synthesis of lamellarin d a novel potent inhibitor of dna topoisomerase i wenhui hao march 16 th,...

Post on 27-Dec-2015

220 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Synthesis of Lamellarin D

A Novel Potent Inhibitor of DNA Topoisomerase I

Wenhui Hao

March 16th , 2006

Outline

N

OH

HO

HO

O

O

MeO

MeO

MeO

Lamellarin D

1

Biological activities

Structure-activity relationship

Identification of LAM-D as an

inhibitor of Topo I

Three synthetic routes

2

Background

•Cancer

•Normal cells-- new cell growth balance with old cells die

•Cancer cells-- loss of normal growth control

loss of ability to undergo programmed cell death

3

Cancer Treatment

•Surgery

•Radiation

•Chemotherapy : Alkylating agents

Antimetabolites

Plant alkaloids

Antitumour agents

Topoisomerase inhibitors

4

Topoisomerases

• Maintaining the topographic structure of circular DNA

• Topo I: transient single-strand break (Lam D)

Topo II: double-strand break

• Breaking--Uncoiling--Replication DNA helix

5

DNA Structure

DNA Double Strand Helix

6

•A,T, G, C bases can

extend away from chain

stack at top each other

•dA-dT, dG-dC base pairs

are the same length

•Occupy the same space

•The distance between

the two bps is 3.4Ǻ

Base Pairs

7

Topoisomerase I Activity

Topo I : 100 KD monomeric protein ,breaks single strands , by cleaving a phosphodiester bond form a phosphotyrosine topoI-DNA complex

8

Topoisomerase I Activity

Religation is faster than cleavage

→ DNA-Topo I complex

concentration remains low

Drugs stabilize the complex and

Block DNA religation, converting

Topo I into a DNA damaging agent

9

Topo Inhibitors Mechanism of Action

Covalent binding to

double-stranded DNACleavable complex by

binding to DNA-Topo I or II

Uncoiling of double-strande

DNA , prevents resealing

Replication halted at Topo-DNA complex stage

Replication fork collides with trapped complex

double strand breaks and cell death

10

•Activity does not change with growth of the cells

•Topo I levels in tumor specimens are higher than

normal tissues and Topo II

making inhibition of Topo I an attractive target for

anticancer agents

• Significant activity against a broad range of tumors

Advantages of Topo I Inhibitors

11

Camptothecin (CPT) and Its Analogs

First isolated from the Chinese tree

Camptotheca acuminata, Nyssaceae. in 1966

CPTs inhibit Topo I as cytotoxic agents

Clinical test against colon, ovarian cancers

Serious side effects , poor water solubility

N

N

O

O

OOHH3C

A B CD

E

Wall M et al J.Am.Chem.Soc 1966,88:3888-90 12

Topotecan (TPT)

N

N

O

O

OOHH3C

HO

NCH3

CH3 •Water-soluble CPT derivative

•Significant activity against tumor cell

lines (breast, lung )

•Stabilizes DNA-drug-Topo I complex

and inhibits Topo I function causing

DNA strand breakage.

•Approved in 1996, first Topo I

inhibitor treating ovarian cancer

John Nitiss Nurrent Opinion In Investigational Drugs 2002, 3 (10) :1512-1516 13

Bart Staker et al PNAS Vol. 99, No.24 2002,15387-15392

Crystal Structures of Topo I-DNA-TPT Complex

Topo 70-DNA Binary Complex Topo 70-DNA-Topotecan Ternary Complex

3.6 Ǻ 7.2 Ǻ

Mimic bp Extends bp distance

14

Hydrogen bond contact to the active site of Topo I and phosphotyrosine

Free-OH displaced 8Ǻ from phosphotyrosine of Topo I

Mechanism of Topo I Inhibitor- TPT

15

Marine Alkaloid- Lamellarins

• Isolated in 1985 from a Lamellaria sp.

