvesthesynchronizationoftrafficflowsaten‐routemergingpointsandtooptimizetheapproachsequencethroughtheuseof4DTRADcapabilityandairportapplications,e.g.D‐TAXI.

Applicability

Requiresgoodsynchronizationofairborneandgrounddeploymenttogeneratesignificantbenefits,inparticulartothoseequipped.Benefitincreaseswithsizeofequippedaircraftpopulationintheareawheretheservicesareprovided.

Benefits

Capacity: Positivelyaffectedbecauseofthereductionofworkloadassociatedtotheestablishmentofthesequenceclosetotheconvergencepointandrelatedtacticalinterventions.Positivelyaffectedbecauseofthereductionofworkloadassociatedtothedeliveryofdepartureandtaxiclearances.

Efficiency: IncreasedbyusingtheaircraftRTAcapabilityfortrafficsynchronizationplanningthroughen‐routeandintoterminalairspace.‘Closedloop’operationsonRNAVproceduresensurecommonairandgroundsystemawarenessoftrafficevolutionandfacilitateitsoptimization.Flightefficiencyisincreasedthroughproactiveplanningoftopofdescent,descentprofileanden‐routedelayactions,andenhancedterminalairspacerouteefficiency.

Environment: Moreeconomicandenvironmentallyfriendlytrajectories,inparticularabsorptionofsomedelays.

Safety: Safetyat/aroundairportsbyareductionofthemisinterpretationsanderrorsintheinterpretationofthecomplexdepartureandtaxiclearances.

Predictability: IncreasedpredictabilityoftheATMsystemforallstakeholdersthroughgreaterstrategicmanagementoftrafficflowbetweenandwithinFIRsen‐routeandterminalairspaceusingtheaircraftRTAcapabilityorspeedcontroltomanageagroundCTA.Predictableandrepeatablesequencingandmetering.“Closedloop”operationsonRNAVproceduresensuringcommonairandgroundsystemawarenessoftrafficevolution.

Cost: Establishmentofthebusinesscaseisunderway.ThebenefitsoftheproposedairportserviceswerealreadydemonstratedintheEUROCONTROLCASCADEProgramme.

B1‐RPAS InitialIntegrationofRemotelyPilotedAircraft(RPA)intoNon‐segregatedAirspace

Implementationofbasicproceduresforoperatingremotelypilotedaircraft(RPA)innon‐segregatedairspace,includingdetectandavoid.

Applicability

AppliestoallRPAoperatinginnon‐segregatedairspaceandataerodromes.Requiresgoodsynchronizationofairborneandgrounddeploymenttogeneratesignificantbenefits,inparticulartothoseabletomeetminimumcertificationandequipmentrequirements.

Benefits

AccessandEquity: Limitedaccesstoairspacebyanewcategoryofusers.

Safety: Increasedsituationalawareness;controlleduseofaircraft.

-77-

Cost: ThebusinesscaseisdirectlyrelatedtotheeconomicvalueoftheaviationapplicationssupportedbyRPAs.

Block2TheModulescomprisingBlock2areintendedtobeavailablein2023andmustsatisfyoneofthefollowingcriteria:

a) RepresentanaturalprogressionfromtheprecedingModuleinBlock1.

b) Supporttherequirementsoftheoperatingenvironmentin2023.

PerformanceImprovementArea1:AirportOperations

B2‐WAKE AdvancedWakeTurbulenceSeparation(Time‐based)

Theapplicationoftime‐basedaircraft‐to‐aircraftwakeseparationminimaandchangestotheprocedurestheANSPusestoapplywakeseparationminima.

Applicability

Mostcomplex–establishmentoftime‐basedseparationcriteriabetweenpairsofaircraftextendstheexistingvariabledistancere‐categorizationofexistingwaketurbulenceintoaconditionsspecifictime‐basedinterval.Thiswilloptimizetheinter‐operationwaittimetotheminimumrequiredforwakedisassociationandrunwayoccupancy.Runwaythroughputisincreasedasaresult.

B2‐SURF OptimizedSurfaceRoutingandSafetyBenefits(A‐SMGCSLevel3‐4andSVS)

Toimproveefficiencyandreducetheenvironmentalimpactofsurfaceoperations,evenduringperiodsoflowvisibility.Queuingfordeparturerunwaysisreducedtotheminimumnecessarytooptimizerunwayuseandtaxitimesarealsoreduced.Operationswillbeimprovedsothatlowvisibilityconditionshaveonlyaminoreffectonsurfacemovement.

Applicability

Mostapplicabletolargeaerodromeswithhighdemand,astheUpgradesaddressissuessurroundingqueuingandmanagementandcomplexaerodromeoperations.

B2‐RSEQ LinkedArrivalManagementandDepartureManagement(AMAN/DNAM)

IntegratedAMAN/DMANtoenabledynamicschedulingandrunwayconfigurationtobetteraccommodatearrival/departurepatternsandintegratearrivalanddeparturemanagement.TheModulealsosummarizesthebenefitsofsuchintegrationandtheelementsthatfacilitateit.

-78- Applicability

Runwaysandterminalmanoeuvringareainmajorhubsandmetropolitanareaswillbemostinneedoftheseimprovements.TheimplementationofthisModuleisleastcomplex.SomelocationsmighthavetoconfrontenvironmentalandoperationalchallengesthatwillincreasethecomplexityofdevelopmentandimplementationtechnologyandprocedurestorealizethisBlock.InfrastructureforRNAP/RNProutesneedtobeinplace.

PerformanceImprovementArea2:GloballyInteroperableSystemsandData

B2‐FICEImprovedCoordinationthroughMulti‐entreGround‐GroundIntegration(FFICE,Step1andFlightObject,SWIM)

FF‐ICEsupportingtrajectory‐basedoperationsthroughexchangeanddistributionofinformationformulti‐centreoperationsusingflightobjectimplementationandinteroperability(IOP)standards.ExtensionofuseofFF‐ICEafterdeparture,supportingtrajectory‐basedoperations.NewsysteminteroperabilitySARPstosupportthesharingofATMservicesinvolvingmorethantwoairtrafficserviceunits(ATSUs).

Applicability

Applicabletoallgroundstakeholders(ATS,airports,airspaceusers)inhomogeneousareas,potentiallyglobal.

B2‐SWIM EnablingAirborneParticipationinCollaborativeATMthroughSWIM

ThisallowstheaircrafttobefullyconnectedasaninformationnodeinSWIM,enablingfullparticipationincollaborativeATMprocesseswithexchangeofdataincludingmeteorology.Thiswillstartwithnon‐safetycriticalexchangessupportedbycommercialdatalinks.

Applicability

Long‐termevolutionpotentiallyapplicabletoallenvironments.

PerformanceImprovementArea3:OptimumCapacityandFlexibleFlights

B2‐NOPS IncreasedUserInvolvementintheDynamicUtilizationoftheNetwork

CDMapplicationssupportedbySWIMthatpermitairspaceuserstomanagecompetitionandprioritizationofcomplexATFMsolutionswhenthenetworkoritsnodes(airports,sector)nolongerprovideenoughcapacitytomeetuserdemands.ThisfurtherdevelopstheCDMapplicationsbywhichATMwillbeabletooffer/delegatetotheuserstheoptimizationofsolutionstoflowproblems.Benefitsincludeanimprovementintheuseofavailablecapacityandoptimizedairlineoperationsindegradedsituations.

-79-

Applicability

Regionorsub‐region.

B2‐ASEP AirborneSeparation(ASEP)

Creationofoperationalbenefitsthroughtemporarydelegationofresponsibilitytotheflightdeckforseparationprovisionwithsuitablyequippeddesignatedaircraft,thusreducingtheneedforconflictresolutionclearanceswhilereducingATCworkloadandenablingmoreefficientflightprofiles.Theflightcrewensuresseparationfromsuitablyequippeddesignatedaircraftascommunicatedinnewclearances,whichrelievethecontrolleroftheresponsibilityforseparationbetweentheseaircraft.However,thecontrollerretainsresponsibilityforseparationfromaircraftthatarenotpartoftheseclearances.

Applicability

Thesafetycaseneedstobecarefullydoneandtheimpactoncapacityisstilltobeassessedincaseofdelegationofseparationforaparticularsituationimplyingnewregulationonairborneequipmentandequipagerolesandresponsibilities(newprocedureandtraining).FirstapplicationsofASEPareenvisagedinOceanicairspaceandinapproachforclosely‐spacedparallelrunways.

B2‐ACAS NewCollisionAvoidanceSystem

Implementationoftheairbornecollisionavoidancesystem(ACAS)adaptedtotrajectory‐basedoperationswithimprovedsurveillancefunctionsupportedbyADS‐Bandadaptivecollisionavoidancelogicaimingatreducingnuisancealertsandminimizingdeviations.

Theimplementationofanewairbornecollisionwarningsystemwillenablemoreefficientoperationsandfutureairspaceprocedureswhilecomplyingwithsafetyregulations.Thenewsystemwillaccuratelydiscriminatebetweennecessaryalertsand“nuisancealerts”.Thisimproveddifferentiationwillleadtoareductionincontrollerworkloadaspersonnelwillspendlesstimetorespondto“nuisancealerts”.Thiswillresultinareductionintheprobabilityofanearmid‐aircollision.

Applicability

Safetyandoperationalbenefitsincreasewiththeproportionofequippedaircraft.Thesafetycaseneedstobecarefullydone.

