modeling of fractional dynamics using l vy walks - recent ......wf(t) = xn t i=1 j i note that |r...

Post on 20-Apr-2021

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Modeling of fractional dynamics using Levy walks -

recent advances

Marcin Magdziarz

Hugo Steinhaus Center

Faculty of Pure and Applied Mathematics

Wrocław University of Science and Technology, Poland

Fractional PDEs: Theory, Algorithms and ApplicationsICERM, Brown University, June 2018

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 1 / 45

Outline

Examples of applications of Levy walks

Basic definitions of Levy walks

Asymptotic (diffusion) limits of multidimensional Levy walks

Corresponding fractional diffusion equations

Explicit densities in multidimensional case

Other results

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 2 / 45

Examples of applications of Levy walks

Light transport in optical materialsP. Barthelemy, P.J. Bertolotti, D.S. Wiersma, Nature 453, 495 (2008).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 3 / 45

Examples of applications of Levy walks

Foraging patterns of animalsM. Buchanan, Nature 453, 714 (2008).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 4 / 45

Examples of applications of Levy walks

Migration of swarming bacteriaG. Ariel et al., Nature Communications (2015).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 5 / 45

Examples of applications of Levy walks

Blinking nanocrystalsG. Margolin, E. Barkai, Phys. Rev. Lett. 94, 080601 (2005)F.D. Stefani, J.P. Hoogenboom, E. Barkai, Physics Today, 62 (2009)Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 6 / 45

Examples of applications of Levy walks

Human travelD. Brockmann, L. Hufnagel, and T. Geisel, Nature 439, 462 (2006).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 7 / 45

Basic definitions – 1D case

Waiting times: Ti , i = 1, 2, ... – sequence of iid positive randomvariables with power-law distribution P(Ti > t) ∝ 1

tα, α ∈ (0, 1).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 8 / 45

Basic definitions – 1D case

Waiting times: Ti , i = 1, 2, ... – sequence of iid positive randomvariables with power-law distribution P(Ti > t) ∝ 1

tα, α ∈ (0, 1).

Jumps:Ji = ΛiTi

where Λi are iid random variables with

P(Λi = 1) = p, P(Λi = −1) = 1− p.

They govern the direction of the jumps (velocity v = 1). |Ti | = |Ji |.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 8 / 45

Basic definitions – 1D case

Waiting times: Ti , i = 1, 2, ... – sequence of iid positive randomvariables with power-law distribution P(Ti > t) ∝ 1

tα, α ∈ (0, 1).

Jumps:Ji = ΛiTi

where Λi are iid random variables with

P(Λi = 1) = p, P(Λi = −1) = 1− p.

They govern the direction of the jumps (velocity v = 1). |Ti | = |Ji |.Number of jumps up to time t:

Nt = max{n ≥ 0 : T1 + ...+ Tn ≤ t}.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 8 / 45

Definition: Wait-First Levy Walk – 1D case

RWF (t) =

Nt∑

i=1

Ji

Note that |RWF (t)| ≤ t.

0

0

t

RW

F(t)

J3

J4

J1

T2

J2

T3

T4

T5

J5

T6

J6T

1

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 9 / 45

Definition: Jump-First Levy Walk – 1D case

RJF (t) =

Nt+1∑

i=1

Ji

0

0

t

RJF

(t)

T1

T2

J2

T3

J3

T4

J4

T5

J5

T6

J6J

1

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 10 / 45

Definition: Standard Levy Walk – 1D case

R(t) =

Nt∑

i=1

Ji + (t − T (Nt))ΛNt+1,

where T (n) =∑

n

i=1 Ti . Note that |R(t)| ≤ t.

0

0

t

R(t)

J5

J1

T1

J2

T2

J3

T3

J4

T4

T5

J6

T6

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 11 / 45

Basic definitions – d -dimensional case

Waiting times: Ti , i = 1, 2, ... – sequence of iid positive randomvariables with power-law distribution P(Ti > t) ∝ 1

tα, α ∈ (0, 1).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 12 / 45

Basic definitions – d -dimensional case

Waiting times: Ti , i = 1, 2, ... – sequence of iid positive randomvariables with power-law distribution P(Ti > t) ∝ 1

tα, α ∈ (0, 1).

