polytechnic university - department of electrical...

Post on 20-Aug-2018

217 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

EE3054 Signals and Systems

Fourier Series and Spectrum

Yao WangPolytechnic University

Most of the slides included are extracted from lecture presentations prepared by McClellan and Schafer

3/25/2008 © 2003, JH McClellan & RW Schafer 2

License Info for SPFirst Slides

� This work released under a Creative Commons Licensewith the following terms:

� Attribution� The licensor permits others to copy, distribute, display, and perform

the work. In return, licensees must give the original authors credit.

� Non-Commercial� The licensor permits others to copy, distribute, display, and perform

the work. In return, licensees may not use the work for commercial purposes—unless they get the licensor's permission.

� Share Alike� The licensor permits others to distribute derivative works only under

a license identical to the one that governs the licensor's work.� Full Text of the License� This (hidden) page should be kept with the presentation

What is Fourier Series?

� Any real, periodic signal with fundamental freq. f0=1/T0 can be represented as the sum of complex exponential signals with freq= k f0

�� SPECTRUM: SPECTRUM: plot of ak, Complex Amplitude for k-th Harmonic�� ANALYSIS:ANALYSIS: Determine coefficients ak from x(t)

�� SYNTHESIS:SYNTHESIS: Generating x(t) from a_k

∫−=

0

0

0

0

)/2(1 )(T

dtetxa tTkjTk

π

{ }∑=

−∗++=N

k

tfjk

tfjk

kk eaeaatx1

220)( ππ

3/25/2008 © 2003, JH McClellan & RW Schafer 4

Example:

� Write as sum of sin(3 pi t) and sin( 9pi t)� Then expand using complex exponential

)3(sin)( 3 ttx π=

tjtjtjtj ejejejejtx ππππ 9339

883

83

8)( −−

−+

+

−+

=

3/25/2008 © 2003, JH McClellan & RW Schafer 5

Example )3(sin)( 3 ttx π=

tjtjtjtj ejejejejtx ππππ 9339

883

83

8)( −−

−+

+

−+

=

3/25/2008 © 2003, JH McClellan & RW Schafer 6

Example

In this case, analysisjust requires picking off the coefficients.

)3(sin)( 3 ttx π=

tjtjtjtj ejejejejtx ππππ 9339

883

83

8)( −−

−+

+

−+

=

3=k1=k1−=k

3−=k

ka

3/25/2008 © 2003, JH McClellan & RW Schafer 7

Analysis: x(t) � ak

� Step 1: determine the fundamental period of the signal, T0� Shortest interval where signal repeats or satisfy

x(t+T0)=x(t)� Step 2: using the following formula to compute

a_k:

∫−=

0

0

0

0)(1

T

dtetxa tkjTk

ω

3/25/2008 © 2003, JH McClellan & RW Schafer 8

Ex. 1: SQUARE WAVE

0–.02 .02 0.04

1

t

x(t)

.01

sec. 04.0for 0

01)(

0

0021

021

=

<≤

<≤=

TTtT

Tttx

3/25/2008 © 2003, JH McClellan & RW Schafer 9

FS for a SQUARE WAVE {ak}

)0()(1 0

0

0

)/2(

0≠= ∫

− kdtetxT

aT

ktTjk

π

02.

0)04./2(

)04./2(04.1

02.

0

)04./2(104.1 ktj

kjktj

k edtea ππ

π −−

− == ∫

kje

kj

kkj

πππ

2)1(1)1(

)2(1 )( −−=−

−= −

3/25/2008 © 2003, JH McClellan & RW Schafer 10

DC Coefficient: a0

)0()(1 0

0

0

)/2(

0== ∫

− kdtetxT

aT

ktTjk

π

)Area(1)(1

0000

0

Tdttx

Ta

T

== ∫

21

02.

00 )002(.

04.11

04.1 =−== ∫ dta

3/25/2008 © 2003, JH McClellan & RW Schafer 11

Fourier Coefficients ak

� ak is a function of k� Complex Amplitude for k-th Harmonic� This one doesn’t depend on the period, T0

=

±±=

±±=

=−−=

0

,4,20

,3,11

2)1(1

21 k

k

kkj

kja

k

k l

l

π

π

3/25/2008 © 2003, JH McClellan & RW Schafer 12

Spectrum from Fourier Series

=

±±=

±±=−

=

0

,4,20

,3,1

21 k

k

kkj

ak l

l

π)25(2)04.0/(20 ππω ==

3/25/2008 © 2003, JH McClellan & RW Schafer 13

Ex. 2: Rectified Sine Wave {ak}

)1()(1 0

0

0

)/2(

0±≠= ∫

− kdtetxT

aT

ktTjk

π

2/

0))1)(/2((2

)1)(/2(2/

0))1)(/2((2

)1)(/2(

2/

0

)1)(/2(21

2/

0

)1)(/2(21

2/

0

)/2()/2()/2(

1

2/

0

)/2(21

0

00

00

00

0

0

0

0

0

0

0

0

000

0

0

0

00

2

)sin(

T

kTjTj

tkTjT

kTjTj

tkTj

TtkTj

Tj

TtkTj

Tj

TktTj

tTjtTj

T

TktTj

TTk

ee

dtedte

dtejee

dteta

+−

+−

−−

−−

+−−−

−−

−=

−=

−=

=

∫∫

π

π

π

π

ππ

πππ

ππ

Half-Wave Rectified Sine

3/25/2008 © 2003, JH McClellan & RW Schafer 14

( ) ( )( ) ( )

