turnitin originality report_as

Post on 15-Sep-2015

251 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

DESCRIPTION

oiginality

TRANSCRIPT

  • laserbyAnkitSharmaFromAnkitSharma(MTechThesis)

    Processedon09Jun201511:32ISTID:549215775WordCount:12764

    SimilarityIndex

    16%InternetSources: 5%Publications: 14%StudentPapers: 0%

    SimilaritybySource

    1

    2

    3

    4

    5

    6

    7

    8

    TurnitinOriginalityReport

    sources:

    3%match(publications)Bansal,Ankit,AndrewFeldick,andMichaelModest."SimulationofHypersonicFlowandRadiationoveraMarsReentryVehicleUsingOpenFOAM",50thAIAAAerospaceSciences

    MeetingincludingtheNewHorizonsForumandAerospaceExposition,2012.

    2%match(publications)MMODEST."RadiativePropertiesofMolecularGases",RadiativeHeatTransfer,2003

    1%match(publications)Joarder,R.,G.C.Gebel,andT.Mosbach."Twodimensionalnumericalsimulationofadecayinglasersparkinairwithradiationloss",InternationalJournalofHeatandMass

    Transfer,2013.

    1%match(publications)Goebel,Florian,andChristianMundt."ImplementationoftheP1RadiationModelintheCFDsolverNSMBandInvestigationofRadiativeHeatTransferintheSSMEMainCombustion

    Chamber",17thAIAAInternationalSpacePlanesandHypersonicSystemsandTechnologiesConference,2011.

    1%match(Internetfrom07May2014)http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19710021465.pdf

    1%match(publications)Sohn,Ilyoup,AnkitBansal,MichaelModest,andDeborahLevin."AdvancedRadiationCalculationsofHypersonicReentryFlowsUsingEfficientDatabasingSchemes",40th

    ThermophysicsConference,2008.

  • 910

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    Shuen,J.S.."Inviscidfluxsplittingalgorithmsforrealgaseswithnonequilibriumchemistry",JournalofComputationalPhysics,199010

  • 21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

  • 32

    33

    34

    35

    36

    37

    38

    39

    40

    41

    42

    43

    J.J.Camacho."LaserinducedbreakdownspectroscopyoftrisilaneusinginfraredCO[sub2]laserpulses",JournalofAppliedPhysics,2007

  • 44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

  • 56

    57

    58

    59

    60

    61

    62

    63

    64

    65

  • 66
  • whenlaserpulseisfocused.Also,theprobabilitythatafreeelectronwillbepresentnaturallyinthefocalregionisnegligible.So,thesecond3processdependsonthefirstprocess[8].1.2.1MultiphotonionizationPhotoelectriceffect[9]isdefinedastheprocessofemissionofelectronsfromasurfacewhenlight(electromagneticradiation)fallsonit.ItwasdiscoveredbyHeinrichHertzin1887butitHertzfailedtoexplainitonthebasisofclassicalelectromagnetics.Itwasin1905whenEinsteinexplaineditin1905onthebasisofquantumtheory.[10]Whenlightstrikesthesurfaceofthemetalwithafrequencywhichislesserthanaspecifiedamount,therewouldbenoelectronemittedfromthesurfaceofthemetaltocauseemission.Classicalwavemodelfailedtoexplainthis.Einsteinpublishedhisworkontheoryofphotoelectriceffect[11]in19thcenturyexplainingitintermsofthequantummodeloflightwhichstatesthat

    13Electromagneticradiationisastreamofparticles(photons)thattravelasawave.Supposethereisa

    lightwavewithfrequencyhavingnumberofphotons.

    13Eachphotoncarriesadefinedamountofenergy.E

    ?hv(1.1)Where

    36hisPlancksconstanth=6.63x1034Jsandthetotalenergy

    ofthewavelightisETotal=nh.E.g.

    13Violetlight400nm,eachphotoncarriesE?hv?hc/fE?(6.

    63x10?34Js)(3x108m/s)(400x10?9m)E=51019JHigherintensityoflightmeansthatthenumberofthephotonsislargeri.e.

    13moreparticles4arebeingtransmittedinatimeperiod.Now,whenthephotonscarryingenergy

    hvstrikesthesurfaceofamaterial,the

    58energyofthephotonisabsorbedbythe

    electron.ThisphotoncanfreeelectronsfromthesurfaceonlyifthephotonenergyisgreaterthanorequaltotheminimumthresholdfrequencyVo.WhichisdifferentfordifferentmaterialsElectronsabsorbthepartofthephotonenergyknownasWorkfunctionWtogetreleasedandtheremainderenergyofthe

  • photongoestothekinetic

    21energyoftheelectronemittedwhichisequaltotheenergyofthephotonminustheworkfunctionofthe

    metal.Ek(max)?hf?W(1.2)WhereEk=MaximumkineticenergyofejectedelectronForthresholdfrequency(f0),putE=00=hfWf0=W/h5Figure0.1MPIandcascadeionizationIn1929,MariaGoppertMayer[12]predictedtheoreticallythatlargenumbersofphotonscanbeabsorbedbyanatomwhichmakeselectrontotransittostateswhicharenotreachablebytheabsorptionofasinglephoton.Atomabsorbingmultiplephotonssimultaneouslymightbeionizedbyphotonshavingfrequencieslessthanthethresholdfrequency.Thiseffectwasinvestigatedfirstwithconstructionofthefirstlaserin1960.Duetothesmallenergyofthelaserphotons,theusualphotoelectriceffectisnotpossible(i.e.oneatomabsorbingonephotonandreleasingoneelectron).[13]Asenergyabsorbedwhenasinglephotonofrubylaserradiationcollidesisapproximately1eVbutthe

    8ionizationpotentialofmanygasesisgreaterthan1020eV.So,asinglephoton

    isnotsufficienttocauseionizationHence,multiplephotoncollisionsareneededtoreleaseanatomicelectron.6Whenwefocus

    8apulsedlaserbeamonasmallfocalvolume,thenthe

    moleculespresentinthegasabsorbsthepartofenergyresultingintoairbreakdownandplasmaformationtakesplace.Thiswholeprocessoccursinfollowingsteps:multiplephotoswhichareincidentonanatominitiatethereleaseoflargenumberofelectronsareduetomultiphotonionization(MPI).[14]

    8M+mhvM++eWheremhvrepresentsthetotalenergyofmphotonseachhavingenergyhv.

    Ifnphotonsareabsorbed,transitionsthatrequireenergylessthanorequaltonhvareenergeticallyallowed.DuetothisMPIreaction,

    8electronnumberdensityincreaseslinearlywithtime.1.3CascadeIonization

    DuetotheMPIprocessasdescribedabove,freeelectronsareavailableinthefocalvolume.Thesefreeelectronsthenabsorbmoreandmorephotonsandgetsexcited.Assoonastheionizationreachesacertainlevel,attemperaturesoftheorderofseveralthousanddegrees,thelightgetsabsorbeddueto

    37freefreetransitionsoftheelectronsinthefieldoftheions.

  • ThisprocessisknownasInverseBremsstrahlungprocess[15].Whenthesesfreeelectronshaveabsorbedenergywhichishigher

    28thantheionizationenergyofthegas,thentheystartimpactionizationofatoms/gasthroughthisreactionM+eM++2e

    Ascanbeseenthatthisreactionresultsinreleaseoftwomoreelectronswhichcanstarttheprocessagainandtheprocessrepeatsagain.Thechainofthesereactionscausesa

    59cascadereleaseofelectronsandhencetheconcentrationofthe

    electronsincreasesexponentiallywith7time.Subsequentlyduetocascadeionizationprocess,plasmaisformed.1.4ExpansionofPlasmaItisobservedexperimentallytheplasmaformationtakesplaceoppositetothedirectionoftheincidentlighti.e.Plasmaexpandsoppositetothedirectionofthelightflux.Thisbackwardexpansionofplasmaisexplainedbythreedifferentandindependentmechanisms[16,17]RadiationsupportedshockwaveJustafterthebreakdownhasoccurred,intenseheatingofthegastakesplaceduetotheabsorptionofenergyinthegasatthefocusofthelaserbeamandhightemperatureandpressureregionisobtainedatthefocus.Duetothesepressureandtemperaturegradients,

    23ashockwaveisproducedwhichtravelsinalldirections

    (againstthelaserbeamalso)whichheatsthegasfurther.Gasintheshockwavethatistravellingagainstthelaserbeamgetsheatedtoahightemperatureandgetsionizedandhenceabsorbsmoreandmorelaserlight.Henceasshockwavemovestowardsthesource,zoneofabsorptionalsogetstransportedwithitagainstthebeam.Thisisknownashydrodynamicmechanism,firstproposedbyRamsdenAndSavic[18],andismuchsimilartowhatoccursindetonatingwavesinreactinggasesandiscalled"radiationsupportedshockwavemechanism.ProgressivebreakdownmechanismWithtime,powerofthelaserbeamincreases.Whenthetimeintegratedeffectofthelaserbeamissufficientfortheelectronstoacquiretheenergyneededforionizationoftheatoms,8regioninwhichthresholdconditionsareattainedalsostartsincreasingandpropagateswithtimetowardsthesourcei.e.ionizedvolumeincreasesandbreakdownregionstartspropagatingtowardsthelensandisknownasProgressivebreakdownmechanismandwasproposedfirstbyRaizer.[16]Afanasetal(1969)[17]studiedtheoreticallytheinteractionofpowerfulultrashortlaserpulseswithagasusingpicoseconddurationpulses.Theyfoundthatduetothecascadeionizationmechanism,theconcentrationofelectronsingasesatnormalpressureislesserascomparedwiththeconcentrationofneutralatomsbyseveralordersofmagnitude.Duetothislowelectrondensitytheplasmaproducedisalmosttransparenttotheincidentradiation,andhencetheonlypossiblemechanismwhichremainsforsparkexpansionisthebreakdownwave.RadiationtransportwaveThefocalregionwhichgetsionizedandbreakdownthenstartsemittingthermalradiation.This

