the evolution of predictive analytics in maaged care

Post on 15-Jan-2015

447 Views

Category:

Health & Medicine

1 Downloads

Preview:

Click to see full reader

DESCRIPTION

 

TRANSCRIPT

The  Evolu*on  of  Predic*ve  Analy*cs  in  Managed  Care  

March,  2014  

2  

The  Evolu*on  of  Predic*ve  Analy*cs  

3  

!   ‘Unborifying’  Analy9cs  !   About  Predic9ve  Analy9cs  !   Our  Approach  !   Risk  Score  Model  

4  

ABOUT  PREDICTIVE  ANALYTICS  

Predic*ve  Analy*cs  ‘Fancy  Words’  

5  

!   Data  Mining  !   Big  Data  !   Machine  Learning  !   Hypothesis  Tes9ng  !   Sta9s9cal  Significance  !   Correla9on  !   Regression  Analysis  !   Goodness  of  Fit  

What  is  Predic*ve  Analysis?  

6  

The  process  used  to  iden9fy  or  predict  an  unknown  event  using  available  informa9on.  

What  is  Predic*ve  Analysis?  

7  

Examples  from  the  world  of  Managed  Healthcare:  ! Dual  eligibility  

! Risk  score  ! Presence  of  one  or  more  chronic  condi9ons  ! Likely  to  NOT  recer9fy  for  Medicaid  or  dual  enrollment  

! Likelihood  of  readmission  

What  is  Predic*ve  Analysis?  

8  

Frequently  we  are  unable  to  obtain  the  informa9on  that  is  most  closely  9ed  to  the  event  we  are  trying  to  predict.  ! Dependent  on  data  availability  

! Leverage  data  proxies  

What  is  a  Predic*ve  Model?  

9  

𝑌= 𝛽↓0 + 𝛽↓1 𝑋↓1 + 𝛽↓2 𝑋↓2 + 𝛽↓3 𝑋↓3 …+ 𝛽↓𝑖 𝑋↓𝑖 +𝜀  

= 𝛽↓0 + 𝛽↓1 𝐴𝑔𝑒+ 𝛽↓2 𝐺𝑒𝑛𝑑𝑒𝑟  + 𝛽↓3 𝑅𝑎𝑐𝑒  +   𝛽↓4 𝑆𝑜𝑐𝑖𝑜𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐  𝑆𝑡𝑎𝑡𝑢𝑠+ 𝛽↓𝑖 𝑋↓𝑖 +𝜀  

Example:    Poten9al  Risk  Score  

Issue:    What  available  informa9on  best  represents                              socioeconomic  status?  

! Income?  ! House  value?  ! Rural/urban?  ! Geographic  loca9on?  

10  

OUR  APPROACH  

Collabora*ve  &  Complementary  Approach  

11  

!  Mul*-­‐disciplinary  team  •  Industry  professionals  •  Clinical  professionals  • Numbers  nerds  

!  Mul*faceted  approach  to  development  and  tes*ng  • Historic  pa`erns  &  experience    •  Literature  review  and  external  data    •  Client  input  and  review    •  Clinical  review    •  Sta9s9cal  tes9ng    

Altegra’s  Predic*ve  Models  

12  

!  Program  eligibility  • Dual  eligibility  •  Low  Income  Subsidy  (LIS)  eligibility  •  Failure  to  recer9fy  

!  Risk  score  gaps  (RiskView)  • Medicare  • Medicaid  •  Commercial  

 

Enrollment  and  Eligibility  Models  

13  

!   Dual  &  LIS  specific  models  •  Used  to  target  and  drive  outreach  since  2004  

!   Two  step  model  design  •  First  step  is  determining  the  probability  of  eligibility  •  Second  step  factors  in  the  probability  of  engagement  

!   Based  on  “Big  Data”  •  Latest  version  uses  data  from  12+  Million  MA  beneficiaries  •  Plan  provided  data  supplemented  with  census  data  and  Altegra’s  outreach  data  

!   Are  very  accurate  •  In  a  recent  challenger  model  test  against  an  industry  leading  predic9ve  modeling  firm,  our  dual  model  was  96.8%  accurate  in  predic9ng  dual  enrollment.  