( )( )

±==−−−=

−−−=

−−−=

−=

−−

−−−+

+−+

−−−

+−+

−−−

+−

+−

−−

−−

even 1?

odd 01)1(

11

11

)1(1

)1(4)1(1

)1()1(4

1)1()1(4

1

2/)1)(/2()1(4

12/)1)(/2()1(4

1

2/

0))1)(/2((2

)1)(/2(2/

0))1)(/2((2

)1)(/2(

2

2

0000

0

00

00

00

0

kkk

ee

ee

eea

k

kk

kk

kjk

kjk

TkTjk

TkTjk

T

kTjTj

tkTjT

kTjTj

tkTj

k

π

π

ππ

ππ

ππ

ππ

π

π

π

π

FS: Rectified Sine Wave {ak}

41j±

3/25/2008 © 2003, JH McClellan & RW Schafer 15

Spectrum

� Show plot

3/25/2008 © 2003, JH McClellan & RW Schafer 16

Fourier Series Synthesis� HOW do you APPROXIMATE x(t) ?

� Use FINITE number of coefficients

∫−=

0

0

00

)/2(1 )(T

tkTjTk dtetxa π

real is )( when* txaa kk =−tfkj

N

Nkkeatx 02)( π∑

−==

3/25/2008 © 2003, JH McClellan & RW Schafer 17

Fourier Series Synthesis

3/25/2008 © 2003, JH McClellan & RW Schafer 18

Synthesis: 1st & 3rd Harmonics))75(2cos(

32))25(2cos(2

21)( 22

ππ ππ

ππ

−+−+= ttty

3/25/2008 © 2003, JH McClellan & RW Schafer 19

Synthesis: up to 7th Harmonic)350sin(

72)250sin(

52)150sin(

32)50cos(2

21)( 2 ttttty π

ππ

ππ

ππ

ππ +++−+=

3/25/2008 © 2003, JH McClellan & RW Schafer 20

Fourier Synthesisl+++= )3sin(

32)sin(2

21)( 00 tttxN ω

πω

π

3/25/2008 © 2003, JH McClellan & RW Schafer 21

Gibbs’ Phenomenon

� Convergence at DISCONTINUITY of x(t)� There is always an overshoot� 9% for the Square Wave case

3/25/2008 © 2003, JH McClellan & RW Schafer 22

Fourier Series Demos

� Fourier Series Java Applet� Greg Slabaugh

� Interactive

� http://users.ece.gatech.edu/mcclella/2025/Fsdemo_Slabaugh/fourier.html

� MATLAB GUI: fseriesdemo

� http://users.ece.gatech.edu/mcclella/matlabGUIs/index.html

3/25/2008 © 2003, JH McClellan & RW Schafer 23

fseriesdemo GUI

3/25/2008 © 2003, JH McClellan & RW Schafer 24

Fourier Series Java Applet

3/25/2008 © 2003, JH McClellan & RW Schafer 25

Alternate Forms of FS

� Generally, we have the FS representation

� If x(t) is real, a_k=a^*_{-k} (Conjugate symmetry)

� Proof

∑∞

−∞=

+=k

tfjk

keaatx π20)(

∑∞

=

−++=1

2*20)(

k

tfjk

tfjk

kk eaeaatx ππ

3/25/2008 © 2003, JH McClellan & RW Schafer 26

Alternate Forms of FS

∑∞

=

−++=1

2*20)(

k

tfjk

tfjk

kk eaeaatx ππ

kkkk

jkk

kkkk

aaA

eAa

tfAatx

k

∠==

=

++= ∑∞

=

θ

θπ

θ

;2

;21

)2cos()(1

0

3/25/2008 © 2003, JH McClellan & RW Schafer 27

HISTORY

� Jean Baptiste Joseph Fourier� 1807 thesis (memoir)

� On the Propagation of Heat in Solid Bodies� Heat !� Napoleonic era

� http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Fourier.html

3/25/2008 © 2003, JH McClellan & RW Schafer 28

READING ASSIGNMENTS

� This Lecture:� Fourier Series in Ch 3, Sects 3-4, 3-5 & 3-6

� Review: entire Chap 3

top related