Jumps in Rd :

Ji = ΛiTi

where Λi are iid unit random vectors in Rd with the distribution

Λ(dx) on d−dimensional sphere Sd . They govern the direction ofthe jumps in Rd (velocity v = 1). We have |Ti | = ‖Ji‖.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 12 / 45

Basic definitions – d -dimensional case

Trajectory Distribution Λ on S2

−4 −2 0

x 105

−4

−2

0

2x 10

5

292.5o315o

337.5o

0o

22.5o

45o67.5o112.5o

135o

157.5o

180o

202.5o

225o

247.5o

90o

270o

0 2 4 6

x 105

0

2

4

6

x 105

292.5o315o

337.5o

0o

22.5o

45o67.5o112.5o

135o

157.5o

180o

202.5o

225o

247.5o

90o

270o

−2 0 2

x 105

−4

−2

0

2x 10

5

292.5o315o

337.5o

0o

22.5o

45o67.5o112.5o

135o

157.5o

180o

202.5o

225o

247.5o

90o

270o

a)

b)

c)

d)

e)

f)

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 13 / 45

Basic definitions – d -dimensional case

Wait-First Levy Walk in Rd

RWF (t) =

Nt∑

i=1

Ji

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 14 / 45

Basic definitions – d -dimensional case

Wait-First Levy Walk in Rd

RWF (t) =

Nt∑

i=1

Ji

Jump-First Levy Walk in Rd

RJF (t) =

Nt+1∑

i=1

Ji

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 14 / 45

Basic definitions – d -dimensional case

Wait-First Levy Walk in Rd

RWF (t) =

Nt∑

i=1

Ji

Jump-First Levy Walk in Rd

RJF (t) =

Nt+1∑

i=1

Ji

Standard Levy Walk in Rd

R(t) =

Nt∑

i=1

Ji + (t − T (Nt))ΛNt+1,

where T (n) =∑

n

i=1 Ti .

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 14 / 45

Diffusion limits of Levy walks – d -dimensional case

Theorem (Diffusion limit of Wait-First Levy walk)

The following convergence in distribution holds as n → ∞

RWF (nt)

n

d−→ L−α (S−1α (t)).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 15 / 45

Diffusion limits of Levy walks – d -dimensional case

Theorem (Diffusion limit of Wait-First Levy walk)

The following convergence in distribution holds as n → ∞

RWF (nt)

n

d−→ L−α (S−1α (t)).

Here:

Lα(t) – d -dimensional α-stable Levy motion (limit of jumps) withFourier transform

ΦLα(t)(k) = exp

(

t

Sd

|〈k , s〉|α(isgn(〈k , s〉) tan(πα/2) − 1)Λ(ds))

Λ(ds) - distribution of jump direction

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 15 / 45

Diffusion limits of Levy walks – d -dimensional case

Theorem (Diffusion limit of Wait-First Levy walk)

The following convergence in distribution holds as n → ∞

RWF (nt)

n

d−→ L−α (S−1α (t)).

Here:

Lα(t) – d -dimensional α-stable Levy motion (limit of jumps) withFourier transform

ΦLα(t)(k) = exp

(

t

Sd

|〈k , s〉|α(isgn(〈k , s〉) tan(πα/2) − 1)Λ(ds))

Λ(ds) - distribution of jump direction

Sα(t) – α-stable subordinator (limit of waiting times)

S−1α (t) = inf{τ ≥ 0 : Sα(τ) > t}

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 15 / 45

Diffusion limits of Levy walks – d -dimensional case

Theorem (Diffusion limit of Wait-First Levy walk)

The following convergence in distribution holds as n → ∞

RWF (nt)

n

d−→ L−α (S−1α (t)).

Here:

Lα(t) – d -dimensional α-stable Levy motion (limit of jumps) withFourier transform

ΦLα(t)(k) = exp

(

t

Sd

|〈k , s〉|α(isgn(〈k , s〉) tan(πα/2) − 1)Λ(ds))

Λ(ds) - distribution of jump direction

Sα(t) – α-stable subordinator (limit of waiting times)

S−1α (t) = inf{τ ≥ 0 : Sα(τ) > t}Coupling! |∆Lα(t)| = ∆Sα(t)

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 15 / 45

Diffusion limits of Levy walks – 1D case

0

0

t

...