    8thermalradiationfromthestronglyheatedregionsisthenabsorbedbythegasinfrontofthe

  • absorbinglayerswhichalsogetsheatedandstartsabsorbingthelaserradiationwhich

    25leadstotheheatingofthisregionbytheenergyofthelaserbeamandasaresulttheregionofhightemperatureand

    increasedionizationmovesalongtheluminouschannel.ThisiscalledRadiationtransportmechanism[16]ThemeanfreepathofPhotonswithenergyhv=KT,attemperaturesoftheorderof105Kormore,radiatedbytheheatedgasisapproximatelyL=10cmwhichismuchlargerthanL=1/Kandeverycharacteristicdimensionoftheheatedregion[19].Hencetheheatedgasistransparenttoitsownradiationandstartsemittingfromitsownvolumewhichisabsorbedby9theadjacentcoolerlayerswheretheionizationiseithersmallornotyetstarted.Duetotheabsorbedradiation,thisregionsalsostartsionizingandwhentheionizationhasbecomesufficient,thenthenewionizationregionalsobeginstoabsorbthelaserlight.TheintensityofthefocusedlaserradiationishighascomparedwiththatofthermalradiationwhichisbeingemittedfromthehotterregionstowardsthecoolerlayersDuetowhichthenewlayerwhichhasjustabsorbedthelaserlightbecomesrapidlyheatedandstartsexpanding.1.5DecayandRecombination[19]Whenlaserpulsehasbeenstoppedthenattheendastronglyheatedvolumeisobtainedwhichhasateardropshape

    8alongtheaxisofthelaserbeam.Thelengthof

    thisteardropshapeisonlyfewmillimetersasitisequaltothedistancetravelledbytheabsorptionwavei.e.v.t.Thetransversedimensionsoftheconverginglightisalsoequaltothedimensionsofthefocusinglaserlightandisapproximatelyequaltofewmillimeters.Thiswholeprocesscanbecomparedtotheprocessofstrongexplosioninagas.Assoonastheenergyisreleased,

    23ashockwaveisproducedwhichtravelsinalldirections

    anditsintensitydecreaseswithtime.Initiallyitsshapeisteardropandastimepassesitthesurfaceoftheshockwavebecomesspherical.Breakdownofairandconsequentsparkformationoccurswhentheheatfluxatthefocalpointexceedsthebreakdownthresholdlimitofthegas.Atthispoint,atomsinthefocalregiongetsionizedandexcitedtohigherenergylevels.Assoonasthebreakdownhasbeenachieved,thegaswhichwasearliertransparenttothelaserradiationbecomesopaqueandhencethisgasnowstartsabsorbingthelaserradiationandplasmaisobtained.Theplasmasoobtainedalsoabsorbsmoreenergyandalsostartsreflectingthesame.Thereflectedradiationiseventuallyabsorbedinthenearbyadjacentmolecules.Inthebeginning,10thecascadeionizationwasoccurringthefocalregioni.e.atthepointwherethelaserintensitywasmaximum.Afterafewnanosecondswhenthisfocalregionhasbecomefullyionized,thencascadeionizationshiftstotheadjacentregionandverysoonitalsogetsfullyionizedandemitradiationtothecoolerregions.Thisprocesskeepsonrepeatingwhichcausestheabsorptionregionstoshifttowardsleftandfinallytheplasmaevolvesintoteardropshape[20].Figure1.0.2SchematicdescriptionofPlasmaFormation1.6ApplicationsofLaserIgnitionLaserbeamcanbeusedasapotentialsourceforignition[2,3,21].IthasvariousadvantagesoverconventionalmethodofignitionasunderAslasercanbefocusedpreciselyoverafixedpoint,sotheignitionlocationcanbe

  • controlledeasily.

    52IgnitiontimingIgnitionenergy11DepositionrateHeatlosscanbe

    controlledFlamestabilizationTheblastwavewhichisproducedfromthelaserinducedbreakdowncanbeusedtoprovidepropulsivepowertosmallvehicles.Reductionofdragonthebluntbodiesisalsooneoftheimportantapplicationsofthe

    65energydepositedbythelaser.In

    figure,energyhasbeendeposited

    42inasupersonicflowpastahemisphere.Duetothedepositionofenergytheflowafterthe

    bluntbodyshockgetsdisturbedcausingthevariationinpressuredistributionthroughtime.Thisvariationinpressurecausesthedragcoefficienttochange.[22].[22]1.7LiteratureReview12Afterthedepositionofthelaserenergy,varioustypesofchangesareobservedinthefocalvolumeaschemicalreactions,fluiddynamicphenomenonandradiationemission.Focalregionshasabsorbedhugeamountofinternalenergyascomparedtothesurroundingregionduetowhichthetemperatureofthatregionincreasesandcorrespondinglypressureincreasesanddensitydecreases.Duetothis,pressuregradientsarecreatedbetweenthebreakdownregionandambientwhichleadstotheoccurrenceoffluiddynamicphenomenonsuchasformationofblastwavewhichthentravelsinalldirections.ChemicalchangesoccurringinthefocalregioninvolvesionizationofthegasespresentinairasN2,O2intovariousspecies(N,O,NO)andtheirrecombinationdependinguponthetemperatureandpressure.Studyingofthelaserbreakdownprocessandtheconsequentfluiddynamicandchemicalchangesinthewholeprocesshasbeenverywellstudiedbyanumberofresearchersandtheiruseshasalsobeenexplored.ShankarGoshandKrishnanMahesh[20]havenumericallysimulatedthe

    16fluiddynamiceffectsoflaserenergydepositioninair.

    Theyclassified

    26theflowfieldintothreephasesnamely:shockformation,shockpropagationandsubsequentcollapseoftheplasmacore.

    Vorticitygenerationintheflowfieldhasalsobeenstudied.

    16Threedifferentmodelswereusedbasedondifferentlevelofcomplexity.Inallthesemodels,

  • radiationlosseswereassumedtobenegligible.Phuoc[2]hasexplainedthe

    45laserinducedsparkignitionfundamentalsincludingthelaserinducedgasbreakdownprocessand

    thesparkevolutionandignitionmechanism.Hehasalsohighlightedpotentialbenefitsandapplications.13Bradleyetal.[21]havepresentedthe

    49fundamentalsofhighenergysparkignitionwithlasers.

    33Experimentalstudyoflaserinducedsparkignitionofflammablegaseousmixturesisreported.

    61Probabilitiesofbreakdownwerefoundforair

    overrangesofpressureandtemperatures.

    29RamnathKandalaandGrahamV.Candler[8]hasdonenumericalstudiesoflaserinducedenergydepositionforsupersonicflowcontrol.

    48Fluiddynamiceffectsoftheenergydepositionprocess

    havebeenpredicted.Theyhavesuccessfullycapturedthemain

    24physicalprocessesasinversebremsstrahlungabsorption,evolutionoftheplasmashapeandstructure,airbreakdownchemistryandthesubsequentfluiddynamics.

    IvanG.Dors[23,24]etalhavestudied

    16computationalfluiddynamicmodeloflaserinducedbreakdowninair.

    Theyhavecomputedtemperatureandpressureprofilesfor

  • 1710nsopticalbreakdownlaserpulses.

    Fluiddynamicphenomenon

    17followinglaserinducedbreakdownarerecordedwithhighspeedshadowgraphstechniques.The

    characteristics

    17lasersparkdecayflowpatternswere

    found

    17causedbylaserinducedopticalbreakdown.

    Joarderetal[25]havedone

    3twodimensionalnumericalsimulationofadecayinglasersparkinairwithradiationloss.

    3Distributionofthetotalabsorbedenergyintoitsconstituentpartsblastwaveenergy,radiationenergyandleftoverenergy

    hasbeencalculated.Theyhavemadeanattempttoincludetheradiationlossesofadecayinglaserspark.Spectralradiativepropertieswerefoundusingmultigroupmethod[26]soastoeasetheprocessofsolvingRTE.141.8ObjectiveofthecurrentthesisOwingtothehightemperatureofthegasesinthebreakdownregion,radiationlossesmaycontributeasignificantpart.Butinalltheabovereferences,radiationlosseshavebeenneglectedorhasnotbeenstudiedeffectivelytilldate.Jordaretalhastriedtoevaluatetheradiationlossesbuttheyhavealsofoundradiationlossestobenegligible[25].Theyhaveusemeanabsorptioncoefficientsmethodforthecalculationsoftheabsorptioncoefficients.Sinceradiationishighlyspectral,soinordertodotheradiationcalculationscorrectlyitisnecessarytocalculatetheradiativepropertiesofgasesateachandeverywavelengthpointforalargerange.Predictingtheradiativepropertiesoftheseradiativelyparticipatinggasesisadifficulttaskrequiringhighcomputationalpower.Thisisthemainthemeofthethesistofindoutthoseradiationlossesmoreaccuratelyinabetterwaywithdetailedlinebylinespectralmodelling.1.9LayoutofthethesisChapter1:IntroductionThischaptercoversthebasicsofairbreakdownduetolaserenergydepositionandprovidesabriefideaabouttheirapplications.Chapter2:FlowModellingModelingtheplasmaandcarryoutfurthersimulationstofindoutthevariousfluiddynamicandradiativeeffectsisdonebyusingopensourceCFDpackageknownasOpenFOAM.Thischapterdescribesallthegoverningequations,meshinformation,initialandboundary