PerformanceImprovementArea4:EfficientFlightPaths

B2‐CDO ImprovedFlexibilityandEfficiencyinDescentProfiles(CDOs)UsingVNAV,RequiredSpeedandTimeatArrival

Akeyemphasisisontheuseofarrivalproceduresthatallowtheaircrafttoapplylittleornothrottleinareaswheretrafficlevelswouldotherwiseprohibitthisoperation.ThisBlockwillconsiderairspacecomplexity,airtrafficworkload,andproceduredesigntoenableoptimizedarrivalsindenseairspace.

-80- Applicability

Global,highdensityairspace(basedontheUnitedStatesFAAprocedures).

B2‐RPAS RemotelyPilotedAircraft(RPA)IntegrationinTraffic

Continuingtoimprovetheremotelypilotedaircraft(RPA)accesstonon‐segregatedairspace;continuingtoimprovetheremotelypilotedaircraftsystem(RPAS)approval/certificationprocess;continuingtodefineandrefinetheRPASoperationalprocedures;continuingtorefinecommunicationperformancerequirements;standardizingthecommandandcontrol(C2)linkfailureproceduresandagreeingonauniquesquawkcodeforC2linkfailure;andworkingondetectandavoidtechnologies,toincludeautomaticdependentsurveillance–broadcast(ADS‐B)andalgorithmdevelopmenttointegrateRPAintotheairspace.

Applicability

AppliestoallRPAoperatinginnon‐segregatedairspaceandataerodromes.Requiresgoodsynchronizationofairborneandgrounddeploymenttogeneratesignificantbenefits,inparticulartothoseabletomeetminimumcertificationandequipmentrequirements.

Block3TheModulescomprisingBlock3,intendedtobeavailableforimplementationin2028,mustsatisfyatleastoneofthefollowingcriteria:

a) RepresentanaturalprogressionfromtheprecedingModuleinBlock2.

b) Theywillsupporttherequirementsoftheoperatingenvironmentin2028.

c) Representanend‐stateasenvisagedintheGlobalATMOperationalConcept.

PerformanceImprovementArea1:AirportOperations

B3‐RSEQ IntegrationAMAN/DMAN/SMAN

ThisModuleincludesabriefdescriptionofintegratedarrival,en‐route,surface,anddeparturemanagement.

Applicability

Runwaysandterminalmanoeuvringareainmajorhubsandmetropolitanareaswillbemostinneedoftheseimprovements.ComplexityinimplementationofthisBlockdependsonseveralfactors.SomelocationsmighthavetoconfrontenvironmentalandoperationalchallengesthatwillincreasethecomplexityofdevelopmentandimplementationoftechnologyandprocedurestorealizethisBlock.InfrastructureforRNAP/RNProutesneedtobeinplace.

-81-

PerformanceImprovementArea2:GloballyInteroperableSystemsandData

B3‐FICEImprovedOperationalPerformancethroughtheIntroductionofFullFF‐ICE

DataforallrelevantflightssystematicallysharedbetweentheairandgroundsystemsusingSWIMinsupportofcollaborativeATMandtrajectory‐basedoperations.

Applicability

Airandground.

PerformanceImprovementArea3:OptimumCapacityandFlexibleFlights

B3‐AMET EnhancedOperationalDecisionsthroughIntegratedMeteorologicalInformation(Near‐termandImmediateService)

TheaimofthisModuleistoenhanceglobalATMdecisionmakinginthefaceofhazardousmeteorologicalconditionsinthecontextofdecisionsthatshouldhaveanimmediateeffect.ThisModulebuildsupontheinitialinformationintegrationconceptandcapabilitiesdevelopedunderB1‐AMET.Keypointsarea)tacticalavoidanceofhazardousmeteorologicalconditionsinespeciallythe0‐20minutetimeframe;b)greateruseofaircraftbasedcapabilitiestodetectmeteorologicalparameters(e.g.turbulence,winds,andhumidity);andc)displayofmeteorologicalinformationtoenhancesituationalawareness.ThisModulealsopromotesfurthertheestablishmentofstandardsfortheglobalexchangeoftheinformation.

Applicability

Applicabletoairtrafficflowplanning,en‐routeoperations,terminaloperations(arrival/departure)andsurface.AircraftequipageisassumedintheareasofADS‐BIN/CDTI,aircraftbasedmeteorologicalobservations,andmeteorologicalinformationdisplaycapabilities,suchasEFBs.

B3‐NOPS TrafficComplexityManagement

Introductionofcomplexitymanagementtoaddresseventsandphenomenathataffecttrafficflowsduetophysicallimitations,economicreasonsorparticulareventsandconditionsbyexploitingthemoreaccurateandrichinformationenvironmentofSWIM‐basedATM.Benefitswillincludeoptimizedusageandefficiencyofsystemcapacity.

Applicability

Regionalorsub‐regional.Benefitsareonlysignificantoveracertaingeographicalsizeandassumethatitispossibletoknowandcontrol/optimizerelevantparameters.Benefitsmainlyusefulinthehigherdensityairspace.

-82-

PerformanceImprovementArea4:EfficientFlightPaths

B3‐TBO Full4DTrajectory‐basedOperations

Thedevelopmentofadvancedconceptsandtechnologies,supportingfourdimensionaltrajectories(latitude,longitude,altitude,time)andvelocitytoenhanceglobalATMdecisionmaking.Akeyemphasisisonintegratingallflightinformationtoobtainthemostaccuratetrajectorymodelforgroundautomation.

Applicability

Applicabletoairtrafficflowplanning,en‐routeoperations,terminaloperations(approach/departure),andarrivaloperations.Benefitsaccruetobothflowsandindividualaircraft.Aircraftequipageisassumedintheareasof:ADS‐BIN/CDTI;datacommunicationandadvancednavigationcapabilities.Requiresgoodsynchronizationofairborneandgrounddeploymenttogeneratesignificantbenefits,inparticulartothoseequipped.Benefitincreaseswithsizeofequippedaircraftpopulationintheareawheretheserviceareprovided.

B3‐RPAS RemotelyPilotedAircraft(RPA)TransparentManagement

Continuingtoimprovethecertificationprocessforremotelypilotedaircraft(RPA)inallclassesofairspace,workingondevelopingareliablecommandandcontrol(C2)link,developingandcertifyingairbornedetectandavoid(ABDAA)algorithmsforcollisionavoidance,andintegrationofRPAintoaerodromeprocedures.

Applicability

AppliestoallRPAoperatinginnon‐segregatedairspaceandataerodromes.Requiresgoodsynchronizationofairborneandgrounddeploymenttogeneratesignificantbenefits,inparticulartothoseabletomeetminimumcertificationandequipmentrequirements.

-83-

Appendix3:HyperlinkedOnlineSupportDocumentation

The2013–2028GANPcontainsorissupportedbypolicyandtechnicalinformationthatcanbeusedateveryleveloftheaviationcommunity.ThisincludestechnicalprovisionsdescribingtheASBUModulesandthetechnologyroadmaps,trainingandpersonnelconsiderations,cooperativeorganizationalaspects,cost‐benefitanalysesandfinancingconcerns,environmentalprioritiesandinitiatives,andintegratedplanningsupport.

Thesedynamicand‘living’GANPsupportcomponentswillbehyperlinkedasonlinePDFsontheICAOpublicwebsitethroughoutthe2013–2028applicabilityperiod.

UndertheauthorityoftheICAOCouncilandAssembly,theGANP’swideavailability,accuracy,andreview/updateprocessesnowprovideICAOMemberStatesandindustrystakeholderswiththeconfidencethattheplancanandwillbeusedeffectivelytodirectrelevantdevelopmentsandimplementationsasrequiredtoachieveglobalATMinteroperability.

HyperlinkedOnlineTechnicalSupportProvisions

TheGANP’sASBUmethodologyandsupportingtechnologyroadmapsarehyperlinkedtocomprehensivetechnicalmaterialsthatcomprisetheessentialrationalesandcharacteristicsoftheGANP.ThesematerialshavebeendevelopedthroughICAOConferencesandSymposia,inadditiontodedicatedpanelsandworkinggroups,allofwhichhavefeaturedtheactiveandwide‐rangingparticipationofStateandindustryexperts.

ThetechnicalsupportattachmentsoftheGANPcanbeaccessedthroughthemainPDFdocumentasshownbelow:

-84- Fig.11:MappingofthehyperlinkedtechnicalcontentsupportingtheASBUModulesandtechnologyroadmaps.

-85-

LinkagewithThirdEditionGANP

Althoughtheyintroduceanewplanningframeworkwithincreaseddefinitionandbroadtimelines,theGANP’sBlockUpgradesareconsistentwiththeThirdEditionoftheGANP’splanningprocessencompassingnear‐term,mid‐termandlong‐termglobalplaninitiatives(GPIs).ThisconsistencyhasbeenretainedtoensurethesmoothtransitionfromtheformerplanningmethodologytotheBlockUpgradeapproach.

OneofthecleardistinctionsbetweentheThirdEditionGANPandnewFourthEditionGANPisthattheconsensus‐drivenASBUmethodologynowprovidesmoreprecisetimelinesandperformancemetrics.

Thispermitsthealignmentofplanningonconcrete,sharedoperationalimprovementsthatarereferencedtotheGPIsinthethirdeditionoftheGANPinordertopreserveplanningcontinuity.

InadditiontothecomprehensiveonlinetechnicalcontentsupportingtheASBUModulesandtechnologyroadmaps,ICAOhasalsopostedessentialbackgroundguidancematerialsthatwillassistStatesandstakeholderswithmattersofpolicy,planning,implementationandreporting.