Figure: Trajectory of the diffusion limit of Wait-First Levy walk. It can haveinfinitely many jumps on finite interval.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 16 / 45

Diffusion limits of Levy walks – d -dimensional case

Theorem (Diffusion limit of Jump-First Levy walk)

The following convergence in distribution holds as n → ∞

RJF (nt)

n

d−→ Lα(S−1α (t)).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 17 / 45

Diffusion limits of Levy walks – d -dimensional case

Theorem (Diffusion limit of Jump-First Levy walk)

The following convergence in distribution holds as n → ∞

RJF (nt)

n

d−→ Lα(S−1α (t)).

Here:

Lα(t) – d -dimensional α-stable Levy motion (limit of jumps) withFourier transform

ΦLα(t)(k) = exp

(

t

Sd

|〈k , s〉|α(isgn(〈k , s〉) tan(πα/2) − 1)Λ(ds))

Λ(ds) - distribution of jump direction

Sα(t) – α-stable subordinator (limit of waiting times), coupling asbefore.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 17 / 45

Diffusion limits of Levy walks – 1D case

0

0

t

...

Figure: Trajectory of the diffusion limit of Jump-First Levy walk. It can haveinfinitely many jumps on finite interval.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 18 / 45

Diffusion limits of Levy walks – d -dimensional case

Theorem (Diffusion limit of Standard Levy walk)

The following convergence in distribution holds as n → ∞

R(nt)

n

d−→ Z (t).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 19 / 45

Diffusion limits of Levy walks – d -dimensional case

Theorem (Diffusion limit of Standard Levy walk)

The following convergence in distribution holds as n → ∞

R(nt)

n

d−→ Z (t).

Here:

Z (t) =

L−α (S−1α (t)) if t ∈ R

L−α (S−1α (t)) +

t − G (t)

H(t)− G (t)(Lα(S

−1α (t))− L−α (S

−1α (t))) if t /∈ R,

R = {Sα(t) : t ≥ 0},G (t) = S−

α (S−1α (t)),

H(t) = Sα(S−1α (t))).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 19 / 45

Diffusion limits of Levy walks – 1D case

...

Z

Figure: Trajectory of the diffusion limit of standard Levy walk. It can haveinfinitely many changes of direction on finite interval.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 20 / 45

Fractional diffusion equations for Levy Walks

Fractional material derivative (d -dimensional)

Dα,Λp(x , t) =

u∈Sd

(

∂t+ 〈∇, u〉

p(x , t)Λ(du),

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 21 / 45

Fractional diffusion equations for Levy Walks

Fractional material derivative (d -dimensional)

Dα,Λp(x , t) =

u∈Sd

(

∂t+ 〈∇, u〉

p(x , t)Λ(du),

〈·, ·〉 - scalar product in Rd

∇ =(

∂∂x1

, ∂∂x2

, . . . , ∂∂xd

)

- gradient

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 21 / 45

Fractional diffusion equations for Levy Walks

Fractional material derivative (d -dimensional)

Dα,Λp(x , t) =

u∈Sd

(

∂t+ 〈∇, u〉

p(x , t)Λ(du),

〈·, ·〉 - scalar product in Rd

∇ =(

∂∂x1

, ∂∂x2

, . . . , ∂∂xd

)

- gradient

In Fourier-Laplace space

FxLt{Dα,Λp(x , t)} =

u∈Sd

(s − i〈k , u〉)α Λ(du)p(k , s).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 21 / 45

Fractional diffusion equations for Levy Walks

Wait-First Levy Walk in Rd

Dα,ΛpWF (x , t) = δ(x)

t−α

Γ(1 − α),

pWF (x , t) - PDF of diffusion limit.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 22 / 45

Fractional diffusion equations for Levy Walks

Wait-First Levy Walk in Rd

Dα,ΛpWF (x , t) = δ(x)

t−α

Γ(1 − α),

pWF (x , t) - PDF of diffusion limit.