  • conditionsofthedomain.hypersonicfoamsolverdevelopedforstudyingthefluiddynamiceffectshasbeendescribed.Chemicalkineticsgoverningtheprocesshasbeenincluded.AbriefintroductionabouttheCFDsolveOpenFOAMhasbeendone15Chapter3:RadiationModellingInthischapter,radiationmodellinghasbeendescribed.Radiationinparticipatingmediahasbeenexplained.Spectrallinesandtheirbroadeningduetovariouseffectshasbeenhighlighted.Varioustypesofatomicradiationhasbeendescribed.RadiativeandspectralpropertiesmodelshavebeendiscussedCalculationofthespectralradiativepropertieshavebeenshownusingLBLmethodandthensolvingtheRTEusingP1approximation

    43method.Chapter4:ResultsandDiscussionsChapter5:Conclusions

    andFutureWorkChapter6:References16EquationChapter(Next)Section12CHAPTERFLOWMODELLINGModelingtheplasmaandcarryoutfurthersimulationstofindoutthevariousfluiddynamicandradiativeeffectsisdonebyusingopensourceCFDpackageknownasOpenFOAM.Thischapterdescribesallthegoverningequations,meshinformation,initialandboundaryconditionsofthedomain.hypersonicfoamsolverdevelopedforstudyingthefluiddynamiceffectshasbeendescribed.Chemicalkineticsgoverningtheprocesshasbeenincluded.AbriefintroductionabouttheCFDsolverOpenFOAMhasbeenhighlighted.172.1OpenFOAMCFDSoftware

    57OpensourceFieldOperationandManipulationcommonlyknownasOpenFOAM[27,28]is

    anopensourceCFDsoftwarepackagewhichisusedfordevelopingnewnumericalsolversandvariouspre/postprocessingutilitiesforsolvingvariousproblemsofcontinuummechanicsasComputationalFluidDynamicsproblems(CFD).Itisavailableforfree

    50undertheGNUGeneralPublicLicense.Itcanbe

    usedtosolvecompressible/incompressibleNavierStokesequationforvarioustypesofmeshesstructuredorunstructured.Ithasalreadyinbuiltsolvers,variousapplications,numerousutilitiesandtoolstosolvevarioustypesoffluidflowproblem.IthasbeenwritteninC++.AtypicalsolverinOpenFOAMincludessetofequationswhichhasvariousmathematicaloperators(suchas,,etc.).ManytypesofsolversarealreadyavailableinOpenFOAMandhavebeenusedandtestedbyvarioususersforsolvingvarioustypesofCFDproblems.Inaddition,newsolverscanalsobeadded.Forthisnewcustomobjectssuchasboundaryconditionscanbecreatedwhicharemergedwiththeexistingsolverstosolveparticularproblems.ThisisoneofthemajoradvantageofOpenFOAMthatnewfeaturesandfunctionscanbeaddedoroldfeaturescanbemodifiedwithrelativeease.Varioustypesofpreandpostprocessingutilitiesareusedtomakegeometry,meshitproperly,setupthecase,runthesimulationandtheninterprettheresults.HypersonicFoamForsolvingthefluidflow,anewsolverhypersonicFoamhasbeendevelopedforthiscase.Itbasicallyincludesfeatureoftwoexistingsolverswhichhavebeencombinedalongwithnew18features

  • 1todevelopanewsolvercapableofmodellinghightemperatureflows.

    OneofthetwosolversalreadypresentinOpenFOAMwhichhasbeenusedtoconstructthenewsolverisrhoCentralFoam.Itis

    1adensitybasedcompressibleNavierStokesflowsolverbasedoncentralschemeofKurganovetal.

    [29]Butthissolverlacksfew

    1featuressuchaschemistrymodelling,transportofspecies,andmodels

    tofindvariousthermodynamicpropertiesathightemperature.reactingFoam[30]isthesecondsolverwhosefewfeatureshavebeenaddedinthenewhypersonicFoamsolver.ThisreactingFoamsolverisbasically

    1apressurebasedsolverforsolvingchemicallyreactingcombustionproblems.

    ItincludesvariousfeatureswhichwerenotavailableinrhoCentralFoamsuchashightemperature

    1chemicalkineticsandthermodynamicpropertiesbasedonChemkinformatdata.Also,thethermodynamicdata

    19whichisalready

    1availableinOpenFOAMisvalidonlyupto6,000K

    forfindingoutthermosphysicalproperties(thosematerialpropertiesthatvarywithtemperaturewithoutalteringthematerialidentity)asthermalconductivity,diffusivity,heatcapacity,viscosity,rho,enthalpy,entropy,cp,cv,internalenergy.Asthetemperatureinourcaseexceeds6,000K,soitisnotsuitableformodellinggaspropertiesathightemperatures.Toovercomethis,thethermodynamic

    1datafromGordanandMcBride[31]wasaddedwhichprovidespolynomialfitsfor

    1alargenumberofspeciesandalsovaliduptoalargetemperaturerange20,

  • 000K.Likewisesomechangeswerealsodone

    1intheOpenFOAMsolversoastoreadthenewdata.

    cpisevaluatedbyafunctionwithcoefficientsfromnasathermodynamictables,fromwhichh,sareevaluated.Byincludingabovechangesandcombiningthefeaturesofthetwoexistingsolvers,thisnewhypersonicFoamsolveriscreated.[28]2.2GoverningEquationsGoverningequationsarethemathematicalexpressionwhichgovernordefinethephysicalprinciplesof

    23conservationofmass,momentumandenergywhicharedescribedas

    followsContinuityequation[32]Itrepresentstheconservationofglobalmassinthesystem.Indifferentialform,itcanbeexpressedas???t??.?U???0(2.1)WherethedensityandUistheaveragevelocity.Speciecontinuityequation:20The

    1massconservationequationforspeciessisgivenas

    [33,34]???tYS??.?U?YS???.??DS?YS??wS?0(2.2)Wherethefourtermsrespectively

    1aretherateofchangeofmassofspeciesperunitvolume,themassfluxconvectedacrosscellfaces,themassdiffusionduetogradientsinconcentration,andthemassproductionrateduetochemicalreactions.Ysrepresentsthe

    massfractionandDsrepresentstheeffectivediffusioncoefficient.MomentumEquationThemomentumequation

    46canbewritteninvectorformas:[32,34]????tU???.??U??U?????p??.T

    ?0(2.3)Wherethe

    27firsttermrepresentstherateofchangeofmomentumperunitvolume,thesecondtermrepresentsthefluxof

    1momentumacrosscellfaces,thirdtermrepresentthepressureforcesactingoncellwalls,and

  • thelasttermrepresents

    1viscousforcesactingoncellfaces.TheshearstresstensorTiswrittenasT?????U???U?T?23?.U

    ????(2.4)EnergyequationThetotalenergyconservationequationisasunder[32]21????tE???.??U??H?????.?T.U??k?2T??.????hSDS?Ys????.qrad?0(2.5)

    1Wherethetermsintheequationintheorderoftheirappearancerepresentrespectivelythe

    1rateofchangeoftotalenergyperunitvolume,thefluxoftotalenthalpyacrosscellfaces,theworkdonebyshearforces,theconductionofenergyduetotemperaturegradients,thediffusionofenthalpyduetoconcentrationgradients,andtherateofenergylossduetoradiation.Thetotalenthalpyofthegasiswrittenas

    ?H??E?????e?0.5

    1?U2?p(2.6)Whereeistheinternalenergyofthegas.Pressureandtemperaturearenotsolvedexplicitlyasvariables,andareevaluatedfromthesolutionvariablesasfollows.p?

    ??(2.7)Whereisthe

    1compressibilityofthefluidgivenby=(2.8)AndthetemperatureiscalculatediterativelyfromthetotalenergyasT?Cv?T

    ??E?T??0.5U2?1(2.9)The

    31unsteadycompressibleNavierStokesequationsareamixedsetofhyperbolicparabolicequationsintimeandthe

    steadystateNavierStokesequationhavemixed(parabolicelliptic)natureandhencearemoredifficulttosolveascomparetounsteadyequation.So,22steadystate

  • 1equationsarealsosolvedasunsteadyevenifdesiredsolution

    issteady.Inthesecases,unsteadyequationsaresolved

    1fromaninitialdatapointuntilasteadystatesolutionisreached.

    Shockisalsosimultaneouslycaptured

    1asthesolutionevolvesintime.Inhighspeedflows,discontinuitiesasshocksandcontactssurfacescan

    affectthenumericalsolutionbycausingoscillations.Drugetetal.havedoneacomparisonofvariousschemesforsolutionofconservationlaws.[35]Amongallthoseschemes,upwindschemesaremorecommonlyusedduetothefactthattheyhaveaccurateshockcapturingcapability.HowevertheyaredifficulttoimplementastheyrequireRiemannsolvers.Anotherschemeis

    1centralupwindschemeofKurganovetal[36]which

    hasupwindnatureandiscomparativelysimplerandcanbeappliedeasilytogeneralconservationlaws.ThesecentralandcentralupwindschemeshavetheadvantagethattheyhavenonoscillatorycharacteristicandavoidcomplexityinvolvedwithRiemannsolvers.[37]OpenFOAMsolverworksbysolvingthevariousequationsas

    1continuity,momentumandenergyequationina

    sequentialmanneroneaftertheother.Afterthisexplicitschemeisthenappliedi.e.