of marine prosobranch mollusc

• Lam A,B,C,D were obtained

• C and D inhibition of cell division

• A and B were inactive

Raymond J. Andenen et al J. Am. Chem. Soc. 1985, 107, 5492-5495

N

OH

HO

HO

O

O

MeO

MeO

MeO

Lamellarin D

1

16

•The main pentacyclic array is essentially planar

•The aromatic ring attached to C1 is rotated 90°to the main plane

Structure properties

N

OHHO

O

O

MeO

MeO

MeO

Lamellarin A

MeO

MeO

OH

17

A Growing Family --Three Groups

N

O

O

1

R4

R3

14

13

3

68R1

R2 9

2021

R6R5

5

Open Chain

Fused: S or D

* 35 lamellarins have been isolated,

from ascidian and sponge species

* A pentacyclic core, variation from

hydroxy, methoxy substitution

N CO2Me

OHHO

OX

MeO

LAM O, X=H LAM P, X=OH

N CO2Me

OHHO

R

LAM Q, R=H LAM R, R=p-HOC6H418

Biological ActivitiesCommon activities

Inhibition of cell division

Cytotoxicity

Immunomodulatory activity

Recent findings

Lamellarin D :

Antitumor activity against MDR cell lines

Selective cytotoxicity for prostate cancer cells

19

Ishibashi’s Synthesis of LAM-D

NO

HO

MeO

MeO

HO

O

OH

OMe

NOEt

OBn

OH

O

O

Br

N

OEt

O

O

MeO

OBn

OMOM

Br

MeO

BnO

MeO

MeO

BnO

MeO

BnO

MeO

MeO

BnO1

2

3

4

Fumito Ishibashi et al. Tetrahedron, 1997, 53(17): 5951-5962

N-ylide- mediated pyrrole ring formation of a quaternary ammonium salt followed by lactonization

20

N

CO2Me

OMOM

N

H

HO

OMOM

NH

O

H

OMOM

BrCH2CO2Et

N

O

OMOM

CO2Et

Br

Et3N, CH2CI2N

O

O

MeO

MeO

MeO

MeO

MeO

MeO

MeO

MeO

MeO

MeO

MeO

MeO

1) LDA, THF

2)

3

1

3

MeO

MeO

MeO

MeO

MeO

MeO

MeO

MeO

5 6 7a 7b

8 R=MOM9 R=H

10

33%, 3 steps

Model Study

7a:7b = 92:8

21

Ishibashi’s Synthesis of LAM-D

6-Benzyloxy-l-(4-benlzyloxy-3-methoxybenzyl)-7-methoxyisoquinoline(3)

CHO NO2

NO2

CO2H

OMe

NHN

BnO

MeO

BnO

MeO

BnO

MeO

BnO

MeO

BnO

MeO

BnO

MeO

BnO

BnO

MeOMeO

11 12 13

15

3

CH3NO2, NH4OAc, AcOH

81%MeONa, MeOH-CH2Cl2

74%

LiAlH4ether-THF

NH2

BnO

MeO

14

DCC, CH2Cl2, 76% 2steps

POCl3, Benzene

57%

OMe

OMe

O

22

Ishibashi’s Synthesis of LAM-D

Methyl 4-Benzyloxy-5-methoxy-2-methoxymethoxybenzoate(4)