Jump-First Levy Walk in Rd

Dα,ΛpJF (x , t) = ν(dx , (t,∞)),

pJF (x , t) - PDF of diffusion limit, ν - Levy measure of (Lα,Sα).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 22 / 45

Fractional diffusion equations for Levy Walks

Wait-First Levy Walk in Rd

Dα,ΛpWF (x , t) = δ(x)

t−α

Γ(1 − α),

pWF (x , t) - PDF of diffusion limit.

Jump-First Levy Walk in Rd

Dα,ΛpJF (x , t) = ν(dx , (t,∞)),

pJF (x , t) - PDF of diffusion limit, ν - Levy measure of (Lα,Sα).

Standard Levy Walk in Rd

Dα,Λp(x , t) = δ(‖x‖ − t)

t−α

Γ(1− α),

p(x , t) - PDF of diffusion limit.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 22 / 45

PDFs of Levy Walks – 1-dimensional case

I Method [D. Froemberg, M. Schmiedeberg, E. Barkai, V.Zaburdaev, Phys. Rev. E 91, 022131 (2015)]

Inversion formula of Fourier-Laplace transform for 1D ballisticprocesses using Sokhotsky-Weierstrass theorem.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 23 / 45

PDFs of Levy Walks – 1-dimensional case

I Method [D. Froemberg, M. Schmiedeberg, E. Barkai, V.Zaburdaev, Phys. Rev. E 91, 022131 (2015)]

Inversion formula of Fourier-Laplace transform for 1D ballisticprocesses using Sokhotsky-Weierstrass theorem.

II Method – Markov approach

Limit processes L−α (S−1α (t)), Lα(S

−1α (t)) and Z (t) are NOT Markov

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 23 / 45

PDFs of Levy Walks – 1-dimensional case

I Method [D. Froemberg, M. Schmiedeberg, E. Barkai, V.Zaburdaev, Phys. Rev. E 91, 022131 (2015)]

Inversion formula of Fourier-Laplace transform for 1D ballisticprocesses using Sokhotsky-Weierstrass theorem.

II Method – Markov approach

Limit processes L−α (S−1α (t)), Lα(S

−1α (t)) and Z (t) are NOT Markov

d + 1 - dimensional processes (L−α (S−1α (t)), t − G(t−)) and

(Lα(S−1α (t)),H(t)− t) are Markov [M. Meerschaert, P. Straka, Ann.

Probab. (2014)].

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 23 / 45

PDFs of Levy Walks – 1-dimensional case

I Method [D. Froemberg, M. Schmiedeberg, E. Barkai, V.Zaburdaev, Phys. Rev. E 91, 022131 (2015)]

Inversion formula of Fourier-Laplace transform for 1D ballisticprocesses using Sokhotsky-Weierstrass theorem.

II Method – Markov approach

Limit processes L−α (S−1α (t)), Lα(S

−1α (t)) and Z (t) are NOT Markov

d + 1 - dimensional processes (L−α (S−1α (t)), t − G(t−)) and

(Lα(S−1α (t)),H(t)− t) are Markov [M. Meerschaert, P. Straka, Ann.

Probab. (2014)].We have

(

L−α (S−1α (t)) = dx , t − G(t−) = dv

)

=

= ν(Lα,Sα)(R× [v ,∞))U(dx , t − dv)1{0≤v≤t},

ν - Levy measure, U - potential measure.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 23 / 45

PDFs of Levy Walks – 1-dimensional case

PDF of Wait-First Levy Walk

(i) if x ∈ (−t, 0), then

pWF (x , t) =p sin(πα)t1−α

π|x |1−α×

(1− x

t)α

p2(1− x

t)2α + (1− p)2(1+ x

t)2α + 2p(1− p)(1− x

t)α(1 + x

t)α cos(πα)

,

(ii) if x ∈ (0, t), then

pWF (x , t) =(1 − p) sin(πα)t1−α

π|x |1−α×

(1+ x

t)α

p2(1+ x

t)2α + (1− p)2(1− x

t)2α + 2p(1− p)(1+ x

t)α(1 − x

t)α cos(πα)

,

(iii) if |x | ≥ t then pWF (x , t) = 0.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 24 / 45