    1usingdatafromtheprevioustimestepfortheneighboringpoints

    1tointegrateintimeforaparticularcell.

    Theexplicitschemesaresolvedforverysmallstepsduetothestabilityconditions.Howeverimplicitschemesarerelativelystableformuchlargertimestepsbuttheyarenotusedduetotheirhighcomplexitylevel.Finally,iftimeaccuratesolutionsaredesiredthen

    1higherorderschemesas4thorderRungeKuttamethod

  • [38]isusedwhereEulerexplicitschemecanbeusediftimeaccuratesolutionsarenotrequired.23TransportPropertiesEffectoftemperatureonthe

    47viscosityofthegasiscalculatedbySutherland'sLaw

    [39]??1A?s?TTs(2.10)TWheretheconstantsAsandTs

    1arehardcodedinthesolver.As=1.67212

    x106kg/(msK0.5)andTs=170.672K.2.3ChemicalKineticsAslaserenergyisdeposited,temperatureofthefocalregionstartsrisingandreachestoaveryhighvalueofalmost17800K.Atsuchahightemperature,dissociationofairintovariousspeciesstartsoccurring.Finiteratechemistrymodelhasbeenusedwhichincludes

    3fivespecies(O2,N2,O,N,andNO)andelevenelementaryreactionstepsforthedissociationandrecombinationofair

    .However

    9completemodelwithionizationreactionsinvolves11speciesand26elementaryreaction

    step.Butherethe

    9effectofionizationisneglectedonlyforthesakeofsimplicity.[

    40]

    22ForasetofNRelementaryreactionsinvolvingNspeciestherateequationscanbewrittenintheformNN?vi'jnj

    ?

    66?vi''jnj(2.11)j?1

    j?1Wherei=

  • 31,2,NRisthenumberofreactions,v'ij

    9andvijarethestoichiometriccoefficientsforspeciesjappearingasareactantintheithforwardandbackwardreactionsrespectively24andnj=Cj/Wjisthemolarconcentrationforspeciesj.

    3ThereactionrateconstantsaregivenbytheArrheniusexpression

    ?Eiki?AiTmieRuT(2.12)

    41WhereEirepresentstheactivationenergyofreactioniandAi,miareconstants.

    Total

    9changeofmolarconcentrationofspeciesjis

    3obtainedbysummingupthechangesinmassconcentrationofspeciesjduetoallreactionsi.e.

    Sj?Wj?NR???v?ij?vi?j???kfi?nlv?ilNN?????l?1?kbi?nlv''il(2.13)i?1?l?1??Wherekfi,

    3kbiaretheforwardandbackwardreactionrateconstantsrespectively.

    25Table1:Listofreactionsconsideredforthesimulationsare[40]Reaction3.6x1018T1.0exp(5.95x104/T)ForwardRateCoefficient,KF(cm3/molesec)(3c.0mx31/m01o5Tle0s.5ec)BackwardRateCoefficient,KBThirdBody,O2+M2O+M1.9x1017T0.5exp(1.33x105/T)1.1x1020T0.5NM,NON2+M2N+M3.9x1020T1.5exp(7.55x104/T)1.0x1020T1.5O,NO,O2NO+MN+O+M3.2x1019T1exp(1.97x104/T)1.3x1010T1.0exp(3.58x103/O2,N2O+NON+O27.0x1013exp(3.8x104/T)T)1.56x1013O+N2N+NO4.08x1022T1.5exp(1.13x105/T)2.27x1021T1.5N+N2N+N+N9.0x1019T1.0exp(5.95x104/T)7.5x1016T0.5O2+O2O+O3.24x1019T1.0exp(5.95x104/T)2.7x1016T0.5O2+O22O+O27.2x1018T1.0exp(5.95x104/T)6.0x1015T0.5O2+N22O+N24.7x1017T0.5exp(1.13x105/T)2.72x1016T0.5N2+N22N+N27.8x1020T1.5exp(7.55x104/T)2.0x1020T1.5NO+

    51MN+O+O,N,NMO

  • Asexplainedpreviouslyduetothemovementoftheabsorptionregion,theplasmafinallyevolvesintoteardropshape.Thedomainchosenforthenumericalsimulationisofsize2620x20mm2whichisthendiscretizedinto500x500controlvolumes.Thedimensionsofthefocalvolumeareasshowninfig.Ithasbeenassumedthat93mJoftheenergyhasbeenfocusedandabsorbedbythe3mm3ofthefocalvolume[25].Thisspecificvalueofenergyhasbeentakenfromthepastexperimentsthathasbeencarriedouttostudythefluiddynamiceffectsoccurringduetolaserenergydeposition.Table1:ValuesofvariousvariablesatInitialandequilibriumconditions(att=0.02s)VariableInitialConditions(entiredomain)EquilibriumConditions(atplasmaregion)T300K17800KP101325Pa5071070PaN20.7550.325064O20.23220.000989AR0.01280.0128N00.423377O00.223719NO00.01405327Figure2.0.1MeshforaxisymmetricsimulationFigure2.0.2BlastWaveformationThisblastwaveformationwasobservedusinghypersonicfoam.ThecodewastakinglargetimetoconvergeandsincemuchworkhasalreadybeendonetostudythefluiddynamiceffectssothefluiddynamicresultsweretakenfromearlierpublisheddatabyJordaretal[25].Fromflowmodellingresultswegetmassfractions(Y)ofvariousspecies.Thismass28fractionisthenusedtofindoutnumberdensitywhichisthenfurtherusedtofindforradiationmodellingasexplainedinnextchapter.Ni?(NA)(Yi)(?)(2.14)WiWhereNi=Numberdensityofthespeciei(m3)NA=Avogadroconstant=6.022141291023(mol1)Yi=Massfractionofspeciei(ObtainedfromflowmodellingresultsfromOpenFOAM)Wi=Molecularweight(kg.mol1)=density(kg.m3)29EquationChapter3Section13CHAPTERRadiationModellingInthischapter,radiationmodellinghasbeendescribedusingtheresultsfrompreviouschapter.Radiationinparticipatingmediahasbeenexplained.Spectrallinesandtheirbroadeningduetovariouseffectshasbeenhighlighted.Varioustypesofatomicradiationhasbeendescribed.RadiativeandspectralpropertiesmodelshavebeendiscussedCalculationofthespectralradiativepropertieshavebeenshownusingLBLmethodandthensolvingtheRTEusingP1approximationmethod.303.1IntroductionWhenradiativeenergyisemitted,ittravelsinalldirections.Duetothis,

    34mostoftheradiativeenergyemittedintheshocklayergetsescapedfromtheregionandhencetheshocklayerto

    getcooled.Thiscoolingeffectcanaffecttheflowfieldparametersandhencecorrespondingheatloads.IfthiscoolingeffectisalsoconsideredsimultaneouslywhilesolvingforflowconditionsthenitisknownasRadiationFlowfieldcouplingifthiseffectisnotconsideredthenitisknownasuncoupledapproach.Incoupledapproach,RTEequationissolvedalongwithflowequations.Hence,coupledapproachiscomparativelydifficultandcomputationallyexpensiveascomparedtouncoupledapproach.Inuncoupledapproach,radiationeffectsarenotconsideredandadiabaticconditionsareassumedintheflowfield.Butactually,radiationistakingplace.So,neglectingtheradiationseffectsmayresultinoverestimationoftheheatloads.Buteventodaymostoftheresearchersuseuncoupledapproachduetoitssimplicity.Nowadays,thefullycoupledmethodhasbeenreplacedbylooselycoupledapproach.Inthismethod,RTEandflowequationsarenotsolvedateveryiterations.Flowequationsaresolvedateachiterationandradiativepropertiesareupdatedafterfewflowiterations.Betweenanytwoflowiterations,radiationfieldisassumedtobeconstant.[41]3.2RadiativeTransferthroughparticipatingmedia:Radiativetransferbetweensurfacesthatareseparatedbyparticipatingmediaisdifficulttoevaluateascomparedtothosesurfaceshavingvacuumormediumwhichisradiativelynonparticipatingmedium.Butinmostoftheengineeringapplicationsasburningofanyfuel,

  • 5nuclearexplosions,hypersonicshocklayers,rocketpropulsion,andplasmageneratorsfornuclearfusion,andablatingsystems,etc.theinteractionof

    thermalradiationwiththe31mediumcannotbeneglectedandmustbeconsidered.RadiativeTransferEquation(RTE)isusedtodescribethe

    12Radiativeintensityfieldwithintheenclosureasafunctionoflocation(fixedbylocationvectorr),direction(fixedbyunitdirectionvectors)andspectralvariable(wavenumber)[

    42].DerivingRTEforabsorbing,emittingandscatteringmediaisnotaneasytaskasitinvolvesseveralcomplications.Sinceabsorption,emissionandscatteringareoccurringateverypointwithinthemediumsowemustknowthevariousphysicalpropertiesastemperatureetc.ofthemediumatallpointsinthesystem.Also,radiationprocessishighlyspectralandthesespectraleffectsbecomemoreeminentingasesascomparedtosolidsurfaces.So,adetailedspectrallymodelingisneeded.Thetotal

    55radiativeheatfluxcrossingasurfaceelementisobtainedbyintegratingthe

    radiativeenergywhichisincidentonthesurfacefromalldirectionsoveralargerangeofwavelength.Themathematicsdescribingsuchasituationisinherentlycomplex.Also,largenumberofatomicandmolecularradiatingspeciesandnonBoltzmanndistributionsofpopulationsofvariousenergymodesmakeitverydifficulttorepresentthegaspropertiescorrectly.Duetoextremetemperatures,thediatomicairspeciesget

    18highlydissociatedandemissionfromtheresultingtwoatomicspeciesNandO

    isthemajorsourceofradiation.Emissionorabsorptionofphotonandhencecorrespondingchangeintheenergyoftheparticleismainlyduetothreetypesoftransitions

    10boundbound,boundfreeandfreefreetransitions.