OH

CO2Me

OMOM

CO2MeMeO

BnO

OH

CO2Me

BnO OH

CO2Me

BnO

Br

OH

CO2Me

BnO

MeO

16 17 18

194

BnBr, K2CO3

91% 91%

DMF-MeOH63%

MOMCl, t-BuOK, THF

94%

Br2, CHCl3

MeONa

HO

23

Ishibashi’s Synthesis of LAM-D

N

O

OMOM

CO2Et

OBn

Br

MeO

MeO

MeO

BnO

BnO

BrCH2CO2Et

21

N

O

OMOM

OBn

NH

O

OMOM

N

OBn

MeO

MeO

MeO

MeOMeO

MeO

BnO

BnO

BnO

BnO

MeO

BnO

BnO

MeO3

20a 20b

LDA, THF, 63%

OMOM

CO2MeMeO

BnO

4

24

Ishibashi’s Synthesis of LAM-D

4% 14 steps

N

O

OMOM

CO2Et

OBn

Br

NO

O

OBn

OMe

MeO

MeO

MeO

MeO

MeO

BnO

BnO

21

N

O

OH

CO2Et

OBn

Br

MeO

MeO

MeO

BnO

BnO

2

HCl, MeOH

22

BnO

BnO

34% 3 steps

H2, Pd/C, EtOAc

82%

NO

O

OH

OMe

MeO

MeO

LAM-D

HO

HO

Et3N, CH2Cl2

25

26

Activity of Lam D and Lam 11

N

H

O

O

HMeO

MeO

MeO

MeO

Lam 11

Cytotoxicities against tumor Cell Lines, IC50 (μM)  

compound Hella XC

lamellarin D 0.0105 0.0124

Lam 11 5.7 5.6

mitomycin C 68.0 NDa

N

OH

HO

HO

O

O

MeO

MeO

MeO

Lam D IC50(¦Ìm) 0.0105

1

8

9

14

13

2021

26

27

Structure-Activity Relationship Study of

Lamellarin Derivatives

Fumito Ishibashi et al. J. Nat. Prod. 2002, 65, 500-504

OH at C-8

C-20 essential

OH at C-14

MeO at C-13 ,

C-21 less important

N

OH

HO

HO

O

O

MeO

MeO

MeO

Lam D IC50(¦Ìm) 0.0105

1

8

9

14

13

2021

N

O

O

HOH

MeO

MeO

Lam 3 0.0395

HO

HO

N

O

O

OHMeO

MeO

Lam 6 0.0380

HO

HO

H

N

O

O

OH

MeO

Lam 7 0.0700HO

H

MeO

MeO

27

28

Effect of OH at C-20

N

O

O

HMeO

MeO

HO

Lam 4 0.8500

HO

MeO

N

O

O

OHMeOMeO

MeO

MeO

Lam 5 2.5

MeO

N

O

O

MeO

MeO

Lam 12 >100

MeO OO

MeO

N

OH

HO

HO

O

O

MeO

MeO

MeO

Lam D IC50(¦Ìm) 0.0105

1

8

9

14

13

2021

28

29

Effect of OH at C-8

N

O

O

OHMeOMeO

MeO

MeO

Lam 5 2.5

MeO

C-8 OH, lacks C-14 OH, maintains high activity

Methylation of OH at C-8 , C-14

decrease activity

N

OH

HO

HO

O

O

MeO

MeO

MeO

Lam D IC50(¦Ìm) 0.0105

1

8

9

14

13

2021

N

O

O

OH

MeO

Lam 7 0.0700HO

H

MeO

MeO

29

30

Banwell’s Synthesis-

Lamellarin Parent Ring System

An intramolecular [3 + 2] cycloaddition between an isoquinoline-based azomethine ylide and a tethered tolan

Martin Banwell, et al. Chem. Commun. 1997: 2259-2260

N

O

O

AcO

OO

NBr

+Pd(PPh3)4 , CuI

Et3 N, 99%

AcO HO

18oC, 4h

O

1 2 3 4

5CCH2BrO

K2CO3, MeOH

BrCH2COBr CH2Cl291% 2 steps

67

i. Et3N, THF, 66C, 4h

ii. DDQ, CH2Cl2,

92% 2 stepsTHF

N

30

31

OMe

OH

CHO

OMe

Oi-Pr

CHO

OMe

Oi-Pr

Br

Br

OMe

Oi-Pr

OMe

Oi-Pr

CHO

I

12 3

54

OMe

Oi-Pr

OMe

Oi-Pr

OHC

i-PrBr, K2CO3, DMF

CBr4, Zn0-25oC, 4h

n-BuLi, THF

AgOCOCF3, I2, CH2Cl2

Pd(PPh3)4, CuI, NEt3

PPh3, CH2Cl2

6

94% 95%

80% 2 steps

66%

Christian P. Ridley, et al. Bioorg. Med. Chem., 2002, 10: 3285-3290.