AlargeamountofthiscontenthasbeenderivedfromtheappendicesintheThirdEditionoftheGANP,asillustratedinthetablebelow:

-86- Fig.12:OnlineDocumentationSupportingPolicy,Planning,ImplementationandReporting.Thefarrightcolumnindicatescontinuitytie‐inswiththematerialintheAppendicesoftheThirdEditionoftheGANP.

GANP Content Type Policy Planning Implementation Reporting

Hyperlinked Online Supporting Documentation Financing & Investment Ownership & Governance Models Legal Considerations Environmental Benefits Integrated ATM Planning Module Technical Provisions Environmental Benefits Skilled Personnel & Training ICAO SARP/PANS Outlook Air Navigation Report Form PIRG Organizational Structures

Reference from GANP Third Edition Appendixes E,F,G Appendix G Appendix C Appendix H Appendixes A, I GPIs Appendix H Appendix B

-87-

Appendix4:FrequencySpectrumConsiderations

Frequencyspectrumavailabilityhasalwaysbeencriticalforaviationandisexpectedtobecomeevenmorecriticalwiththeimplementationofnewtechnologies.Inadditiontothefivetechnologyroadmapspertainingtocommunication,navigation,surveillance(CNS),informationmanagement(IM)andavionics,aglobalaviationspectrumstrategyforthenear‐,medium‐andlong‐termmustsupportimplementationoftheGANP.

Along‐termstrategyforestablishingandpromotingtheICAOpositionforInternationalTelecommunicationUnionWorldRadiocommunicationConferences(ITUWRCs)wasadoptedbytheICAOCouncilin2001.ThestrategyprescribesthedevelopmentofanICAOpositionontheindividualissuesdetailedintheagendaofanupcomingWRC,developedinconsultationwithallICAOMemberStatesandrelevantinternationalorganizations.ThestrategyalsoincludesadetailedICAOpolicyontheuseofeachandeveryaeronauticalfrequencyband.Thepolicyisapplicabletoallfrequencybandsusedforaeronauticalsafetyapplications.AnoverallpolicyandasetofindividualpolicystatementsforeachaviationfrequencybandcanbefoundinChapter7oftheHandbookonRadioFrequencySpectrumRequirementsforCivilAviation,includingtheStatementofApprovedICAOPolicies(Doc9718).

BoththepositionandthepolicyareupdatedaftereachWRCandapprovedbytheICAOCouncil.ThestrategyfordevelopingthepositionandpolicycanpresentlybefoundinAttachmentEtoDoc9718.

TheICAOpositionandpolicyfortheITUWRChorizonextendsbeyondthe15‐yeartimeframeofthecurrentGANPandanticipatesthedevelopmentofthefutureaviationsystem.However,basedontheoutcomeofWRC12,theASBUModulesandthetechnologyroadmaps,anupdateofthestrategyforfrequencyspectrumwillbemanagedbyICAOtoanticipatechangesanddefinesafemechanismsforredundancybetweenessentialcomponentsofthefutureAirNavigationsystem.

FutureAviationSpectrumAccess

Duetotheconstraintsspecifictofrequencyallocationssuitabletosupportsafety‐of‐lifecriticalservices,littlegrowthisforeseenintheoverallsizeofaeronauticalallocationsinthelongerterm.However,itisvitalthatconditionsremainstableintheexistingfrequencybands,tosupportcontinuedandinterferencefreeaccesstosupportcurrentaeronauticalsafetysystemsforaslongasrequired.

Similarly,itisvitaltomanagethelimitedaviationspectrumresourceinamannerwhicheffectivelysupportstheintroductionofnewtechnologieswhenavailable,inlinewiththeASBUModulesandthetechnologyroadmaps.

Inthelightofeverincreasingpressureonthefrequencyspectrumresourceasawhole,includingaeronauticalfrequencyspectrumallocations,itisimperativethatcivilaviationauthoritiesandotherstakeholdersnotonlycoordinatetheaviationpositionwiththeirState’sradioregulatoryauthorities,butalsoactivelyparticipateintheWRCprocess.

FrequencyspectrumwillremainascarceandessentialresourceforAirNavigationasmanyBlockUpgradeswillrequireincreasedair‐grounddatasharingandenhancednavigationandsurveillancecapabilities.

-88-

Appendix5:TechnologyRoadmaps

TheroadmapsillustratedinthisAppendixhavebeendesignedtodepict:

a) NewandlegacytechnologiesneededtosupporttheblockModules:

1) Modulesthatrequirethetechnologyareshowninblack.

2) Modulesthataresupportedbythetechnologyareshowningrey.

b) ThedatebywhichatechnologyisneededtosupportablockanditsModules.

c) Theavailabilityofatechnology(ifitprecedestheblock).

Foreaseofreference,CNS,IMandavionicsroadmapshavebeendividedonthefollowingbasis:

a) Communication:

1) Air‐grounddatalinkcommunication.

2) Ground‐groundcommunication.

3) Air‐groundvoicecommunication.

b) Surveillance:

1) Surfacesurveillance.

2) Ground‐basedsurveillance.

3) Air‐to‐airsurveillance.

c) Navigation:

1) Dedicatedtechnology.

2) Performance‐basednavigation.

d) InformationManagement.

1) SWIM

2) Other

e) Avionics:

1) Communications.

2) Surveillance.

3) Navigation.

4) Aircraftsafetynets.

5) Onboardsystems.

-89-

Fig.13:ExplanationofTechnologyRoadmapformat.

Communication

Air‐grounddatalinkservicesfallintotwobasiccategories:

• Safety‐relatedATSserviceswhereperformancerequirements,procedures,servicesandsupportingtechnologyarestrictlystandardizedandregulated,

• Information‐relatedserviceswhereperformancerequirements,proceduresandsupportingtechnologyarelesscritical.

Ingeneral,theenablers(linkmediatechnologies)willbedevelopedanddeployedbasedontheneedtosupportsafety‐relatedATSservices.

ToprepareforBlock3,researchanddevelopmentisneededintheBlocks1and2timeframes;therearethreeareasofinvestigationwherestandardsarebeingdeveloped:

• Airports–aground‐basedhighcapacityairportsurfacedatalinksystemiscurrentlyunderdevelopment.TheAeronauticalMobileAirportCommunicationsSystem(AeroMACS)isbasedonIEEE802.16/WiMAXstandard).

• SATCOM–anewsatellitebaseddatalinksystemtargetedatoceanicandremoteregions.Thislinkmayalsobeusedincontinentalregionsasacomplementtoterrestrialsystems.ThiscouldbeadedicatedATSSATCOM(e;g;EuropeanESAIrisinitiative)systemoramulti‐modecommercialsystem(e.g.InmarsatSwiftBroadband,Iridium).

• Terrestrial(terminalanden‐route)–aground‐baseddatalinksystemforcontinentalairspaceiscurrentlyunderinvestigation.ThishasbeentermedtheaeronauticalL‐banddigitalaeronauticalcommunicationssystem(LDACS).

Technology Area Modules Technology Supporting Modules Date of Technology Availability (Earliest possible implementation) Date when Technology Needed for Block

-90- Inaddition,studiesareneededtoa)reviewtheroleofvoicecommunicationsinthelong‐termconcept(primarilydatacentric);andtob)considertheneedtodevelopanewappropriatedigitalvoicecommunicationsystemforcontinentalairspace.

Roadmap1‐intheBlock0timeframe:

Enablers:

• Aviationwillrelyonexistingcommunicationssystems,i.e.VHFACARSandVDLMode2/ATNincontinentalareas.

• VHFACARSwillbetransitionedtowardsVDLMode2AOA(i.e.providinghigherbandwidth)sinceVHFchannelshavebecomeaveryscarceresourceinseveralregionsoftheworld.

• SATCOMACARSwillcontinuetobeusedinOceanicandremoteregions.

Services:

• DatalinkserviceimplementationisunderwayinOceanic,En‐RouteairspaceandatmajorAirports(FANS1/Aand/orICAOATNbased–ATNB1).Today’sdatalinkserviceimplementationstodayarebasedondifferentstandards,technologyandoperationalprocedures,althoughtherearemanysimilarities.ThereisaneedtoconvergequicklytoacommonapproachbaseduponICAOapprovedstandards.Thecommonglobalguidancematerialcontinuestobedeveloped,namelythe“GlobalOperationalDataLinkDocument”‐GOLD.

• Informationservicessuchasairlineoperationalcommunications(AOC)arecarriedbyaircraftforcommunicationwithairlinecompanyhostcomputers.Theair‐groundcommunicationsmedia(suchasVDLMode2)aresharedwiththesafetyrelatedservicesduetocostandavionicslimitations.

Roadmap1‐intheBlocks1and2timeframe:

Enablers:

• ATSserviceswillcontinuetoexploitexistingtechnologytomaximizereturnoninvestment,henceVDLMode2/ATNwillcontinuetobeusedforconvergeddatalinkservicesincontinentalareas.Newserviceprovidersmayenterthemarket(mainlyforserviceinoceanicandremoteareas),providedtheymeettheATSservicerequirements.

• AOCmaybegintomigratetowardsnewtechnologiesatairportsandintheen‐routeenvironment(e.g.AeroMACSatairportsandexistingcommercialtechnologylike4Gelsewhere)astheybecomecommerciallyattractive.Thismayalsoapplytosomeinformation‐basedATS.

• VHFACARSwillbephasedoutgivingwaytoVDLMode‐2.

• HFACARSwillalsobephasedoutanditseemslogicalthattheaeronauticaltelecommunicationnetwork(ATN)willbeadaptedtosupportHFdatalink.