PDFs of Levy Walks – 1-dimensional case

Figure: PDF pWF (x , t) calculated for α = 0.5, p = 0.1 and different t.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 25 / 45

PDFs of Levy Walks – 1-dimensional case

Figure: PDF pWF (x , t) calculated for α = 0.5, t = 1 and different p.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 26 / 45

PDFs of Levy Walks – 1-dimensional case

Figure: PDF pWF (x , t) calculated for p = 0.25, t = 1 and different α.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 27 / 45

PDFs of Levy Walks – 1-dimensional case

PDF of Jump-First Levy Walk

(i) if x < −t, then

pJF (x , t) =(p − 1) sin(πα)

πx

1

(1− p)(−x/t − 1)α + p(−x/t + 1)α,

(ii) if x ∈ [−t, t], then

pJF (x , t) =p(1 − p) sin(πα)

πx×

(1+ x

t)α − (1− x

t)α

p2(1− x

t)2α + (1− p)2(1+ x

t)2α + 2p(1− p)(1− x

t)α(1 + x

t)α cos(πα)

,

(iii) if x > t, then

pJF (x , t) =p sin(πα)

πx

1

p(x/t − 1)α + (1− p)(x/t + 1)α. (1)

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 28 / 45

PDFs of Levy Walks – 1-dimensional case

Figure: PDF pJF (x , t) calculated for α = 0.5, t = 1 and different p.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 29 / 45

PDFs of Levy Walks – 1-dimensional case

Figure: PDF pJF (x , t) calculated for α = 0.5, p = 0.5 and different t.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 30 / 45

PDFs of Levy Walks – 1-dimensional case

PDF of Standard Levy Walk

(i) if |x | < t, then

p(x , t) =p(1− p) sin(πα)

πt×

(1− x

t)α−1(1+ x

t)α + (1+ x

t)α−1(1− x

t)α

p2(1− x

t)2α + (1− p)2(1+ x

t)2α + 2p(1− p)(1− x

t)α(1+ x

t)α cos(πα)

(ii) if |x | ≥ t, then p(x , t) = 0.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 31 / 45

PDFs of Levy Walks – 1-dimensional case

Figure: PDF p(x , t) calculated for α = 0.5, t = 1 and different p.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 32 / 45

PDFs of Levy Walks – d -dimensional case

PDF of isotropic standard d-dimensional Levy Walk

General method:Let p(x , t), x = (x1, x2, ..., xd ) ∈ R

d , be the PDF of Levy walkZ (t) = (Z1(t),Z2(t), ...,Zd (t)). The Fourier-Laplace transform of p(x , t)is given by

p(k , s) =1

s

Sd

(

1−⟨

ik

s, u⟩)α−1

Λ(du)∫

Sd

(

1−⟨

ik

s, u⟩)α

Λ(du),

Denote by Φ1(x) the PDF of Z1(1).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 33 / 45

PDFs of Levy Walks – d -dimensional case

(i) Odd number of dimensions d = 2n + 3.

- We have

Φ1(x) = − 1

π |x | Im2F1((1 − α)/2, 1− α/2; 3/2+ n; 1

x2)

2F1(−α/2, (1− α)/2; 3/2+ n; 1x2),

where 2F1(a, b; c ; x) is the hypergeometric function.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 34 / 45

PDFs of Levy Walks – d -dimensional case

(i) Odd number of dimensions d = 2n + 3.

- We have

Φ1(x) = − 1

π |x | Im2F1((1 − α)/2, 1− α/2; 3/2+ n; 1

x2)

2F1(−α/2, (1− α)/2; 3/2+ n; 1x2),

where 2F1(a, b; c ; x) is the hypergeometric function.- Using the fact that

Z (1)d= ‖Z (1)‖V ,

we get that the PDF ΦR(·) of ‖Z (1)‖ equals

ΦR(√r) =

2√π

Γ(n + 3/2)rn+1(−1)n+1 d

n+1

drn+1Φ1(

√r).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 34 / 45

PDFs of Levy Walks – d -dimensional case

(i) Odd number of dimensions d = 2n + 3.

