nanoscale science and engineering: how nanotechnology is impacting our everyday lives aldrin e....

Post on 28-Jan-2016

217 Views

Category:

Documents

5 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Nanoscale science and engineering: How nanotechnology is impacting our everyday lives

Aldrin E. Sweeney, Ph.D.

Associate Professor, Science Education

Miami Science Museum

May 2-3, 2008

A little bit about me…

Program Coordinator, Science Education at UCF

Academic background in biochemistry, organic chemistry and science education

Work with colleagues at UCF and worldwide on issues relating to science and engineering education (elementary-undergraduate)

Current research efforts in nanoscale science and engineering education (NSEE)

Overview: How nanotechnology is

impacting our everyday lives

Defining nanoscale science and engineering (“nanotechnology”)

Why the excitement about nanotechnology? Examples of “nanotech” in current research … and everyday life

U.S. National Nanotechnology Initiative and NSEE

Examples of NSEE research

http://www.nano.gov/html/facts/The_scale_of_things.html

What is nanoscale science & nanoscale science & engineeringengineering?

The study of materials and associated physical, biophysical and biochemical phenomena on the scale of ~1-100 nm.

The primary appeal of nanotechnologynanotechnology is the

potential to manipulate matter at the nanoscale. This leads to the

possibility of preparing novel materials (nanomaterials) that have specific,

manipulable physical properties and functions.

What makes the nanoscale special?

1. High density of structures is possible with small size.

2. Physical and chemical properties can be different at the nano-scale (e.g. electronic, optical, mechanical, thermal, chemical).

3. The physical behavior of material can be different in the nano-regime because of the different ways physical properties scale with dimension (e.g. area vs. volume).

Prof. Richard Feynman“There’s plenty of room at the bottom”

Physical/chemical properties can change as we approach the nano-scale

Melting point of gold particles

M. Bawendi, MIT: web.mit.edu/chemistry/nanoclusterEvident, Inc.: www.evidenttech.com

K. J. Klabunde, 2001

Fluorescence of semiconductornanocrystals

By controlling nano-scale (1) composition, (2) size, and (3) shape, we cancreate new materials with new properties New technologies

Decreasing crystal size

Popular perceptions of nanotechnology

Outer Limits: The New Breed (1995)

Star Trek: TNG (1987-1994)

I, Robot (2004)

Popular perceptions of nanotechnology

Nanotechnology is estimated to become a trillion dollar market by ~2010

Areas in which nanotechnologies are expected to impact our everyday lives:

• Electronics

• Photonics (communications

& computing using photons)

• Information storage

• Energy storage/transport

• Materials engineering

• Textiles

• Mechanical engineering

• Aerospace

• Environmental remediation

• Pharmaceuticals & drug

delivery

• Biotechnology -- CdSe

nanocrystals

NANO

Nanoshells & SWNTs in cancer therapy

Research area 1: Lightweight, multi-functional nano-fibers and materials

Research area 2: Battle suit medicine

Research area 3: Blast and ballistic protection

Research area 4: Chem/bio materials science (detection & protection)

Research area 5: Nanosystems integration

Nanofibres help nerves in brain regrow

Researchers at MIT, US, Hong Kong University and Fourth Military Medical University, China, have used a nanofibre scaffold to help nerve cells regenerate in the brains of hamsters.

Peptide nanofibre solution injected into the animals' brains; fibres self-assembled into a network in the void in the brain caused by injury; technique restored at least some sight to ~75% of the animals.

Technique being tested on spinal cord injuries; plans to launch trials in primates and eventually in humans; technique ultimately could help people who have suffered traumatic brain injuries, spinal cord injuries and stroke.

Ellis-Behnke et al, 2006, PNAS

Social and ethical issues in nanoscale science & technology

What is the National Nanotechnology Initiative?

Federal R&D program that coordinates multiagency efforts in nanoscale science, engineering, and technology.

Launched in 2001 after approval by U.S. Congress in November 2000 ($422 million in funding, 2001 fiscal year)

23 federal agencies comprise the Initiative, 11 of which have a nanotechnology R&D budget.

2004 fiscal year … $961 million in funding; 2007 fiscal year …. ~$1,445 million in funding; 2009 budget, $1.5 billion in funding

www.nano.gov

Participants in the National Nanotechnology Initiative

Societal implications of nanoscience and nanotechnology

* National and global economics

* Environmental sustainability

* Development of pharmaceuticals

* Human lifespan and quality of life

* Education/workforce preparation-- Future of K-16 science/engineering education

K-16 science & engineering education

* Estimated that up to 2 million workers will be needed worldwide in various nanotechnology fields within the next 10-15 years (M. Roco, NSF, International Journal of Engineering Education, 2002).

* Fields with greatest immediate anticipated needs: biomedical applications, microelectromechanical systems (MEMS), microfluidics, opto-electronics, information storage, pharmaceuticals and microelectronics (S. Fonash, Pennsylvania State University, Journal of Nanoparticle Research, 2001).

Higher education & career options in nanoscale science and engineering

QUESTIONS, COMMENTS, SUGGESTIONS:

Aldrin E. Sweeney, Ph.D.Associate Professor & Program Coordinator, Science Education

asweeney@ucf.edu

top related