    3.3

    10RadiativeTransferEquationTheradiativeheattransferinamediawhichis

    participatingi.e.in

  • 12anabsorbing,emitting,and/orscatteringmediumisaffectedbya

    numberofphenomena.Intensityoftheradiation32travellingthroughaparticipatingmediummaygetattenuatedbyabsorptionandscattering.Figure:attenuationofradiativeintensityConsideringtheabsorption,theamountofradiationabsorbed

    11canbewrittenas?dI??abs??k?I?ds

    (3.1)Whereisthelinearabsorptioncoefficientofthemedium,Iistheintensityofincidentradiationanddsisthedistancetravelledinspace.Intensityoftheradiationcandecreasebyscatteringalsoanditisgivenby?dI??sca???s?I?ds(3.2)Similarly,radiationintensitycangetaugmentedbyemission.Forthermodynamicequilibriumtheemissioniswrittenas33?dI??emis?k?Ib?ds(3.3)WhereIbisthePlanckfunction.Neglectingscatteringandcombiningequations(3.1)and(3.3)wegetthecompleteradiativetransferequationforaparticipatingmedium.Theradiativetransferequation[43]describesradiationintensityfieldinspaceasafunctionoflocation,directionoftransferandspectralvariabledI??k??Ib??I??(3.4)dsTheaboveRTEhasbeenderivedneglectingtheeffectofscattering.Thisassumptionmaynotbevalidformanyflowconditions.Butscatteringphenomenonisnotwellunderstood,soinmostofthecasesitisneglected.3.4RadiationfromAtomicSpeciesTheabsorptionandemissionofthethermalradiationmainlyoccursduetotransitionsbetweenenergylevelsofthegaswhicharecommonly:boundbound,

    19boundfreeandfreefree.BoundBoundRadiation:Itoccurswhenaphotonis

    absorbedoremittedbyagasmoleculesuchthatresultingchangeofenergylevelofthemoleculeisassociatedwithelectronic,orvibrationalorrotationalstates[44].Incaseofmonoatomicgases,thetransitionsinvolveonlyelectronicstatesandincaseofmoleculesallthreestatesmaybeinvolved.

    5Energytransitionfromhigherboundstatetolowerboundstate

    occursbyemissionof

    40photonhavingenergyequaltothedifferenceoftheenergyofthetwolevelsandcorrespondinglya

    fixedtransitionisoccurswiththetransitionof34electronfromaparticularenergyleveltootherandhencecausingtheradiationemittedintheformofaspectralline[45].Similarly,whenparticleabsorbsenergythenitcangotoanyofthediscretehigherenergylevelduetoquantumnatureoftheprocess.Thisprocessinwhichanatomormoleculeemitsorabsorbsphotonand

  • 5noionizationorrecombinationofionsandelectronsoccursisknownasboundboundabsorptionandemission.

    Quantizedboundenergystatesbetweenwhichelectronictransitionsoccurs

    5canberotational,vibrational,orelectronicinmoleculesandforatoms

    onlyonestatei.e.electronic.Tochangetheorbitofelectron,relativelylargeamountofenergyisneededwhichresultsinabsorptionemissionlinesbeingemittedatlargefrequencies(orsmall

    2wavelengths)betweentheultravioletandthenearinfrared(between102mand1.5m)[42].Electronicenergylevelchanges

    occuratshortwavelengthsinthevisibleregionand

    5atportionsoftheultravioletandinfrarednearthevisibleregion.

    Vibrationaltransitionsneedsomewhatlesserenergyincomparisontotheelectronorbittransitionsandhencespectrallinesemittedduetovibrationalenergylevelchangesarefoundintheinfraredregion

    10(between1.5mand10m)Rotationaltransitions

    donotrequiremuchenergyandhencerotationalspectrallinescanbeseeninthefarinfraredregion(beyond10m).Vibrationalenergylevelchangesaremostlyaccompaniedwithrotationaltransitionsanditgivesrisetovibrationrotationbandsintheinfrared.Asexplainedearlierthattheenergychangesinboundboundtransitionsoccurbetweenspecificenergylevels,sothespectralvariationofabsorptionandemissioncoefficientscanbeseen

    5intheformofaseriesofspectrallines[

    45].Probabilityofallelectronictransitionsare35different.Somearemoreprobablethanothersand,therefore,thoselineshavinghighelectronictransitionprobabilityarestrongerthanothers.Anexcitedatominahigherenergystatemayspontaneouslyemitphotonofappropriatewavelengthandmovestoalowerenergystate.

    6Thespontaneousspectralemissioncoefficientisdefinedas

    [46,47]??????gUnU???AULhc??T,Te,ne??4?11(3.5)Fig:SymbolicDiagramshowingenergy

  • statesandtransitionsforatom

    38(a)Boundboundtransition(b)BoundFreetransition(c)Freefreetransition

    36WheregUisthedegeneracy,

    62istheEinsteincoefficientforspontaneousemission,

    =(,,)

    39isthegasstatevector,and(,,)isthelineshapefunction.

    Spontaneousemissionoccursbyitself.Noexternalphotonsarerequiredforit.However,thisisnotincaseofstimulatedemissionandabsorption.Forstimulatedemissionandabsorptiontooccur

    6presenceofphotonsinthevicinityofemittingorabsorbingspecies

    isrequired.Combining

    19stimulatedemissionandabsorptioncoefficients,theeffectivevolumetricabsorptioncoefficientisgivenas

    ???????gUnL???BLU?gUnU???BUL???T,Te,ne?h?(3.6)WhereBisthe

    6Einsteincoefficientforstimulatedemissionandabsorption.

    Usingthelawofdetailedbalance=,the

    6absorptioncoefficientexpressioncanbereducedto

    ???????nL????nU????gUBUL??T,Te,ne??h(3.7)Simplifyingequations(3.5)and(3.7),theabsorptionandemissioncoefficientsfromasingleatomiclinecanbewrittenas[41]???????cnU????T,Te,ne?(3.8)????????c?nL????nU?????T,Te,ne?(3.9)Whereandareconstantsindependentofgasconditions.TheEinsteincoefficientsAULandBLUarerelatedtooneanotherthroughthefollowingrelation37BUL?8?hcAUL?5(3.10)Thus,theemissioncoefficientcanalsoberewrittenas???????????2hc2nU?5nL?nU??????nbe????(3.11)Where()isthenonequilibriumPlanckfunctionforanisolatedatomiclinegivenasbne?????2hc2nU?5nL?nU(3.12)Underthermodynamicequilibrium,thepopulationratioisgovernedbytheBoltzmannDistributionas[46]nL?

  • exp(C2)(3.13)nU?WhichleadstothefollowingwellknownrelationforthePlanckfunctionIb?????2hc2?5??eC?2(3.14)?1????WhereC2isthesecondradiationconstant.Mostofthe

    15atomiclinesareopticallyverythick.Thesethicklineshavestrongselfabsorptioncharacteristics.Almostmorethan90%oftheemissionfromtheselinesgetsabsorbedbythelineitselfoverdistancesasshortas0.1mm.

    Itmaybeupto99%forfewlines.[41]Thus,insteadofthelinecenters,widthofatomiclinesismore

    18importantfromaheattransferpointofview.

    Sample

    6emissionandabsorptionspectrumforatomicspecieO38andN

    atrespectivenumberdensityobtainedattime0.58softhenumericalsimulationareshowninfiguresasbelow.Weknowthatvariouselectronicenergylevelsarepresentinanatom,andwhenelectronsjumpfromoneleveltoother,itisaccompaniedbyemissionorabsorptionofphotons.Theprobabilityofthesetransitionsdependsontheelectroniclevelsbetweenwhichthistransitionistakingplace.Forstrongtransitionstooccurtherearesomesetofselectionruleswhichshouldbesatisfied.Forexample,dipoletransitionscantakeplaceonlybetweenthoseenergylevelswhoseangularmomentumparameterdiffersbyone.Hence,forenergylevelswithsameangularmomentumdipoletransitioncannottakeplacei.e.theyareforbidden[48]andhencegapinthespectrumisobservedinthatrange.39Figure:SampleEmissionSpectrumforatomicspecieNatT=8100K,numberdensity=3.75x1019cm3Figure:SampleAbsorptionSpectrumforatomicspecieNatT=17800K,numberdensity=3.75x1019cm340Figure:SampleEmissionSpectrumforatomicspecieOatT=8100K,numberdensity=1.75e19cm3Figure:SampleAbsorptionSpectrumforatomicspecieOatT=8100K,numberdensity=1.75e19cm341SpectralLineBroadening:Inanatomvariouselectronsarespinningatdifferentdistancesaroundthenucleus.Mainly,theenergyoftheseelectronsdecidetheinternalenergyoftheatom.Internalenergyoftheatomalsodependsontheatomsspinningaroundeachotherinamolecule,andonthoseatomswhichare

    2vibratingagainsteachother[49].AccordingtoQuantummechanics

    itisknown

    20thattheenergylevelsforatomicormolecularelectronorbitaswellastheenergylevelsformolecularrotationandvibrationarequantized

    whichmeansthatthechangein

  • 2electronorbitsandrotationalandvibrationalfrequenciescanoccurbycertaindiscreteamounts

    only.Also

    63byPlanckslawweknowthattheenergyofa

    2photonorelectromagneticwaveisdirectlyproportionaltofrequency,soquantizationmeansthat,boundboundtransitions

    canoccuronlyifthephotonshaveaspecificfrequencysothattheycangetabsorbedorreleased.Inthisprocessdiscretespectrallinesareemittedbythephotons