- We have

Φ1(x) = − 1

π |x | Im2F1((1 − α)/2, 1− α/2; 3/2+ n; 1

x2)

2F1(−α/2, (1− α)/2; 3/2+ n; 1x2),

where 2F1(a, b; c ; x) is the hypergeometric function.- Using the fact that

Z (1)d= ‖Z (1)‖V ,

we get that the PDF ΦR(·) of ‖Z (1)‖ equals

ΦR(√r) =

2√π

Γ(n + 3/2)rn+1(−1)n+1 d

n+1

drn+1Φ1(

√r).

- Finally

p(x , t) =Γ(n + 3/2)

2πn+3/2t ‖x‖2n+2ΦR

(‖x‖t

)

.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 34 / 45

PDFs of Levy Walks – d -dimensional case

Figure: 3-dimensional PDF p(x , t) calculated for α = 0.3 and t = 1 .

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 35 / 45

PDFs of Levy Walks – d -dimensional case

(ii) Even number of dimensions d = 2n + 2.

- We have

Φ1(x) = − 1

π |x | Im2F1((1− α)/2, 1− α/2; 1+ n; 1

x2)

2F1(−α/2, (1− α)/2; 1+ n; 1x2),

where 2F1(a, b; c ; x) is the hypergeometric function.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 36 / 45

PDFs of Levy Walks – d -dimensional case

(ii) Even number of dimensions d = 2n + 2.

- We have

Φ1(x) = − 1

π |x | Im2F1((1− α)/2, 1− α/2; 1+ n; 1

x2)

2F1(−α/2, (1− α)/2; 1+ n; 1x2),

where 2F1(a, b; c ; x) is the hypergeometric function.- Moreover

ΦR(√r ) =

2√π

Γ(n + 1)rn+1/2D

n+1/2− {Φ1(

√t)}(r).

Here Dn+1/2− is the right-side Riemann-Liouville fractional derivative of

order n + 1/2.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 36 / 45

PDFs of Levy Walks – d -dimensional case

(ii) Even number of dimensions d = 2n + 2.

- We have

Φ1(x) = − 1

π |x | Im2F1((1− α)/2, 1− α/2; 1+ n; 1

x2)

2F1(−α/2, (1− α)/2; 1+ n; 1x2),

where 2F1(a, b; c ; x) is the hypergeometric function.- Moreover

ΦR(√r ) =

2√π

Γ(n + 1)rn+1/2D

n+1/2− {Φ1(

√t)}(r).

Here Dn+1/2− is the right-side Riemann-Liouville fractional derivative of

order n + 1/2.- Finally

p(x , t) =Γ(n + 1)

2πn+1t ‖x‖2n+1ΦR

(‖x‖t

)

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 36 / 45

PDFs of Levy Walks – d -dimensional case

Figure: 2-dimensional PDF p(x , t) calculated for α = 0.6 and t = 1 .

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 37 / 45

PDFs of Levy Walks – d -dimensional case

PDF of isotropic Wait-First d-dimensional Levy Walk

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 38 / 45

PDFs of Levy Walks – d -dimensional case

PDF of isotropic Wait-First d-dimensional Levy WalkThe Fourier-Laplace transform of pWF (x , t) is given by

pWF (k , s) =1

s

1∫

Sd

(

1−⟨

ik

s, u⟩)α

Λ(du).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 38 / 45

PDFs of Levy Walks – d -dimensional case

PDF of isotropic Wait-First d-dimensional Levy WalkThe Fourier-Laplace transform of pWF (x , t) is given by

pWF (k , s) =1

s

1∫

Sd

(

1−⟨

ik

s, u⟩)α

Λ(du).

(i) Odd number of dimensions d = 2n + 3.

- We have

Φ1(x) = − Γ(n)

Γ(n+ 1/2) |x | Im1

2F1(−α/2, (1− α)/2; 3+ n/2; 1x2),

ΦR(√r) =

2√π

Γ(n + 3/2)rn+1(−1)n+1 d

n+1

drn+1Φ1(

√r),

pWF (x , t) =Γ(n + 3/2)

2πn+3/2t ‖x‖2n+2ΦR

(‖x‖t

)

.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 38 / 45

PDFs of Levy Walks – d -dimensional case

PDF of isotropic Wait-First d-dimensional Levy Walk

(ii) Even number of dimensions d = 2n + 2.