Application of Banwell’s Approach

31

32

N

MeO

MeO

OMe

Oi-Pr

ON

O

I

i-PrO

MeO

MeO

MeO 8

i. MCPBA, KHCO3, CH2Cl2

ii. NH3, CH2Cl2/MeOH(1:1)

iii. ICH2COOH, DCC, DMAP, CH2Cl2

ClCH2CH2Cl

OMe

Oi-Pr

OI

O

i-PrO

MeO

7

OMe

Oi-Pr

i-PrO

MeO

OHC

89%

98%

90%

6

Application of Banwell’s Approach

32

33

OMe

Oi-Pr

ON

O

I

i-PrO

MeO

MeO

MeO

N

O

O

Oi-PrMeOMeO

MeO

MeO

i-PrO

N

O

O

Oi-PrMeOMeO

MeO

MeO

i-PrO

N

O

O

OHHO

HO

HO

HO

HO

8

11 Lam H

E t3N

54% 2 steps

DDQ, CH2Cl2/EtOH(1:1)

93%

BBr3, CHCl3

88%

9 Lam U diisopropyl ether

10 Lam ¦Á diisopropyl ether

Application of Banwell’s Approach

17% 12 steps33

34

Identification of LAM-D as an Inhibitor of TopoI

Michael Facompre et al. Cancer Research 2003, 63,7392-7399

N

OH

HO

HO

O

O

MeO

MeO

MeO

LAM-D

1

N

OH

HO

HO

O

O

MeO

MeO

MeO

LAM-501

34

35

DNA Relaxation Experiment – Topo I Inhibition Efficacy

c

Nck:nicked form II,single-strand break35

a

d

b

36

Detectation of the Extents of Cleavage

LAM D induced dose dependent stimulation

of DNA cleavage by topo I

Equally effective at 2 μM70% of the DNA

single-strand breaks

36

37

Topo I Inhibition: Site Selectivity

Cleavage of DNA fragment by Topo I

(increasing concentrations of LAM-D)

Common site

Side numbers of gels show nucleotide positions

determined with reference to guanine(G) tracks 37

38

Topo I Inhibition: Site Selectivity

CPT specific

38

39

Topo I Inhibition: Site Selectivity

LAM D specific

39

40

Molecular Modeling

Theoretical model of LAM-D covalently bound to topoisomerase I–DNA complex. 40

41

Summary of the Study of SAR

N

OH

HO

HO

O

O

MeO

MeO

MeO

LAM-D

8

9

202114

13

5

6

6

Planar conformation of LAM-D

suited for intercalation into DNA

OH at C-8 , C-20 : Essential

OH at C-14 , MeO at C-13, C-21 :

Less important

Essential

Essential Essential

41

42

Olsen-Pla’s Open Chain-Modular

Synthetic Route to Lamellarins

Christian A. Olsen, et al. Tetrahedron Letters, 2005, 46: 2041-2044

N

R2R1

R2

R1

R2

R1

CO2Me

N CO2MeR2

R1

XBrR2

R1

CO2MeNH

R1 = Oi-Pr, R2 = OMe

1

N-alkylation with p-toluenesulfonate and intramolecular Heck cyclization from Methyl pyrrole-2-carboxylate to Scaffold 1