    2forabsorptionandemission[42].AccordingtoHeisenberg'suncertaintyprinciple,

    itisknownthatthe

    2energylevelofanatomormoleculecannotbedefinedpreciselyand

    thereisalwayssomeamountofuncertainty,sothisphenomenon(alongwithsomeothers)resultsinaslightspectralbroadeningoftheselinesandtheyappeartohavesomewidth.Duetosomeeffectstheseslinesgetsbroadenedandhencehaveafinitespanorwidtharoundthetransitionwavenumber.Linewidthisthatparameterwhichrepresentshowfartheeffectofaparticularlineisfelti.e.itrepresentshowfarfromthecenter,thestrengthofalineispresentandafterthis,itscontributiondecreasestoacomparativelylowinsignificantvalue.Thisvariationoftheabsorptioncoefficientwith42wavenumberwithinabroadenedlineisLineshape.ShapeofatypicalspectrallineisasshowninFig.Thelineintensityistheintegralunderthecurve[43],?Sij????,ijd?(3.15)0Theisverysmall

    5exceptforclosetoij.Theregionsawayfromijwhereisverysmallarethewingsoftheline.Othercharacteristicofthe

    lineshapeislinehalfwidthwhichisonehalfofthelinewidthathalfofthemaximumlineheight.Fig:Atypicalbroadenedspectrallinea.NaturalBroadening:Ineveryexcitedmolecule,energylevelsdecayspontaneouslybyemittingaphotontoalowerstate,evenifthemoleculeiscompletelyundisturbed.Theuncertaintyprinciplegives43therelationshipbetweentheuncertaintyofitsenergyandthelifetimeofanexcitedstate.Ashortlifetimeofanexcitedstateimplieslargeenergyuncertaintyandahencebroademission.AccordingtoHeisenberg'suncertaintyprincipleanytransitionofelectronfromoneleveltoother

  • cannotoccurwithexactlythesameamountofenergy,thusresultinginlittlevariationintheenergyofemittedphotonswhichcausesbroadeningofthespectrallines[49].

    2However,theaveragetimebetweenmolecularcollisionsismuchlesserthantheaveragetimeforspontaneousdecay.Therefore,naturallinebroadeningeffectsarenotsoimportant

    andcanbeneglected.b.CollisionalbroadeningorImpactpressurebroadening:Theemittingparticlescollidewitheachotherandinthisprocesstheydisturbstheemissionprocessofotherparticlesbydecreasing

    7thecharacteristictimefortheprocess,andhencecausingtheuncertaintyintheenergyemitted.

    Thetimeperiodofthesecollisionsisquitesmaller

    7thanthelifetimeoftheemissionprocess.Thiseffectvarywiththechangesinthedensityandtemperatureofthegasandalsowiththe

    2frequencyofcollisionsbetweengasmoleculescausingthe

    linetogetbroadened.The

    2shapeofsuchlinescanbedeterminedfromtheelectrontheoryofLorentzorfromquantummechanics

    [49]k???????b0c?2?bc2,S????k?d?,S(3.16)

    2WhereSisthelineintegratedabsorptioncoefficientorlinestrength,bcisthesocalledlinehalfwidthinunitsofwavenumber(halfthelinewidthathalfthemaximumabsorptioncoefficient),and0isthewavenumberatthelinecenter.Theshapeofacollisionbroadened44lineisidenticaltothatofnaturallinebroadening,andthecombinedeffectisgenerallytermedLorentzbroadeningwithalinehalfwidth

    bL.Withincreaseinpressure,theeffectofcollisionbroadeningalsoincreasesduetoincreaseincollisionrate.As

  • 2molecularcollisionsareproportionaltothenumberdensityofmolecules

    andtotheaveragemolecularspeed(vavT),so

    2halfwidthcanbecalculatedfromkinetictheory[43]asbc?2D2p

    ?c0mkT(3.17)

    2WhereDistheeffectivediameterofthemolecule,misitsmass,pistotalgaspressure,Tisabsolutetemperature,andthesubscript"0"denotesareferencestate.Collisonbroadeningisthe

    mainbroadeningmechanismforinfraredconditions.ThespectraldistributionofaLorentzlineandDopplerlineisshowninfigure.Itcanbeobservedfromthefigurethatatthelinecenter,LorentzprofileislowerthantheDopplerprofileandatpointsfarfromthecenter,Lorentzprofileismorepredominant.So,collisionbroadeningeffectsareimportantfarfromthecenterwhiletheDopplerbroadeningisdominatingatpointsnearthelinecenter[45].45Figure:

    2SpectralLineshapeforLorentz(collision)andDopplerbroadening[

    43]c.DopplerbroadeningInanabsorbingoremittinggas,theatomsormoleculesarenotstationary.Dependingupontheirthermalenergythey

    7haveadistributionofvelocities.Eachphotonemittedmayeitherbe"red"or"blue"shiftedbytheDopplerEffect.Thisshiftdependsonthevelocityoftheatomrelativetotheobserver.

    Velocitydistributiondependsonthetemperature.Withincreasein

    7temperatureofthegas,thevelocitydistributiongetswider.So,asthetemperatureof

    thegasincreases,thespectrallinebecomesbroadened.ThisbroadeningeffectcanbeshownbyaGaussianprofile.

    2Dopplerlinehalfwidthisgivenby

  • [43]46bD??02kTmln2(3.18)c0

    2Wheremisthemassoftheradiatingmolecule.

    Collisionandnaturallinebroadeningdoesnotdependonthespectralpositionwhilethe

    2Dopplerlinewidthisdependentonitsspectralposition

    and

    2ismuchmoreconcentratedneartheline

    centre.Forlinebylinespectralmodelling,thespectroscopicdatarequiredforthecalculationofemissionandabsorptioncoefficientswillbetakenfromNIST[50].Thisdataconsistsof914boundboundlinesforNand682forOforwavelengthsbelow20,000.TheNISTdatabasecontainsinformationforlinepositions(),Einsteincoefficients,energyofupperandlowertransitionstates(EU,EL),andthedegeneracyoftheenergystates(,).Weknowanyquantummechanicalsystemorparticlewhichisboundorconfinedspatiallycanhaveonlyfixeddiscretevaluesofenergyincomparisonwiththeclassicalparticleswhichcanhaveanyenergy.Inanatom,electricalfieldofnucleusboundstheenergylevelsofelectrons.Henceatomshavevariousdistinctenergylevelswhichareknownaselectronicstates.Iftheelectronsinanatomareatthelowestpossibleenergylevelthentheyaresaidtobeinthegroundstateandiftheyhaveenergyhigherthanthegroundstatethentheyaresaidtobeexcited.Asatomsmove

    15fromoneelectronicstatetoother,theyemitorabsorbaphotonofspecificwavelength.

    Fortransitionofelectronfromalowerenergystatetohigher,theyabsorbaphotonandtransitionfromhighertolowerenergystateisdone

    35byemittingaphotonhavingenergyequaltothedifferenceintheenergy

    levelofthosetworespectivestates.Thesetransitionsarepredictedbyquantummechanics.Inthebeginningofthischapter,variousexpressionsforemissionandabsorptioncoefficientswerepresentedintermsofspectroscopic47constants??cand??c.AtransitionfromoneenergyleveltootheratanywavelengthisgovernedbyanupperandalowerelectronicenergyleveldenotedbyEUandEL,respectively.Therearemorethan200suchenergylevels.Johnsonetal.havecombinedalltheseenergylevelsintogroupedenergylevels,UandL.Itwasdonesoastosimplifytheexcitationmodelforthecalculationofpopulationsoftheseenergylevels.Thereare35suchgroupedenergylevelsforNandOintheJohnstonsmodel.[47]DetailsoflinesofNandOareprovidediBoundFreeContinuumRadiationWhentheabsorptionofaphotonproducesanelectronandiontheprocessiscalledboundfreeabsorption.Initiallytheelectronisinaboundstateandafterionizationitisfreetotake48onanyvalueof

  • thekineticenergy,sotheboundfreeabsorptionisacontinuousfunctionofthefrequency.Thereverseisfreeboundemissioninwhichanionandfreeelectroncombineandaphotonofenergyisreleased.Duetothis,theenergyoftheresultingatomdrops.Italsoproducesacontinuousspectrumastheparticleswhicharecombiningcanhaveanyinitialkineticenergy.Now,theboundfreetransitionsoccuronlywhenthegasisionized,sothisprocessistakenintoconsiderationforhightemperatureapplicationsonly.Intheboundfree

    6case,thewavelengthoftransitioniscalculatedbythekineticenergyofthefreeelectron.[41]??11?E

    E??Ei?Ee?(3.19)WhereEistheenergyofanimaginarystate,whichliesaboveandclosetoionizedstateandEi

    6istheenergyoftheithboundlevel.SincetheelectronenergyiscontinuouslydistributedaccordingtoaMaxwelldistribution,theradiation

    isessentiallycontinuous,unlikelinesintheboundboundcase.FreeFreeContinuumRadiationItoccurs

    5whenaphotonisabsorbedoremittedby

    afreeelectron.Theemissionproducedbyelectronatomcollisionsisofimportanceinplasmasoperatingathighpressure,wheretheelectrondensityquitehighinspiteplasmabeingonlypartiallyionized.Ifthephotonisemitted,itisalsocalledbremsstrahlungemission(whichinGermanmeansbrakeradiation)asthe

    2releaseofaphotondecreasesthekineticenergyoftheelectronandhencedeceleratingit.Ifthephotonisabsorbeditisknownasinversebremsstrahlung

    asthecapture

    2ofaphotonincreasesthekineticenergy

    andhenceacceleratingit.Herealso,theinitialandfinalfree49energiesoftheelectroncanhaveanyvalues,soacontinuousabsorptionoremissionspectrumisobtained.Freefreeradiationisgenerallyweak,andtheonlysignificantcontributioncomesfromthelargewavelengthregionofthespectrum.