-91-

Services:

• Animportantgoalistoharmonizetheregionaldatalinkimplementationsthroughacommontechnicalandoperationalstandard,applicabletoallflightregionsintheworld.TheRTCASC214andEUROCAEWG78havebeenestablishedtodevelopcommonsafety,performanceandinteroperabilitystandardsforthisnextgenerationofATSdatalinkservices(ATNB2)forbothcontinentalandOceanicandremoteregions.TheseStandards,supportedbyvalidationresults,willbereadybytheendof2013,tobefollowedbyacomprehensivevalidationphaseandwillbeavailableforimplementationinsomeregionsfrom2018.Thesestandardswillformthebasisofdatalinkservicesforthelongtermandwillsupportthemovetowardstrajectorybasedoperations.

• Asavionicsevolve,newhighvolumeinformationservicessuchasweatheradvisories,mapupdatesetc.willbecomepossible.Theseservicescouldtakeadvantageofnewcommunicationtechnologythatcouldbedeployedatsomeairportsandinsomeen‐routeairspace,thismaybeseenasthebeginningofair‐groundSWIM.ThesenewdatalinkservicescouldbeeitherAOCorATS.Inmanycasesthesewillnotneedthesamelevelsofperformanceasstrictlysafety‐relatedATSservicesandcouldthereforemakeuseofcommerciallyavailablemobiledataservices,thusreducingtheloadontheinfrastructuresupportingthesafety‐relatedATSservices.

Roadmap1‐intheBlock3timeframe:

Enablers

• Datalinkwillbecometheprimarymeansofcommunication.Insuchadata‐centricsystem,voicewillbeusedonlyinexceptional/emergencysituations;increaseddatalinkperformance,availabilityandreliability,supportinggreaterlevelsofsafetyandcapacity.

• ForOceanicandremoteregions,itisexpectedthatthemigrationfromHFtoSATCOMwillbecompletedbytheBlock3timeframe.

Services:

• theATMTargetConceptisa‘net‐centric’operationbasedonfull4Dtrajectorymanagementwithdatalink(basedonATNBaseline2)usedastheprimemeansofcommunication,replacingvoiceduetoitsabilitytohandlecomplexdataexchanges.Insuchadata‐centricsystem,voicewillbeusedonlyinexceptional/emergencysituations.

Fullair‐groundSWIMserviceswillbeusedtosupportadvanceddecisionmakingandmitigation.SWIMwillallowaircrafttoparticipateincollaborativeATMprocessesandprovideaccesstorichvoluminousdynamicdataincludingmeteorology.Commercialinformation‐basedservicestocompaniesandpassengersmayalsobeimplementedusingthesametechnology.

-92- Roadmap1:

Domain: Communication

Component(s): Air‐groundDataCommunication

‐Enablers(LinkMediaTechnology)

‐Services

-93-

Roadmap2‐intheBlock0timeframe:

Enablers:

• IPnetworkswillcontinuetobedeployed.ExistingIPV4systemswillbegraduallyreplacedbyIPV6.

• Untilnow,inter‐centrevoiceATMcommunicationsweremainlybasedonanalogue(ATS‐R2)anddigital(ATS‐QSIG)protocols.Amovehasbeguntoreplaceground‐groundvoicecommunicationswithvoiceoverIP(VoIP).

• Air‐GroundVoicecommunicationswillremainon25kHzVHFchannelsincontinentalregions(note:8.33kHzVHFvoicechannelswillcontinuetobedeployedinEurope).MigrationfromHFtoSATCOMinOceanicandremoteregionsisexpectedduringthistime.

Services:

• Twomajorground‐groundcommunicationsserviceswillbeinoperation:

‐ ATSmessagingoperatingoverAFTN/CIDINand/orAMHSinsomeareas.

‐ Airtrafficserviceinter‐facilitydatacommunications(AIDC)forflightco‐ordinationandtransfer.

• ATSmessagingisusedworldwideforthecom‐municationofflightplans,MET,NOTAMSetc.overAFTN/CIDINtechnology.MigrationtowardsAMHS(directory,storeandforwardservices)overIP(orusingATNinsomeregions)willprogressinallregions.

• AIDCisusedtoprovideinter‐centrecoordinationandtransferofaircraftbetweenadjacentairtrafficcontrolunits.Migrationfromlegacydatanetwork(e.g.X25)toIPdatanetworkisprogressinginvariousregions.

• ThebeginningsofSWIMwillstarttoappear.OperationalserviceswillbeofferedbysomeSWIMpioneerimplementationsoverIP,SurveillancedatadistributionandMETdatawillalsobedistributedoverIP.MigrationtoDigitalNOTAMwillstartinEuropeandtheU.S.

Roadmap2‐intheBlocks1and2timeframe:

Enablers:

• Traditionalground‐groundvoicecommunicationswillcontinuetomigratetoVoIP.Themigrationisexpectedtobecompletein2020.

• DigitalNOTAMandMET(usingtheAIXMandWXXMdataexchangeformats)willbewidelyimplementedoverIPnetworks.

• FIXMwillbeintroducedastheglobalstandardforexchangingflightdata.

• Toprepareforthelongterm,researchanddevelopmentisneededinthemediumtermfornewsatelliteandterrestrialbasedsystems.Voicecommunicationswillremainon25kHzVHFchannelsincontinentalregions(note:8.33kHzVHFvoicechannelsdeploymentinEurope).

-94- Services:

• ATSmessagingwillmigratetoAMHSsupportedbydirectoryfacilitiesthatwillincludesecuritymanagement.AIDCserviceswillfullymigratetowardsusingIPnetworks.

• Initial4Dair‐groundserviceswillrequireground‐groundinter‐centretrajectoryandclearanceco‐ordinationviaAIDCextensionsornewflightdataexchangescompatiblewiththeSWIMframework.

• SWIMSOAserviceswillmatureandexpandpublish/subscribeandrequest/replyservicesinparalleltothemoretraditionalmessagingservicesbasedonAMHSbutbothwillusetheIPnetwork.

Roadmap2‐intheBlock3timeframe:

Itisquitelikelythatfuturedigitalsystemswillbeusedtocarryvoice.Wheresatellitecommunicationsareused,itwillmostlikelybeviathesamesystemsusedtosupportair‐grounddatalink.Intheterrestrialenvironment,itisnotclearwhetherLDACSwillbeusedtocarrythistrafficoraseparatevoicesystemwillbeused.ThiswillneedtobethesubjectofR&DeffortsintheBlocks1and2timeframes.

-95-

Roadmap2:

Domain: Communication

Component(s): Ground‐groundcommunication Air‐groundvoicecommunication

‐Enablers ‐Enablers(LinkMediaTechnology)

‐Services

-96- Surveillance

Theimportanttrendsofthenext20yearswillbethat:

a) Differenttechniqueswillbemixedinordertoobtainthebestcostbenefitdependingonlocalconstraints.

b) Cooperativesurveillancewillusetechnologiescurrentlyavailableusing1030/1090MHzRFbands(SSR,Mode‐S,WAMandADS‐B).

c) Whilerefinementstocapabilitiesmaybeidentified,itisexpectedthatthesurveillanceinfrastructurecurrentlyforeseencouldmeetallthedemandsplaceduponit.

d) Theairbornepartofthesurveillancesystemwillbecomemoreimportantandshouldbe“futureproof”andgloballyinteroperableinordertosupportthevarioussurveillancetechniqueswhichwillbeused.

e) Therewillbegrowinguseofdownlinkedaircraftparametersbringingthefollowingadvantages:

1) Clearpresentationofcall‐signandlevel.

2) Improvedsituationalawareness.

3) Useofsomedown‐linkedaircraftparameters(DAPs)and25ftaltitudereportingtoimproveradartrackingalgorithms.

4) Displayofverticalstacklists.

5) Reductioninradiotransmission(controllerandpilot).

6) Improvemanagementofaircraftinstacks.

7) Reductionsinlevelbusts.

f) Functionalitywillmigratefromthegroundtotheair.

Roadmap3‐intheBlock0timeframe:

• Therewillbesignificantdeploymentofcooperativesurveillancesystems:ADS‐B,MLAT,WAM

• Groundprocessingsystemswillbecomeincreasinglysophisticatedastheywillneedtofusedatafromvarioussourcesandmakeincreasinguseofthedataavailablefromaircraft.

• Surveillancedatafromvarioussourcesalongwithaircraftdatawillbeusedtoprovidebasicsafetynetfunctions.

• ThebeginningsofSWIMwillstarttoappear.OperationalserviceswillbeofferedbysomeSWIMpioneerimplementationsoverIP,SurveillancedatadistributionandMETdatawillalsobedistributedoverIP.MigrationtoDigitalNOTAMwillstartinEuropeandtheU.S.

-97-

Roadmap3‐intheBlock1timeframe:

• Deploymentofcooperativesurveillancesystemswillexpand.

• Cooperativesurveillancetechniqueswillenhancesurfaceoperations.

• Additionalsafetynetfunctionsbasedonavailableaircraftdatawillbedeveloped.

• Itisexpectedthatmulti‐staticprimarysurveillanceradar(MPSR)willbeavailableforATSuseanditsdeploymentwillprovidesignificantcostsavings.

• Remoteoperationofaerodromesandcontroltowerswillrequireremotevisualsurveillancetechniques,providingSituationalawareness,thiswillbesupplementedwithgraphicaloverlayssuchastrackinginformation,weatherdata,visualrangevaluesandgroundlightstatusetc.

Roadmap3‐intheBlock2timeframe:

• ThetwindemandsofincreasedtrafficlevelsandreducedseparationwillrequireanimprovedformofADS‐B.