42

43

For all compounds

R1=Oi-Pr,R2=OMe

Olsen-Pla’s Open Chain-Modular

Synthetic Route to Lamellarins

R1

R2

Br

R2

R1

Br

N CO2Me

NCO2MeR2

R1

NCO2MeR2

R1

Br

NCO2MeR2

R1

BrBr

TsO

101

3

5

NBS, THF

CO2MeNH

2

Pd(PPh3)4, NaOAc

1

95%

4

5

3

NaH, DMF

50%

94%

92%

43

Synthesis of open chain analogues

44

NCO2MeR2

R1

N CO2MeR2

R1

B(OH)2

HO

B

O

O

iPrO

MeO

NCO2MeR2

NCO2MeR2

HO

OH

10

11

HO

HO

AlCl3,CH2Cl26

7

NCO2MeR2

R1

Br

4Pd(PPh3)4, Na2CO3, DMF

Pd(PPh3)4, Na2CO3, DMF

NCO2MeR2

R1

Br Br

5

78% 2 steps

AlCl3,CH2Cl2

62% 2 steps

HO8

iPrO

OH

OMe

MeO

HO

MeO

OMe

9

27% 9 steps

35% 9 steps

Olsen-Pla’s Open Chain-Modular

Synthetic Route to Lamellarins

44

45

N

O

O

OH

HO

HO

N CO2Me

N

OH

HO

HO

OMe

CO2Me

N CO2Me

HO

HO

MeO

MeO

MeO

MeO

MeO

MeO

i-PrO

MeO

MeO

2

3

1

Lamellarin D

Daniel Pla, et al. J.Org.Chem.2005,70:8231-8234

Modular Synthesis of Lamellarin D

45

Two sequential and regio-selective bromination and cross-coupling reactions using different substituted arylboronic ester

46

N CO2Me

BrN CO2Me

HO

B

O

O

H

TsOi-PrO

MeO

MeO

i-PrO

MeO

Pd(PPh3)4 Na2CO3 DMF 78%

4

1

N CO2MeMeO

i-PrO5

Br

NBS, THF

6

N CO2Me

HO

MeO

MeO

i-PrO7

1)NaH, DMF

2)PdCI2(PPh3)2,PPh3, K2CO3

50%

94%

1

3

Modular Synthesis of Lamellarin D

46

47

NCO2Me

i-PrO

MeO

MeO

i-PrO

8

N CO2Me

BrMeO

MeO

i-PrO

i-PrO

9

N CO2Me

HO

MeO

MeO

i-PrO 7

B

O

O

Oi-Pr

MeO

Pd(PPh3)4, , DMF 87%

i-PrO

10

N

Oi-Pr

CO2Me

Oi-Pr

MeO

MeO

i-PrO

i-PrO MeO

11

NBS THF

90%

i Pr-Br,K2CO3,DMF

84%

K2CO3

Modular Synthesis of Lamellarin D

47

48

N

Oi-Pr

i-PrO

i-PrO

CO2Me

Oi-Pr

N

OH

HO

HO

O

O

DDQ, CHCI3, MWMeO

MeO

MeO

NaH, THFMeO

MeO

MeO

Lamellarin D

N

Oi-Pr

CO2Me

Oi-Pr

MeO

MeO

i-PrO

i-PrOMeO

1112

N

OH

CO2Me

OH

MeO

MeO

MeOHO

HO

AlCl3, CH2Cl2

13

38% 3 steps

9% 13 steps

Modular Synthesis of Lamellarin D

48

49

Comparison of Three Synthesis

1. Ishibashi’s N-ylide approach · Prepared and evaluated 10 derivatives ·  Lam D: 14 steps, overall yield 4% ·  Ring substitution limited

2. Banwell’s Intermolecular 3+2 approach ·  Most direct method to the lamellarins ·  12 steps, overall yield 17% ·  Prepared Lam D and Lam 501  3. Olsen-Pla’s Open chain-Modular synthesis approach ·  More flexible, effective method ·  Open chain analogues:  9 steps, 27-35% yield ·  Lam D: 13 steps, overall yield 9%

49

50

Conclusion

• A novel class of marine alkaloids – Lamellarins isolated

• Lamellarin D

•Identified as a lead candidate for Topo I targeted

antitumor agent

•Structure-activity relationship studied

• Three different synthetic methods compared

•Ishibashi’s synthesis

•Banwell’s synthesis

•Olsen-Pla’s synthesis

50

51

Acknowledgment

Dr.Wang Hadizad Tayebeh

Dr. Jane Gao Shidi Xun

Dr. Hongding Tang Xun Sun

Dr. Xianzhen Li Xianguo Wu

Yuxing Cui Ying Xiong

Gaetan LeClair

51

top related