    2Boundfreeandfreefreetransitionsgenerallyrequirehigh

    energyandhencetheymostly

  • 2occuratveryhightemperaturesi.e.whenionizationsand

    dissociationisofnoticeablevalue.Theradiationemittedwiththesetypesoftransitionsaremostlyfoundatshortwavelengthsorlargefrequencies(ultraviolettovisible).Therefore,thesetransitionsareverylessimportantascomparedtoboundboundandboundfreetransitions.WehaveconsideredboundboundtransitionsonlyFigure:Spectrallinesduetovarioustypesoftransitions[43]3.5RadiativePropertyModels:Theprocessofevaluatingtheradiativepropertiesofhightemperatureplasmaisdifficultdue50to

    18thepresenceoflargenumberofradiativespecies.Furthertheeffectsof

    thermodynamicnonequilibriummaketheaboveprocessmorecomplicated.OneoftheearliestandwidelyusedradiationcodeisRAD/EQUILwhichwasdevelopedbyNicolet[51].Inthiscode,calculationofallpropertiesisdonebyassumingthermodynamicequilibrium.Fornonequilibriumcases,NEQAIRwasdeveloped.ItusesatomiclinedatacompiledbyWieseetal.[52]tocalculatelinestrengthofeachatomicline.Butitwascomputationallyexpensivebeingalinebylinecode.VariousnewmodelshavebeenintroducedwhicharecomputationallylessexpensivethanNEQAIRsuchasLORAN(LargelyOptimizedRadiativeNonequilibrium),[53]etc.Inourcase,Localthermodynamicequilibrium(LTE)andchemicalequilibriumconditions[24,54]havebeenassumedontheterminationofthelaserpulse,sowewillbefindingequilibriumelectronicstatepopulationsofvariousenergystatesofatomsbyBoltzmanndistribution.3.6SpectralModelsforRadiativePropertiesInearliertimes,radiationsimulationswerecarriedoutbyassumingtransparentandgraygasassumptions[55].Accordingtothis,itwasassumedthatthe

    54radiativepropertiesofthemediumarenotdependentonthe

    wavelength.i.e.graygasassumptionandalsoalltheenergywhichisemittedisnotabsorbedandleavesthesystemwithoutanyattenuationorlossinitsintensity.HoweandViegas[56]werethefirsttostudytheeffectofradiationabsorptionandmodelledtheabsorptioncoefficientasgray.Hoshikawaetal.[57]foundthatthegraygasapproximationissameasneglectingtheabsorptionandtheresultsobtaineddidnotvary51muchinbothofthesecases.Heprovedthatnongrayselfabsorptionisimportanttoconsider.NongrayselfabsorptionwasfirstindicatedbyOlstad[58]whofoundthatnongrayselfabsorptionmayreducetheradiativeheattransferandhencecancauseasubstantialeffect.ThesignificanceofconsideringtheatomiclineswasnoticedfirstlybyBibermanetal.[59]beforethis,mostofthespectralmodelsforatomswerebasedonstepmodels[60]whicharenotasaccurateaslinebylinemodels.Butlinebylinecalculationswereavoidedduetothefactthattheyrequirehighcomputationalpowerwhichwasnotavailableinthosetimes.Butfrompastfewyears,LinebyLinecalculationshavebecomepossible.Allthankstothegrowingmoderntechnologywhichmadepossibletofabricatepowerfulcomputerscapableofperforminghighendcalculationsinvolvinghugelevelofcomplexity.The

    64linebylinecalculationsareveryexpensivecomputationallyas

  • theyrequireveryaccuratedataforabsorptioncoefficientsatverylargenumbersofwavelengthsmaybehundredsofthousandsofwavelengths.Also,thespectralatomiclineshaveastrongopacitynature,so

    30inordertofindtheabsorptionandemissioncoefficients

    accurately,veryhighspectralresolutionisneeded.Higherthespectralresolution,higheristheaccuracywithwhichtheabsorptionandemissioncoefficientarecalculated.Afterfindingthespectralradiativeproperties,RTEissolvedateachofthewavelengthpointandthetotalintensityisthesummedbyusinganyintegrationscheme.3.7CalculationofAtomicElectronicExcitedStatePopulationusingBoltzmanndistributionOntheterminationofthelaserpulse,LTEandchemicalequilibriumconditionshavebeenassumedintheregionofplasmaformation.Bychemicalequilibrium,itismeantthatifleft52alonethennochemicalreactionwilloccuri.e.theconcentrationofthereactantsandproductswillnotchangeovertime.Itcanalsobestatedasthattherateoftheforwardreactionissameasthatofthebackwardreaction,bothproceedingatthesamerate.Similarly,bythermalequilibriumitisreachedwhenanidealgasdistributionfunctionhasreachedtoacertainMaxwellBoltzmanndistributionandgetsstabilized.Thisprocessmayoccurslowlyorfast.Forslowprocesses,itcanbeapproximatedbyasequenceofequilibriumstates.Weknowthattheenergiesofmolecules,atoms,orelectronsarequantized.Inordertoexplainanychemicalsystemsweshouldfirstknowtheenergiesofthequantumstatesandalsothedistributionofparticlesamongthevariousquantumstates.Energiesofthequantumstates

    56canbeobtainedfromtheSchrodingerequationandtheBoltzmanndistributionlaw

    instatisticalmechanicsenablesustodeterminehowvariouslargenumberofparticlesdistributethemselvesthroughoutasetofallowedenergylevels.Forequilibriumcases[41],allthedegreesofthefreedomi.e.translational,vibrational,rotationalandelectronic,degreesoffreedomareall

    60populatedaccordingtotheBoltzmanndistribution.Itischaracterizedbyonecommontemperature.

    [61]TheBoltzmanndistribution[62]isgivenas?C2Ejnj?eTnQ(3.20)Wheren

    21isthetotalpopulationofthespecies,Qisthepartitionfunction

    andEj[cm1]istheenergyofthejthstate.Thepartitionfunctionisgivenby53Q??gjeTL?C2Ej(3.21)j?1WhereListhetotalnumberofenergylevels,gjisthedegeneracy.SpectralModelsSpectralradiationmodelsmaybecategorizedintothefollowingmethods:1)GreyGasModel2)linebylinecalculations(LBL)3)Bandmodels4)Globalmodelsand5)kdistributionmethods(whichcanbeformulatedasnarrowbandandglobalmodels)GreyGasModelGraygasmodelassumesthatthelinestrengthisevenacrossthespectrumofinterest.Tocarryoutagraycalculation,

  • 11aconstant(gray)absorptioncoefficientcanbedefinedforeachcellandtheRTEcanberewrittenas[41]=(())WherekP()

    11isthePlanckmeanabsorptioncoefficient,givenas54()=0

    0()()()Wherek

    11()isthespectralabsorptioncoefficientforthegasmixture

    LBLAccuratesimulationofradiationheattransferrequiresthelinebylineradiationmodelwhichisnearlyimpossibleforengineeringpracticebecauseofthehighcomputationalcost.But

    2withthehelpofpowerfulcomputers,linebylinecalculationshave

    becomepossible,thoughveryexpensive.Theselinebylinecalculationsalsorequireveryaccurateabsorptioncoefficientdataathundredsofthousandsofwavelengths.TheRTEmustbesolvedateachwavelength,andthetotalintensityiscalculatedbyapplyingasuitableintegrationschemeinwavelengthspace.Thespectrumissampledalongaseriesofchosenfrequencies3.8RTEsolutionMethodsThetwobasicstepsinvolvedinsolvinganyradiationproblemare:?Findingthegaspropertiesintheflowfieldforallgasconditions?SolvingtheRTEusinganymethodCompletethreedimensionalsolutionoftheRTEwithextensivespectralmodellingisveryexpensivecomputationally.RTEequationasobtainedfromequation(3.4)dI??k??Ib??I??(3.22)ds55TheaboveRTEdescribesthechangeintheintensityoflightasitpassesthrougharadiativelyparticipatingmedium.SpectralintensityIisobtainedfromthe

    10solutionoftheRTE,thedivergenceofthespectralradiativefluxcanbecalculated

    as[45]?qrad,??k?(4?I?b?G?)(3.23)WhereGisthespectralincidentradiationandisdefinedasG???I?d?(3.24)4?AndtheIbisthespectralblackbodyintensityand

    4isgivenbyPlanckslaw[42]I?

    b??b?E2hc2?h0c0(3.25)n2?5(en??T?1)The

    12divergenceofthetotalradiativeheatfluxisthenobtainedbyintegrationovertheentirespectrum

  • ??.qrad???qrad,?d?(3.26)0RTEis

    10anintegrodifferentialequationanditdependsonthethreespatial,twodirectionalandonespectralvariable.