• Primarysurveillanceradarwillbeusedlessandlessasitisreplacedbycooperativesurveillancetechniques.

Roadmap3‐intheBlock3timeframe:

• CooperativesurveillancetechniqueswillbedominantasPSRusewillbelimitedtodemandingorspecializedapplications.

-98- Roadmap3:

Domain: Surveillance

Component(s): Ground‐basedsurveillance Surfacesurveillance

‐Enablers ‐Enablers

‐Capabilities ‐Capabilities

-99-

Roadmap4‐intheBlock0timeframe:

• BasicairbornesituationalawarenessapplicationswillbecomeavailableusingADS‐BIN/OUT(ICAOVersion2)

Roadmap4‐intheBlock1timeframe:

• Advancedsituationalawarenessapplicationswillbecomeavailable,againusingADS‐BIN/OUT(ICAOVersion2).

Roadmap4‐intheBlock2timeframe:

• ADS‐Btechnologywillbegintobeusedforbasicairborne(delegated)separation.

• ThetwindemandsofincreasedtrafficlevelsandreducedseparationwillrequireanimprovedformofADS‐B.

Roadmap4‐intheBlock3timeframe:

• TheADS‐BtechnologywhichsupportedBlock2willbeusedforlimitedself‐separationinremoteandoceanicairspace.

-100- Roadmap4:

Domain: Surveillance

Component(s): Air‐airsurveillance

‐Enablers

‐Capabilities

-101-

Navigation

NavigationconceptssuchasRNAV,RNPandPBNprovidearangeofoptionsfortheuseofnavigationtechnology.Astheseareverymuchdependentonlocalrequirements,thissectionwillprovideanarrativedescriptionoftheconsiderationsfortheuseofnavigationtechnology.

GNSSinfrastructure

GNSSisthecoretechnologythathasledtothedevelopmentofPBN.Itisalsothebasisforfutureimprovementsinnavigationservices.ThecorehistoricalconstellationsGPSandGLONASShavebeeninoperationsforwelloveradecade,andSARPsinsupportofaviationoperationsareinplace.Asaresult,aviationusageofGNSSiscurrentlywidespread.GPSandGLONASSarebeingupgradedtoprovideserviceonmultiplefrequencybands.Othercoreconstellations,namelytheEuropeanGalileoandChina’sBeidouarebeingdeveloped.Multi‐constellation,multi‐frequencyGNSShascleartechnicaladvantagesthatwillsupporttheprovisionofoperationalbenefits.Torealizethesebenefits,ICAO,States,ANSPs,standardsbodies,manufacturersandaircraftoperatorsneedtocoordinateactivitiestoaddressandresolverelatedissues.

SBASbasedonGPSisavailableinNorthAmerica(WAAS),Europe(EGNOS),Japan(MSAS)andwillsoonbeavailableinIndia(GAGAN)andRussia(SDCM).SeveralthousandSBASapproachproceduresarenowimplemented,mostlyinNorthAmerica,whileotherregionshavestartedpublishingSBAS‐basedprocedures.SBAStypicallysupportsAPVoperations,butcanalsosupportprecisionapproach(CategoryI)operations.However,itischallengingforSBAStosupportprecisionapproachoperationsinequatorialregionsusingsingle‐frequencyGPSbecauseofionosphericeffects.

GBASCATIbasedonGPSandGLONASSisavailableinRussiaand,basedonGPS,onsomeairportsinseveralStates.SARPsforGBASCATII/IIIareunderoperationalvalidation.RelatedresearchanddevelopmentactivitiesareongoingindifferentStates.ItisalsochallengingforGBAStosupportahighavailabilityofprecisionapproach,inparticularinequatorialregions.

Conventionalnavigationaids(VOR,DME,NDB,ILS)areinwidespreaduseglobally,andmostaircraftareequippedwiththerelevantavionics.ThevulnerabilityofGNSSsignalstointerferencehasledtotheconclusionthatthereisaneedtoretainsomeconventionalaidsoralternativenavigationservicesolutionasaback‐uptoGNSS.

MitigatingtheoperationalimpactofaGNSSoutagewillrelyprimarilyontheuseofotherconstellationsignalsoremployingpilotand/orATCproceduralmethods,whiletakingadvantageofon‐boardinertialsystemsandspecificconventionalterrestrialaids.InthecaseofageneralGNSSoutageinanarea,reversiontoconventionalsystemsandprocedureswouldresultinlowerservicelevelsandapossibledecreaseincapacity.Inthecaseoflossofsignalsfromaspecificconstellation,thereversiontoanotherconstellationcouldallowmaintainingthesamePBNlevel.

TheimplementationofPBNwillmakeareanavigationoperationsthenorm.DMEisthemostappropriateconventionalaidtosupportareanavigationoperations(i.e.assumingDMEmultilaterationonboardcapability),sinceitiscurrentlyusedinmulti‐sensoravionicsforthispurpose.ThiscouldresultinanincreaseinthenumberofDMEinstallationsinsomeregions.Similarly,ILSremainingwidelyused,willprovide,whereavailable,analternateapproachandlandingcapabilityincaseofGNSSoutage.

Roadmap5depictstheexpectedevolutionofnavigationinfrastructureandavionics.

CurrentNavigationInfrastructure

ThecurrentnavigationinfrastructurecomprisingVOR,DMEandNDBnavigationbeaconswasinitiallydeployedtosupportconventionalnavigationalongroutesalignedbetweenVORandNDBfacilities.Astrafficlevelsincreased,newrouteswereimplementedwhichinmanycasesnecessitatedadditionalnavigationfacilitiestobeinstalled.

-102- Asaresult,navigationaiddeploymenthasbeendrivenbyeconomicfactorsandhasledtoanon‐uniformdistributionofnavigationaidswithsomeregions,notablyNorthAmericaandEurope,havingahighdensityofnavigationaidswithmanyotherregionshavingalowdensity,andsomeareashavingnoterrestrialnavigationinfrastructureatall.

TheintroductionofRNAVinthelastdecadeshasledtosettingupnewregionalroutenetworksthatnolongerreliedontheseconventionalnavaidsinfrastructurethusallowingwiderflexibilitytotailortheroutenetworktothetrafficdemandThisessentialmovehasclearlystoppedthedirectlinkbetweenthegroundbasednavaidsandtheroutenetworkinthebusiestairtrafficregions.

Withthecontinuousevolutionofaircraftnavigationcapabilitythroughperformance‐basednavigation,andthewidespreaduseofGNSSpositioning,regionsofhightrafficdensitynolongerneedahighdensityofnavigationaids.

FutureTerrestrialInfrastructureRequirements

TheICAOGANPhastheobjectiveofafutureharmonizedglobalnavigationcapabilitybasedonareanavigation(RNAV)andperformance‐basednavigation(PBN)supportedbyglobalnavigationsatellitesystem(GNSS).

TheoptimisticplanningthatwasconsideredatthetimeoftheEleventhAirNavigationConferenceforallaircrafttobeequippedwithGNSSCapabilityandforotherGNSSconstellationstobeavailable,togetherwithdualfrequencyandmulti‐constellationavionicscapabilitybeingcarriedbyaircrafthavenotbeenrealized.

ThecurrentsinglefrequencyGNSScapabilityprovidesthemostaccuratesourceofpositioningthatisavailableonaglobalbasis.WithsuitableaugmentationasstandardizedwithinICAOAnnexes,SinglefrequencyGNSShasthecapabilitytosupportallphasesofflight.ThecurrentGNSShasanextremelyhighavailability,althoughitdoesnothaveadequateresiliencetoanumberofvulnerabilities,mostnotablyradiofrequencyinterferenceandsolareventscausingionosphericdisturbances.

UntilmultipleGNSSconstellationsandassociatedavionicsareavailable,itisessentialthatasuitablydimensionedterrestrialnavigationinfrastructureisprovidedwhichiscapableofmaintainingsafetyandcontinuityofaircraftoperations.

TheFANSreportfromApril1985stated:

“Thenumberanddevelopmentofnavigationalaidsshouldbereviewedwiththeaimofprovidingamorerationalandmorecost‐effectivehomogeneousnavigationenvironment.”

ThecurrentstatusofaircraftequipageforPBNoperationssupportedbyGNSSandterrestrialnavigationaids,togetherwiththeavailabilityoftheICAOPBNManualandtheassociateddesigncriteriaprovidethenecessarybaselinetocommencetheevolutiontothehomogeneousnavigationenvironmentenvisagedwithintheFANSReport.

InfrastructureRationalizationPlanning

Ithadinitiallybeenexpectedthattherationalizationofthelegacynavigationinfrastructurewouldhavebeenaconsequenceofa‘topdown’processwheretheimplementationofPBNandGNSSwithinvolumesofairspacewouldresultinnavigationaidsbeingmadetotallyredundantsotheycouldbesimplybeswitchedoff.

AllstakeholdersgenerallyagreethatPBNis‘therightthingtodo’andalthoughPBNoffersthecapabilitytointroducenewrouteswithoutadditionalnavigationaids,itremainsdifficulttojustifythecaseforwholescaleimplementationofPBNwithinavolumeofairspace,unlesstherearecapacityorsafetyissuestobeaddressed.

ManyStateshaveutilizedPBNtoimplementadditionalroutesastheyarerequiredtosecuregainsincapacityandoperationalefficiencies.ThishasresultedinvolumesofairspacewhichcontainacombinationofnewPBNroutesandexistingconventionalroutes.