   

Altegra  Dual  Predic*ve  Model  Accuracy  

14  

0.1%   0.2%   0.2%   0.8%   2.7%  

11.6%  

46.0%  

69.5%  

76.3%  

89.0%  

0%  

10%  

20%  

30%  

40%  

50%  

60%  

70%  

80%  

90%  

100%  

Under  100  

100  to  199  

200  to  299  

300  to  399  

400  to  499  

500  to  599  

600  to  699  

700  to  799  

800  to  899  

900+  

Dual  Percent   Cumula*ve  %  of  Popula*on  

Predicted  Not  Dual  (n=90,134)   Predicted  Dual  (n=9,866)  

Overall  Model  Accuracy  

96.8%    

Actual  new  duals  over  18  months  

8,148    

Recer*fica*on  Model(s)  

15  

!   Ini*al  model  based  on  MA  dual  member  recer*fica*on  •  Focused  on  iden9fying  members  most  likely  to  fail  to  recer9fy  on  their  own  •  Extensible  to  Managed  Medicaid  popula9ons  •  Focused  on  three  states  • Model  drivers  similar  across  all  three  states  

!  Partnered  with  an  industry  leading  predic*ve  modeling  firm  • Our  process  leveraged:  •  Big  data  /Supplemental  data  • Machine  learning  

16  

RISK  SCORE  MODEL  

Risk  Model  Dimensions  (Sub-­‐Models)    

17  

!   Sub-­‐models  without  member  claims  data  1.  An  external  data  supplemented  predic9ve  model  

!   Sub-­‐models  with  member  claims  data  2.  Tradi9onal  coding  persistency  model  3.  Pharmacy  claims  to  condi9ons  predic9ve  model  4.  Medical  claims  comorbidity/coding  based  predic9ve  

model  

!  Overall  model  modifiers  •  Prevalence  rates  •  Chronicity  •  Prior  provider  experience  •  Provider  type  •  Recoverability  

Core  -­‐>  Altegra  Dx  Condi*on  Groups  

18  

Rx  Data  &  Drug  Class

Altegra  Dx  Condition  Group

Risk  Models• HHS-­‐HCC• CMS-­‐HCC• CDPS• Etc.  

Medical  Claims  Data

Prevalence  Rates

Chronicity  &  Persistency

Recoverability

Altegra  Dx  Group  Examples  

19  

Dx  Group  

Dx  Group  Label     HCC   HCC  Label  

HCC  Subset  Code  

HCC  Subset  Label  

DX01   HIV/AIDS   1   HIV/AIDS   1Z   HIV/AIDS  

DX03  

Central  Nervous  System  

Infec9ons  

3  Central  Nervous  System  Infec9ons,  Except  Viral  Meningi9s  

3A  Tubercular  Central  Nervous  System  Infec9ons  

3B  Non-­‐Tubercular  Central  Nervous  System  Infec9ons,  Except  Viral  Mengi9s  

4   Viral  or  Unspecified  Meningi9s   4Z   Viral  or  Unspecified  Meningi9s  

DX05   Cancer  

8   Metasta9c  Cancer   8Z   Metasta9c  Cancer  

9  

Lung,  Brain,  and  Other  Severe  Cancers,  Including  Pediatric  Acute  Lymphoid  Leukemia   9Z  

Lung,  Brain,  and  Other  Severe  Cancers,  Including  Pediatric  Acute  Lymphoid  Leukemia  

10  Non-­‐Hodgkin's  Lymphomas  and  Other  Cancers  and  Tumors   10Z  

Non-­‐Hodgkin's  Lymphomas  and  Other  Cancers  and  Tumors  

Why  Use  Dx  Condi*on  Groups  ?  

20  

!   Per*nent  data  are  not  generally  available  segmented  by  the  individual  risk  model  categories  •  Prevalence  •  Chronicity  •  Recoverability  •  Rx’s  ,Lab’s,  Etc.  

!   This  allows  us  to  transfer  what  we  learn  working  with  one  risk  model  easily  to  other  risk  models  

!   It  allows  us  to  explicitly  consider  risk  score  gaps  with  quality  score  gaps  •  Integrated  suspect  lists    •  Facilitates  the  implementa9on  of  personalized,  targeted  interven9ons  

Commercial  Model  Goal  and  Constraints  

21  

GOAL:    To  quickly  and  efficiently  determine  the  probability  that  a  new  commercial  exchange  member  has  a  risk  adjus@ng  condi@on.  !   These  are  newly  insured  members  so  there  may  not  be  any  medical/Rx  claims  history  to  rely  on  

!   It  is  es9mated  that  20-­‐30%  of  exchange  members  will  have  a  risk  adjus9ng  condi9on  compared  to  80%+  for  MA  plan  members  