- We have

Φ1(x) = − Γ(n)

Γ(n + 1/2) |x | Im1

2F1(−α/2, (1− α)/2; 1+ n; 1x2),

ΦR(√r ) =

2√π

Γ(n + 1)rn+1/2D

n+1/2− {Φ1(

√t)}(r),

pWF (x , t) =Γ(n + 1)

2πn+1t ‖x‖2n+1ΦR

(‖x‖t

)

.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 39 / 45

PDFs of Levy Walks – d -dimensional case

PDF of isotropic Jump-First d-dimensional Levy Walk

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 40 / 45

PDFs of Levy Walks – d -dimensional case

PDF of isotropic Jump-First d-dimensional Levy WalkThe Fourier-Laplace transform of pJF (x , t) is given by

pJF (k , s) =1

s

(

1−∥

ik

s

α

Sd

(

1−⟨

ik

s, u⟩)α

Λ(du)

)

.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 40 / 45

PDFs of Levy Walks – d -dimensional case

PDF of isotropic Jump-First d-dimensional Levy WalkThe Fourier-Laplace transform of pJF (x , t) is given by

pJF (k , s) =1

s

(

1−∥

ik

s

α

Sd

(

1−⟨

ik

s, u⟩)α

Λ(du)

)

.

(i) Odd number of dimensions d = 2n + 3.

- We have

Φ1(x) = − Γ(n)

Γ(n+ 1/2) |x |α+1Im

cos(πα) + i sin(πα)

2F1(−α/2, (1− α)/2; 3/2+ n; 1x2),

ΦR(√r) =

2√π

Γ(n + 3/2)rn+1(−1)n+1 d

n+1

drn+1Φ1(

√r),

pJF (x , t) =Γ(n + 3/2)

2πn+3/2t ‖x‖2n+2ΦR

(‖x‖t

)

.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 40 / 45

PDFs of Levy Walks – d -dimensional case

PDF of isotropic Jump-First d-dimensional Levy Walk

(ii) Even number of dimensions d = 2n + 2.

- We have

Φ1(x) = − Γ(n)

Γ(n + 1/2) |x |α+1Im

cos(πα) + i sin(πα)

2F1(−α/2, (1− α)/2; 1+ n; 1x2),

ΦR(√r ) =

2√π

Γ(n + 1)rn+1/2D

n+1/2− {Φ1(

√t)}(r),

pJF (x , t) =Γ(n + 1)

2πn+1t ‖x‖2n+1ΦR

(‖x‖t

)

.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 41 / 45

Other results

diffusion limits and governing equations for non-ballistic Levy walks

path properties of Levy walks (martingale properties, upper and lowerlimits, variation etc.)

distributed order Levy walks

Levy walks and flights in quenched disorder

multipoint PDFs of Levy walks

aging Levy walks

ergodic properties of Levy walks

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 42 / 45

Other results – multipoint PDFs of Levy walks

Figure: PDF of (Z (t1),Z (t2)) for α = 0.5, p = 0.5, t1 = 1, t2 = 2.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 43 / 45

Other results – aging Levy walks

−2 −1.5 −1 −0.5 0 0.5 1 1.5 20

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

x

Levy walk

Aging Levy walk

Wait-firstAging wait-first

α = 0.4

Figure: PDFs of standard and aging Levy walk.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 44 / 45

The end – thank you for your attention !!!

References

[1] M. Magdziarz, H.P. Scheffler, P. Straka, P. Zebrowski, Stoch. Proc.Appl. 125, 4021 (2015).

[2] M. Magdziarz , M. Teuerle, Comm. Nonlinear Sci. Num. Sim. 20,489 (2015).

[3] M. Magdziarz, T. Zorawik, Phys. Rev. E 94, 022130 (2016).

[4] M. Magdziarz, T. Zorawik, Fract. Calc. Appl. Anal. 19, 1488-1506(2016).

[5] M. Magdziarz, T. Zorawik, Comm. Nonlinear Sci. Num. Sim. 48,462-473 (2016).

[6] M. Magdziarz, T. Zorawik, Phys. Rev. E 95, 022126 (2017).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 45 / 45

top related