-103-

Itisnowclearthatfornumerousreasonswhichincludebeingunabletoestablishapositivebusinesscaseforalargescaleairspaceredesign,a‘top‐down’PBNimplementationfollowedbyinfrastructurerationalizationwilltakemanyyearstocomplete,ifever.

Asanalternativestrategy,abottom‐upapproachshouldbeconsideredasattheendofeachnavigationaid’seconomiclife,anopportunityexiststoconsiderifalimitedPBNimplementationtoalleviatetheneedforthereplacementofthefacilityismorecosteffectivethanreplacementofthenavigationaid.

Thereplacementcostopportunityonlypresentsitselfifthenavigationaidisfullydepreciatedandreplacementisconsidered:itthereforearisesona20‐25yearcycle.Inordertorealizeanycostsaving,rationalizationopportunitiesneedtobeidentifiedandthenecessaryroutechangesplannedandimplementedtoenablethefacilitiestobedecommissionedattheendoftheirlifetime.

ThisbottomupapproachtorationalizationalsoprovidesacatalysttostarttheairspacetransitiontoaPBNenvironment,facilitatingfuturechangestooptimizeroutestodelivergainsinefficiencysuchasshorterroutingsandlowerCO2emissions.

Inplanningfortherationalizationofnavigationinfrastructure,itisessentialthatallstakeholders’needsandoperationalusesoftheinfrastructureareconsidered.TheseneedsarelikelytoextendbeyondtheinstrumentflightproceduresandroutespromulgatedintheStateCivilAeronauticalInformationPublicationandmayalsoincludemilitaryinstrumentflightprocedures,aircraftoperationalcontingencyproceduressuchasenginefailureontake‐off,andusedforVOR‐basedseparationsinproceduralairspaceasdetailedinICAODoc4444.

-104- Roadmap5:

Domain: Navigation

Component(s): Enablers Capabilities

‐Conventional ‐PBN

‐Satellite‐based ‐Precisionapproach

-105-

Performance‐basedNavigation

TheroadmapsabovedepictmigrationpathsfortheimplementationofPBNlevelsandprecisionapproachesforthefollowingoperations:enrouteoceanicandremotecontinental,enroutecontinental,TMAarrival/departure,andapproach.ThereisnoattempttoshowdetailedtimelinesbecauseregionsandStateswillhavedifferentrequirements;somemayneedtomovequicklytothemostdemandingPBNspecificationwhileotherswillbeabletosatisfyairspaceusers’requirementswithabasicspecification.ThefiguresdonotimplythatStates/regionhavetoimplementeachstepalongthepathtothemostdemandingspecification.Doc9613‐PerformanceBasedNavigationManual‐providesthebackgroundanddetailedtechnicalinformationrequiredforoperationalimplementationplanning.

ThePBNManualidentifiesalargesetofnavigationapplications.Amongtheseapplications,onesub‐setistheRNPapplications.ItisimportanttorealizethattheimplementationofRNPapplicationswithinanairspacecontributesdefactotoare‐distributionofthesurveillanceandconformancemonitoringfunction.TheRNPconceptintroducesanintegritycheckofthenavigatedpositionataircraftlevelandallowstheautomaticdetectionofnon‐conformancetotheagreedtrajectorywhilethisfunctionistodaythefullresponsibilityofthecontroller.ThereforeRNPimplementationshouldprovideadditionalbenefitstotheATSUthatistraditionallyinchargeoftheconformancemonitoring.

-106- Roadmap6:

Domain: Performance‐basedNavigation(PBN)

Component(s): En‐route,OceanicandremotecontinentalEn‐routecontinentalTerminalairspace:arrivalanddepartureApproach

-107-

InformationManagement

AgoaloftheGlobalATMOperationalConceptisanet‐centricoperationwheretheATMnetworkisconsideredasaseriesofnodes–includingtheaircraft–providingorusinginformation.

Aircraftoperatorswithflight/airlineoperationalcontrolcentrefacilitieswillshareinformationwhiletheindividualuserwillbeabletodothesameviaapplicationsrunningonanysuitablepersonaldevice.ThesupportprovidedbytheATMnetworkwillinallcasesbetailoredtotheneedsoftheuserconcerned.

ThesharingofinformationoftherequiredqualityandtimelinessinasecureenvironmentisanessentialenablerfortheATMTargetConcept.ThescopeextendstoallinformationthatisofpotentialinteresttoATMincludingtrajectories,surveillancedata,aeronauticalinformation,meteorologicaldataetc.

Inparticular,allpartsoftheATMnetworkwillsharetrajectoryinformationinrealtimetotheextentrequired,fromthetrajectorydevelopmentphasethroughoperationsandpost‐operationactivities.ATMplanning,collaborativedecisionmakingprocessesandtacticaloperationswillalwaysbebasedonthelatestandmostaccuratetrajectorydata.TheindividualtrajectorieswillbemanagedthroughtheprovisionofasetofATMservicestailoredtomeettheirspecificneeds,acknowledgingthatnotallaircraftwill(orwillneedto)beabletoattainthesamelevelofcapabilityatthesametime.

System‐wideInformationManagement(SWIM)isanessentialenablerforATMapplications.ItprovidesanappropriateinfrastructureandensurestheavailabilityoftheinformationneededbytheapplicationsrunbythemembersoftheATMcommunity.Therelatedgeo/timeenabled,seamlessandopeninteroperabledataexchangereliesontheuseofcommonmethodologyandtheuseofasuitabletechnologyandcompliantsysteminterfaces.

TheavailabilityofSWIMwillmakepossiblethedeploymentofadvanceend‐userapplicationsasitwillprovideextensiveinformationsharingandthecapabilitytofindtherightinformationwherevertheprovideris.

Roadmap7‐intheBlock0timeframe:

• TheSWIMconceptofoperationswillbedevelopedandrefined.

Roadmap7‐intheBlock1timeframe:

• AninitialSWIMcapabilitysupportingground‐groundcommunicationswillbedeployed.

Roadmap7‐intheBlock2timeframe:

• TheaircraftwillbecomeanodeontheSWIMnetworkwithfullintegrationwiththeaircraftsystems.

-108- Roadmap7:

Domain: InformationManagement

Component(s): Systemwide‐informationmanagement(SWIM)

-109-

Needforacommontimereference

InmovingtowardstheGlobalATMOperationalconcept,andinparticular4DtrajectorymanagementandintensiveexchangesofinformationthroughSWIM,someofthecurrentprovisionsfortimemanagementmightnotbesufficientandcouldbecomeabarriertofutureprogress.

ThetimereferenceforaviationisdefinedtobetheCoordinatedUniversalTime(UTC).RequirementssurroundingaccuracyoftimeinformationdependonthetypeofATMapplicationwhereitisused.ForeachATMapplication,allcontributingsystemsandallcontributingusersmustbesynchronizedtoatimereferencethatsatisfiesthisaccuracyrequirement.

UTCisthecommontimereference,butthepresentrequirementsfortheaccuracywithwhichaviationclocksaresynchronizedtoUTCmaybeinsufficienttocoverfutureneeds.Thisrelatestotheintegrityandtimelinessofinformationortheuseofdependentsurveillanceforcloserseparations,aswellasmoregenerally4Dtrajectoryoperations.Systemrequirementsforsynchronizationusinganexternalreferencemustalsobeconsidered.

Ratherthandefininganewreferencestandard,theperformancerequirementforaccuracyhastobedefinedwithrespecttoUTCforeachsystemintheATMarchitecturethatreliesonacoordinatedtimerequirement.Differentelementsrequiredifferentaccuracyandprecisionrequirementsforspecificapplications.TheincreasedexchangeofdataonSWIMcreatesthenecessityofefficient‘timestamping’forautomatedsystemsthatareincommunicationwitheachother.Thetimeinformationshouldbedefinedatthesourceandincorporatedinthedistributeddata,withtheproperlevelofaccuracymaintainedaspartofthedataintegrity.

Roadmap8‐intheBlock0timeframe:

• SWIMwillstarttoappearinEuropeandtheU.S.

• Operationalserviceswillbesupportedbyserviceorientedarchitecture(SOA)pioneerimplementations.

• MeteorologicaldatawillalsobedistributedoverIP.

• MigrationtodigitalNOTAMwillcommenceandwillbecarriedoverIP.

Roadmap8‐intheBlocks1and2timeframe:

• DigitalNOTAMandMETinformationdistribution(usingtheAIXMandWXXMinformationexchangeformats)willbewidelyimplementedovertheSWIMnetwork.

• Flightobjectswillbeintroduced,improvinginter‐facilityco‐ordinationandprovidingmulti‐facilitycoordinationforthefirsttime.FlightobjectswillbesharedontheSWIMnetworkoveranIPbackboneandupdatedthroughSWIMsynchronizationservices.

• Themoretraditionalpoint‐to‐pointATSinterfacilitydatacommunication(AIDC)messageexchangewillstillcoexistforsometimewithSWIM.

• FlightInformationeXchangeModel(FIXM)willproposeaglobalstandardforexchangingflightinformation.

• MoregenerallyitisexpectedthatSWIMwillsupporttheimplementationofnewconceptssuchasvirtualATSfacilities,whichcontrolairspaceremotely.

Roadmap8‐intheBlock3timeframeandbeyond:

• FullSWIMdeploymentisexpectedallowingallparticipants,includingtheaircraft,tobeabletoaccessawiderangeofinformationandoperationalservicesincludingfull4D‐trajectorysharing.

• FullimplementationofflightobjectswillbeachievedastheFF‐ICEconceptisrealized.