!   Because  the  commercial  risk  model  is  concurrent,  there  is  limited  opportunity  for  retrospec9ve  record  review  and  an  increased  reliance  on  prospec9ve  risk  score  improvement  ac9vi9es  

Risk  Score  Model  Structure  

22  

Persistency  Model  

Expected  Value  Score  

Historic  Medical  

Condi*ons  

Supplemental  Data  

•  Demographic  •  Geographic  •  Psycho-­‐Demo  

Pharmacy  Claims  Data  

Documented  Medical  

Condi*ons  

Supplemental  Data  Expected  Value  Score  

Rx  Model  Expected  Value  

Score  

Comorbidity-­‐Coding  Expected  Value  Score  

Member-­‐Specific  Expected  Value  Score  

• 6-­‐10  Variables  • Developed  Tes9ng  100+  Variables  

• 75K+  NDC  Codes  • MediSpan  Mappings  • 61  Dx  Groups  

• Comorbidity  mapping  •  Includes  Self  Reported  Data  

• 13K  ICD9  Codes  • 68K  ICD10  Codes  • 141    HCCs  (including  groups)  •  Includes  Self  Reported  Data  

Tradi*onal  Persistency  Sub-­‐Model  

23  

Not  Currently  Documented  Risk-­‐Adjusting  Condition  Category

Un-­‐Documented  Comorbid  Risk-­‐

Adjusting    Condition  Category

Un-­‐Documented  Higher  Severity  Risk-­‐Adjusting    Condition  Category

Historic  Medical  Condition  

Persistency  Model  Expected  Value  Score

Supplemental  Data  Based  Sub-­‐Model  

Member  Demographic  

Profile

Geographic  Risk  Profile  and  

Prevalence  Rates

Psycho-­‐Demographic  Profile  &  Purchasing  Profile

Supplemental  Data  Model  Expected  Value  Score

• Age• Gender• Race  • Ethnicity

• Urban/Rural• Regional  

Heath  trends• Zip  Code  

Health  Profile

• Housing  profile

• Income  profile

• Purchasing  profile

Rx  U*liza*on  to  Condi*ons  Sub-­‐Model  

25  

Drug  Therapeutic  Class

Medical  Condition

HHS-­‐HCC  Model  Condition  Category

Rx  Claims  Data

NDC  Codes

Rx  Model  Expected  Value  

Score

Comorbidity  &  Under-­‐Coded  Sub-­‐Model  

26  

Un-­‐Documented  Comorbid  

Risk-­‐Adjusting  Condition  Category

Un-­‐Documented  Higher  Severity  Risk-­‐Adjusting    Condition  Category

Documented  Medical  Condition

Comorbidity-­‐Coding  Model  Expected  Value  Score

Model  Adjustment  Parameters  

27  

!  Prevalence  Rates  •  Based  on  mul9ple  inputs  •  Known  Dx  prevalence  rates  •  CMS-­‐HCC  prevalence  •  CDPS  &  Other  Medicaid  model  condi9on  prevalence  rates  

!  Chronicity  •  Based  on  AHRQ  Acute/Chronic  condi9on  model  • Adjusted  based  on  Altegra  experience  

!  Code  Recoverability  •  Based  on  Altegra  experience  

Coding  Persistency  Model  Score

Rx  Model  Score

Comorbidity  Model  Score

Supplemental  Data

   Model  Score

Prevalence  Rates

Dx  Chronicity

Project  and/or  Intervention  Characteristics

Provider  Characteristics

Ranked  Suspect  List  for  

Intervention(s)  TargetingMember  

Characteristics

Weighted  Average  Member  Specific  

Expected  Value  Score

Risk  Model  Weights

CE  Predic*ve  Model  Score  Composi*on  

28  

Heuris*c  (learning)  Model  Characteris*cs  

29  

!  Our  models  will  be  con9nuously  evaluated  and  refined  as  data  for  this  new  popula9on  becomes  available  

!   Ini9al  sta9s9cal  rela9onships  were  determined  using  extensive  risk  adjustment  experience  working  gained  from  with  Medicare  Advantage  and  Managed  Medicaid  Plans  over  the  past  10+  years  

!   The  con9nuous  improvement  process  leads  to  ever-­‐increasing  model  precision  

AltegraHealth.com  

30  

602.300.0646  Jim  Dalen    

 Jim.Dalen@AltegraHealth.com  

top related