-110- Roadmap8:

Domain: InformationManagement

Component(s): FlightandFlow AIS/AIM MET

‐Capabilities ‐Capabilities ‐Capabilities

‐Enablers ‐Enablers ‐Enablers

-111-

Avionics

Akeythemewiththeavionicsevolutionisthesignificantincreaseincapabilitythatispossiblethroughtheintegrationofvariousonboardsystems/functions.

Roadmap9‐intheBlock0timeframe:

• FANS2/BwillbeintroducedwhichsupportsDLIC,ACM,AMC,andACLservicesoverATN,thusprovidingbettercommunicationperformancethanFANS‐1/A.InthisfirststepwithdatalinkimplementationoverATN,ACLiscommonlyusedbyATCforthenotificationofvoicefrequencieschangestotheaircraft.ThemoreintegratedsolutionsprovideaconnectionbetweentheFANSandtheRadioCommunicationequipment.Thisintegrationenablestheautomatictransmissionandtuningofthesevoicefrequencies.

• TheexistingFANS‐1/Asystemwillcontinuetobeusedasthereisalargebaseofequippedaircraftanditalsosupportsbothcommunicationandnavigationintegration.

• Aircraftwillhaveatrafficcomputerhostingthe‘trafficcollisionavoidancesystem’,andpossiblythenewairtrafficsituationalawarenessfunctionsandairborneseparationassistancesystems.Thiscapabilityisexpectedtoundergosuccessiveimprovementsinordertomeettherequirementoflaterblocks.

Roadmap9‐intheBlock1timeframe:

• FANS3/CwithCNSintegration(viaATNB2)willbeavailableprovidingcommunicationandsurveillanceintegrationthroughaconnectionbetweentheFANSandNAV(FMS)equipment.ThisavionicsintegrationtypicallysupportstheautomaticloadingintheFMSofcomplexATCclearancestransmittedbydatalink.

• Surveillanceintegration(viaATNB2)willprovideanintegratedsurveillancethroughaconnectionbetweentheFANSequipmentandthetrafficcomputer.Thisavionicsintegrationtypicallysupportstheautomaticloading(withinthetrafficcomputer)ofASASmanoeuvrestransmittedbydatalink.

Roadmap9‐intheBlock2timeframe:

• AircraftaccesstoSWIMwillbeprovidedusingthevariousmeansdescribedintheroadmapforair‐grounddatalinkcommunications.

ThetwindemandsofincreasedtrafficlevelsandreducedseparationwillrequireanimprovedformofADS‐B.

-112- Roadmap9:

Domain: Avionics

Component(s): Communications&Surveillance

-113-

Roadmap10‐intheBlock0timeframe:

• FMSsupportingPBNrepresentsaflightmanagementsystemsupportingPBN,i.e.providingmultisensor(GNSS,DME,etc.)navigationandareanavigation,andqualifiedforRNAV‐xandRNP‐xoperations.

• INSwillcontinuetobeusedinconjunctionwithothernavigationsources.Navigationwillbeunderpinnedbythecapabilitytomergeandmanagenavigationdatafromvarioussources.

Roadmap10‐intheBlocks1and2timeframe:

• Airportnavigationintegration(viaATNB2)providesintegrationbetweentheFMSandtheairportnavigationsystemfunctiontoamongotherthingssupporttheautomaticloadingwithinthetrafficcomputerofATCtaxiclearancestransmittedbydatalink.

• Flightmanagementsystemcapabilitywillbeenhancedtosupportinitial4Dcapability.

• GNSS‐basedservicestodayrelyonasingleconstellation,theglobalpositioningsystem(GPS),providingserviceonasinglefrequency.Otherconstellations,i.e;theGLObalNAvigationSatelliteSystem(GLONASS),GalileoandBeiDouwillbedeployed.Allconstellationswilleventuallyoperateinmultiplefrequencybands.GNSSperformanceissensitivetothenumberofsatellitesinview.Multi‐constellationGNSSwillsubstantiallyincreasethatnumber,improvingtheavailabilityandcontinuityofservice.Furthermore,availabilityofmorethanthirtyinteroperablerangingsourceswillsupporttheevolutionofaircraft‐basedaugmentationsystems(ABAS)thatcouldprovideverticallyguidedapproacheswithminimal,orpotentiallynoneedforexternalaugmentationsignals.Theavailabilityofasecondfrequencywillallowavionicstocalculateionosphericdelayinreal‐time,effectivelyeliminatingamajorerrorsource.Theavailabilityofmultipleindependentconstellationswillprovideredundancytomitigatetheriskofservicelossduetoamajorsystemfailurewithinacoreconstellation,andwilladdresstheconcernsofsomeStatesaboutrelianceonasingleGNSSconstellationoutsidetheiroperationalcontrol.

Roadmap10‐intheBlock3timeframeandbeyond:

• Flightmanagementsystemcapabilitywillbeenhancedtosupportthefull4Dcapability.

-114- Roadmap10:

Domain: Avionics

Component(s): Navigation

-115-

Roadmap11‐intheBlock0timeframe:

• ACAS7.1willbethemainairbornesafetynet.ThiswillcontinuethroughtheBlock1timeframe.

• Electronicflightbagswillbecomeincreasinglycommoninthecockpit.Caremustbetakentoensurethattheyhavebeencertifiedforthefunctionssupported.

• AirportmovingmapsandcockpitdisplayoftrafficinformationwillbesupportedwithtechnologiessuchasADS‐B.

Roadmap11‐intheBlock1timeframe:

• Enhancedvisionsystems(EVS)foraerodromeusewillbeavailableinthecockpit.

Roadmap11‐intheBlock2timeframe:

• Syntheticvisionsystems(SVS)foraerodromeusewillbeavailableinthecockpit.

-116- Roadmap11:

Domain: Avionics

Component(s): AirborneSafetyNets

On‐BoardSystems

-117-

Automation

TheTwelfthAirNavigationConferencerequestedICAOtodeveloparoadmapforgroundairtrafficautomationsystems.Thisworkwillbecarriedoutduringthenexttriennium.Thepurposeofthisroadmapwillbeto

i. EnsureinteroperabilitybetweenStates

ii. Sothefunctionandoperationofthesesystemswillresultinconsistentandpredictableairtrafficmanagementsystemacrossstatesandregions.

Appendix6:ModuleDependencies

TheillustrationonthefollowingpagedepictsthevariousdependencieswhichexistbetweenModules.ThesemaycrossPerformanceImprovementAreasandBlocks.

DependenciesbetweenModulesexisteitherbecause:

i.Thereisanessentialdependency.

ii.ThebenefitsofeachModulearemutuallyreinforcing,i.e.implementationofoneModuleenhancesthebenefitachievablewiththeotherModules(s).

ForfurtherinformationthereaderisreferredtothedetailedonlinedescriptionsofeachModule.

Legend: Links from a Module in Block ‘n’ to a Module in Block ‘n+1’ Dependencies across Threads/Performance Areas Links to other Threads/Performance Areas where a Module is dependent on an earlier Module or Modules

-118- Reference

-119-

Appendix7:AcronymGlossary

A

ATFCM–Airtrafficflowandcapacitymanagement

AAR–Airportarrivalrate

ABDAA–Airbornedetectandavoidalgorithms

ACAS–Airbornecollisionavoidancesystem

ACC–Areacontrolcentre

A‐CDM–Airportcollaborativedecision‐making

ACM–ATCcommunicationsmanagement

ADEXP–ATSdataexchangepresentation

ADS‐B–Automaticdependentsurveillance—broadcast

ADS‐C–Automaticdependentsurveillance—contract

AFIS–Aerodromeflightinformationservice

AFISOAerodromeflightinformationserviceofficer

AFTN–Aeronauticalfixedtelecommunicationnetwork

AHMS–AirtrafficmessagehandlingSystem

AICM–Aeronauticalinformationconceptualmodel

AIDC–ATSinter‐facilitydatacommunications

AIP–Aeronauticalinformationpublication

AIRB–Enhancedtrafficsituationalawarenessduringflightoperations

AIRM–ATMinformationreferencemodel

AIS–Aeronauticalinformationservices

AIXM–Aeronauticalinformationexchangemodel

AMA–Airportmovementarea

AMAN/DMAN–Arrival/departuremanagement

AMC–ATCmicrophonecheck

AMS(R)S–Aeronauticalmobilesatellite(route)service

ANM–ATFMnotificationmessage

-120- ANS–Airnavigationservices

ANSP–Airnavigationservicesprovider

AO–Aerodromeoperations/Aircraftoperators

AOC–Aeronauticaloperationalcontrol

AOM–Airspaceorganizationmanagement

APANPIRG–Asia/Pacificairnavigationplanningandimplementationregionalgroup

ARNS–AeronauticalradionavigationService

ARNSS–AeronauticalradionavigationSatelliteService

ARTCCs–Airroutetrafficcontrolcenters

AS–Aircraftsurveillance

ASAS–Airborneseparationassistancesystems

ASDE‐X–Airportsurfacedetectionequipment

ASEP–Airborneseparation

ASEP‐ITF–Airborneseparationintrailfollow

ASEP‐ITM–Airborneseparationintrailmerge

ASEP‐ITP–Airborneseparationintrailprocedure

ASM–Airspacemanagement

A‐SMGCS–Advancedsurfacemovementguidanceandcontrolsystems

ASP–Aeronauticalsurveillanceplan

ASPA–Airbornespacing

ASPIRE–AsiaandSouthPacificinitiativetoreduceemissions

ATC–Airtrafficcontrol

ATCO–Airtrafficcontroller

ATCSCC–Airtrafficcontrolsystemcommandcenter

ATFCM–Airtrafficflowandcapacitymanagement

ATFM–Airtrafficflowmanagement

ATMC–Airtrafficmanagementcontrol

ATMRPP–Airtrafficmanagementrequirementsandperformancepanel

ATN–AeronauticalTelecommunicationNetwork

ATOP–Advancedtechnologiesandoceanicprocedures

ATSA–Airtrafficsituationalawareness

-121-

ATSMHS–Airtrafficservicesmessagehandlingservices

ATSU–ATSunit

AU–Airspaceuser

AUO–Airspaceuseroperations

B

Baro‐VNAV–Barometricverticalnavigation

BCR–Benefit/costratio

B‐RNAV–Basicareanavigation

C

CSPO–Closelyspacedparalleloperations

CPDLC–Controller‐pilotdatalinkcommunications

CDO–Continuousdescentoperations

CBA–Cost‐benefitanalysis

CSPR–Closelyspacedparallelrunways

CM–Conflictmanagement

CDG–Paris‐CharlesdeGaulleairport

CDM–Collaborativedecision‐making

CFMU–Centralflowmanagementunit

CDQM–Collaborativedeparturequeuemanagement

CWP–Controllerworkingpositions

CAD–Computeraideddesign

CTA–Controltimeofarrival

CARATS–Collaborativeactionforrenovationofairtrafficsystems

CFIT–Controlledflightintoterrain

CDTI–Cockpitdisplayoftrafficinformation

CCO–Continuousclimboperations

CAR/SAM–CaribbeanandSouthAmericanregion

-122- COSESNA–CentralAmericancivilaviationagency.

D

DAA–Detectandavoid

DCB–Demandcapacitybalancing

DCL–Departureclearance

DFMDepartureflowmanagement

DFS–DeutscheFlugsicherungGmbH

DLIC–Datalinkcommunicationsinitiationcapability

DMAN–Departuremanagement

DMEAN–DynamicmanagementofEuropeanairspacenetwork

D‐OTIS–Datalink‐operationalterminalinformationservice

DPI–Departureplanninginformation

D‐TAXI–DatalinkTAXI

E

EAD–EuropeanAISdatabase

e‐AIP–ElectronicAIP

EGNOS–EuropeanGNSSnavigationoverlayservice

ETMS–Enhanceairtrafficmanagementsystem

EVS–Enhancedvisionsystems

F

FABECFunctionalAirspaceBlockEuropeCentral

FAF/FAP–Finalapproachfix/finalapproachpoint

FANS–Futureairnavigationsystems

-123-

FDP–Flightdataprocessing

FDPS–Flightdataprocessingsystem

FF‐ICE–Flightandflowinformationforthecollaborativeenvironment

FIR–Flightinformationregion

FIXM–Flightinformationexchangemodel

FMC–Flightmanagementcomputer

FMS–Flightmanagementsystem

FMTP–Flightmessagetransferprotocol

FO–Flightobject

FPL–Filedflightplan

FPS–Flightplanningsystems

FPSM–Grounddelayprogramparametersselectionmodel

FRA–Freerouteairspace

FTS–Fasttimesimulation

FUA–Flexibleuseofairspace

FUM–Flightupdatemessage

G

GANIS–GlobalAirNavigationIndustrySymposium

GANP–Globalairnavigationplan

GAT–Generalairtraffic

GBAS–Ground‐basedaugmentationsystem

GBSAA–Groundbasedsenseandavoid

GEOsatellite–Geostationarysatellite

GLS–GBASlandingsystem

GNSS–Globalnavigationsatellitesystem

GPI–Globalplaninitiatives

GPS–Globalpositioningsystem

GRSS–Globalrunwaysafetysymposium

GUFI–Globallyuniqueflightidentifier

-124-

H

HAT–Heightabovethreshold

HMI–Human‐machineinterface

HUD–Head‐updisplay

I

IDAC–Integrateddeparture‐arrivalcapability

IDC–Interfacilitydatacommunications

IDRP–Integrateddeparturerouteplanner

IFR–Instrumentflightrules

IFSET–ICAOFuelSavingsEstimationTool

ILS–Instrumentlandingsystem

IM–IntervalManagement

IOP–ImplementationandInteroperability

IP–Internetworkingprotocol

IRR–Internalrateofreturn

ISRM–Informationservicereferencemodel

ITP–In‐trail‐procedure

K

KPA–Keyperformanceareas

L

LARA–Localandsub‐regionalairspacemanagementsupportsystem

LIDAR–Aeriallaserscans

LNAV–Lateralnavigation

-125-

LoA–Letterofagreement

LoC–Letterofcoordination

LPV–LateralprecisionwithverticalguidanceORlocalizerperformancewithverticalguidance

LVP–Lowvisibilityprocedures

M

MASPS–Minimumaviationsystemperformancestandards

MILO–Mixedintegerlinearoptimization

MIT–Miles‐in‐trail

MLS–Microwavelandingsystem

MLTF–Multilaterationtaskforce

MTOW–Maximumtake‐offweight

N

NADP–Noiseabatementdepartureprocedure

NAS–Nationalairspacesystem

NAT–NorthAtlantic

NDB–Non‐directionalradiobeacon

NextGen–Nextgenerationairtransportationsystem

NMAC–Nearmid‐aircollision

NOP–Networkoperationsprocedures(plan)

NOTAM–Noticetoairmen

NPV–Netpresentvalue

O

OLDI–On‐linedatainterchange

OPD–Optimizedprofiledescent

OSED–Operationalservice&environmentdefinition

OTW–Outthewindow

-126-

P

P(NMAC)–Probabilityofanearmid‐aircollision

PACOTS–Pacificorganizedtracksystem

PANS‐OPS–Proceduresforairnavigationservices‐aircraftoperations

PBN‐Performance‐basednavigation

PENSPan‐EuropeanNetworkService

PETAL–PreliminaryEUROCONTROLtestofair/grounddatalink

PIA–Performanceimprovementarea

P‐RNAV–Precisionareanavigation

R

RA–Resolutionadvisory

RAIM–Receiverautonomousintegritymonitoring

RAPT–Routeavailabilityplanningtool

RNAVAreanavigation

RNP–Requirednavigationperformance

RPAS–Remotely‐pilotedaircraftsystem

RTC–Remotetowercentre

S

SARPs–Standardsandrecommendedpractices

SASP–Separationandairspacesafetypanel

SATCOM–Satellitecommunication

SBAS–Satellite‐basedaugmentationsystem

SDM–Servicedeliverymanagement

SESAR–SingleEuropeanskyATMresearch

SEVEN–System‐wideenhancementsforversatileelectronicnegotiation

-127-

SFO–SanFranciscointernationalairport

SIDS–Standardinstrumentdepartures

SMAN–Surfacemanagement

SMS–Safetymanagementsystems

SPRs–Specialprogrammeresources

SRMD–Safetyriskmanagementdocument

SSEP–Self‐separation

SSR–Secondarysurveillanceradar

STA–Scheduledtimeofarrival

STARS–Standardterminalarrivals

STBO–Surfacetrajectorybasedoperations

SURF–Enhancedtrafficsituationalawarenessontheairportsurface

SVS–Syntheticvisualisationsystems

SWIM–System‐wideinformationmanagement

T

TBFM–Time‐basedflowmanagement

TBO–Trajectory‐basedoperations

TCAS–Trafficalertandcollisionavoidancesystem

TFM–Trafficflowmanagement

TIS‐B–Trafficinformationservice‐broadcast

TMA–Trajectorymanagementadvisor

TMIs–Trafficmanagementinitiatives

TMUTrafficmanagementunit

TOD–TopofDescent

TRACON–Terminalradarapproachcontrol

TS–Trafficsynchronization

TSA–Temporarysegregatedairspace

TSO–Technicalstandardorder

TWR–Aerodromecontroltower

-128-

U

UA–Unmannedaircraft

UAS–Unmannedaircraftsystem

UAV–Unmannedaerialvehicle

UDPP–Userdrivenprioritisationprocess

V

VFR–Visualflightrules

VLOS–Visualline‐of‐sight

VNAV–Verticalnavigation

VOR–Veryhighfrequency(VHF)omnidirectionalradiorange

VSA–Enhancedvisualseparationonapproach

W

WAAS–Wideareaaugmentationsystem

WAF–Weatheravoidancefield

WGS‐84–Worldgeodeticsystem‐1984

WIDAO–Wakeindependentdepartureandarrivaloperation

WTMA–Waketurbulencemitigationforarrivals

WTMD–Waketurbulencemitigationfordepartures

WXXM–Weatherexchangemodel

-129-

InternationalCivilAviationOrganization(ICAO)

999UniversityStreet,Montréal,Quebec•Canada•H3C5H7

Tel.:+1514‐954‐8219•Fax:+1514‐954‐6077•E‐mail:icaohq@icao.int

wwwicao.int

PublishedinseparateEnglish,Arabic,Chinese,French,RussianandSpanisheditionsbythe

INTERNATIONALCIVILAVIATIONORGANIZATION

Fororderinginformationandforacompletelistingofsalesagentsandbooksellers,pleasegototheICAOwebsiteatwww.icao.int

Doc9750‐AN/963,2013–2028GlobalAirNavigationPlan

OrderNumber:9750‐AN/963

ISBNXXX‐XX‐XXXX‐XXX‐X

©ICAO2013

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystemortransmittedinanyformorbyanymeans,withoutpriorpermissioninwritingfromtheInternationalCivilAviationOrganization.

— — — — — — — —

top related