    Duetothis,the

    4analyticalsolutionisalmostimpossibleformostofthe

    problems.ThiscreatestheneedtosolveRTE

    4numericallyusingvariousradiationmodelsforspatialanddirectionaldependenciesandspectralmodelsforthespectraldependency.OnesuchradiationmodelistheP1radiationmodel[

    63].56P1ApproximationModelItisoneofthevariousmethodswhichareusedtosolveRTEnumerically.Itisalsocalledasmethodofspecialharmonics.AsexplainedabovethatintegrodifferentialnatureofRTEmakesitadifficulttasktosolveitanalytically.Themethodofspecialharmonicsprovidesamethodtogettheapproximatesolutionbytransformingtheequationoftransfer

    53intoasetofsimultaneouspartialdifferentialequations.

    ItwasfirstproposedbyJeans.P1radiationmodelavailableinOpenFOAM,the

    1lowestorderimplementationofthesphericalharmonicsmethod

    isusedtosolveRTEequation

    1byexpandingtheradiativeintensityintoaseriesofsphericalharmonics.

    Oneofthe

    14mainassumptionofthismodelisthatthedirectionaldependenceintheradiativetransferequationisintegratedoutresultinginadiffusionequationfortheincidentradiation[

    64].Thismethodisquiteuseful

  • 1becauseofitscomparativelyhighaccuracyandlowcomputationalcost.Advantagesofthe

    P1model:?RTEisquiteeasytosolvewithlesscomputationaldemand?

    14Itworkswellforcaseswheretheopticalthicknessislarge,=a*L>3,whereL=distancebetweentheobjects.?Conversionofthe

    governingRTEintorelativelysimplerpartialdifferentialequations

    4Inthismethod,theradiativeintensityisapproximatedbyatwodimensionalFourierseries,splittingtheintensitysspatialanddirectionaldependency.[45]IftheFourierseriesistruncatedafteroneelement,thenP1radiationmodelis

    obtained.

    4P1radiationmodelgives57twospatialdifferentialequations,oneforthegradientofthedirectionallyaveragedintensityG

    4andanotherforthegradientoftheradiativeheatflux

    whichareasunder[64]:qrad,????G?13k?(3.27)And?.qrad,??k?(4?I?b?G?)(3.28)Thesetwoequations

    4canbecombinedtoasecondorderpartialdifferentialequationofelliptictype

    [42]?.(?G?)?k?(G??4?I?b)1(3.29)3k?It

    1isaHelmholtzequationwhichcanbediscretizedinthefinitevolumeframeworkofOpenFOAM.

    The

    1boundaryconditionsfortheP1equationareofmixedtype(thirdkind)andgivenby

  • G??32k???2????w?w??G?..nw?4?I?bw??(3.30)?Wherethespectralwallemittance,Ibwisthespectralblackbodyintensityofthewallbasedonthewalltemperatureandnwisthenormalvectortothewall.TheP1equationisthensolvedforcompleterangeofwavelengthfrom800A0to20,000A0takingspectralresolution=0.02584CHAPTERResultsandDiscussionsInthischapter,variousresultsandimportantfindingshavebeendiscussedwiththehelpoffigureswhichwereobtainedduringsimulationAlso,workingofthecodehasbeendiscussed.594.1WorkingMethodologyHypersoniccodethatwasdevelopedtocalculatetheflowconditionswastakinglargetimetoconverge.So,theinitialflowfileddataattime0.02swastakenfrompastliterature[25].Theflowfielddataforvariousspeciesobtainedwasintermsofconcentration.ItwasfirstconvertedintomassfractionsastheinitialconditionsinOpenFOAMaredefinedusingmassconcentrations.TheinitialflowfielddatainOpenFOAMisasshowninthefollowingfigures:Teardropplasma60Figure:ContourPlotofdensity(rho)att=0.02sFigure:ContourPlotofpressure(p)att=0.02s61Figure:ContourPlotoftemperature(T)att=0.02sFigure:ContourPlotofconcentrationofOatt=0.02s62Figure:ContourPlotofconcentrationofNatt=0.02sFigure:LineplotforatomicspecieNalong

    3alinepassingthroughthemiddleofthedomain

    alongXaxisattime=0.02s63Figure:LineplotforatomicspecieOalong

    3alinepassingthroughthemiddleofthedomain

    alongXaxisattime=0.02sFigure:Lineplotforpressurealong

    3alinepassingthroughthemiddleofthedomain

    alongXaxisattime=0.02s64Figure:Lineplotfortemperaturealong

    3alinepassingthroughthemiddleofthedomain

    alongXaxisattime=0.02sFigure:Lineplotfordensityalong

    3alinepassingthroughthemiddleofthedomain

    alongXaxisattime=0.02s65Calculationofnumberdensityfrommassfractions12FindingBoltzmannequilibriumpopulationdistributionusingnumberdensity3UsingthepopulationdistributionandspectroscopicdatafromNISTdatabase,spectralcoefficientsaredeterminedusingLBLmethod[10]SolvingRTEusingP1solverandintegratingoverwavelength.[12]4Tocarryoutthesimulationsandsolvealltheequations,aC++coderadLBLhasbeendeveloped.AftermodellingtheentiredomainincludingtheplasmainOpenFOAM,numberdensityofNandOiscalculatedatT=17800K(EquilibriumPlasmatemperature).NumberdensityofNcomesouttobe2.53x1018cm3andforOitsvalueis1.43x1019cm3atatimestep=0.02s.Thisnumberdensityisusedtofindouttheatomicelectronicstate

  • equilibriumpopulationusingBoltzmanndistribution.Usingpopulationdistributionandspectroscopicdata,

    30absorptionandemissioncoefficientsarecalculatedusingtheequationsdescribedinthe

    previoussection.Spectroscopicdatarequiredforthecalculationof

    19emissionandabsorptioncoefficientswastakenfromNISTdatabase.Absorptionandemissioncoefficientsare

    66determinedfortherangeofwavelengthfrom800A0to20,000A0takingspectralresolutiontobe=0.02.Asexplainedinthepreviouschapteralso,thevalueofthespectralresolutionshouldbeverysmalltogetaccurateresults.Thisvaluewastakenafteritwasfoundthattherewasnotmuchnoticeablechangeinthetotalemission.Foreachspecie,fourhundredwavelengthspointsweretakenatatimeduetomemorylimitationi.e.withspectralresolutionof0.02,thewholewavelengthsintervalfrom80020000A0wasdividedinto2250blockseachhaving400wavelengthspoints.Eachblockwassolvedseparatelyforfindingtheabsorptionandemissioncoefficients.Fig4and5showsvariationofabsorptionSpectrumofNandabsorptionSpectrumofOwithwavelengthatT=17800K.67Figure:EmissionSpectrumofOatT=17800K,numberdensity=1.43e19cm3Figure:EmissionSpectrumofNatT=17800K,numberdensity=1.43e19cm3Figure:AbsorptionSpectrumofOatT=17800K,numberdensity=1.43e19cm368Figure:AbsorptionSpectrumofNatT=17800K,numberdensity=1.43e19cm3Usingabsorptionandemissioncoefficients,RTEissolvedforeachwavelengthpointandintegrationisdoneoverallthewavelengthrangetofindoutthetotalradiationlossoverallthewavelengthrangeintheentiredomain.Specie.q(mJ/s)O145.33N52Total197.35Table:Showingthevalueof.qoverentiredomainforOandNatatimestep(0.02s)Theradiationlossoverthewholesimulationtimeupto60sfrom0.02swasroughlyestimatedas69=197.35mJ/sx30s=5.92JThisisthemaximumapproximatelosswhichcanoccur.Previouslyreportedradiationlosswas0.33J.Sowehaveestimated20timeshigherlossesthanthepreviouslyreporteddata.[25]70

    445ChapterConclusionsandFutureWork5.1Conclusions

    Whenalaserpulsedisfocussedonadomainthenitundergoesmainlythreetypesofchangesfluiddynamic,chemicalandradiativechanges.Fromthepastliterature,itwasfoundthatfluiddynamicandchemicalchangeshavebeenstudiedwellinthepastbuttheradiativechangesweremostlyneglectedinmostofthecases.Jordaretaltriedforthefirsttimetocalculatetheradiativelossesbuttheyalsoconcludedradiativelossestobenegligible.TheycalculatedtheradiativepropertiesusingmultigroupmethodinwhichameanvalueofabsorptioncoefficientisassignedtofrequencygroupssoastoeasetheprocessthesolvingtheRTE.WehavetriedtousethemostaccuratemethodforcalculatingtheradiativelosseswhichisLinebyline.Inthismethod,thewholerangeofwavelengthisfinelydiscretizedintolargenumberofwavelengthpoints.RadiativepropertieswerecalculatedateachofthewavelengthpointsandthenRTEwassolvedatallthosepointsseparately.Itwasfoundthatthetotalradiativelossis5.92J.TheearliervaluefortheradiativelossesbyJordaretal.was0.33J.Hence,ourvaluewascomingouttobeatleasttwentytimesmorethanthepreviouslyreporteddata.Butthetotalenergywhichwasdepositedwas

  • 93mJ.Hencetheradiativelosswhichisoccurringduetoradiativecoolingisverylessascomparedtotheenergydeposited.71So,theseimportantconclusionscanbederived:?Emissionspectrumandabsorptionspectrumhavethickopticallines.?Ascanbeseenfromthefigures4.9to4.11thattheemissioncoefficientishighforNandObutstilltheradiationlossesarecomingoutverylessbecausetheabsorptioncoefficientisalsohighforboththesespecies,sotheenergywhichisemittedduetoradiationgetsabsorbedagainduetohighabsorptioncoefficientoftheatomicspecieNandOandhencethenetlosscomesouttobenegligible.?SincethemostaccuratemethodLBLalsoshowedthatradiationlossesarenegligiblesoourstudyvalidatestheassumptionofneglectingtheradiationlosseswhichwasassumedinallpreviousstudieswithoutanyproof.Inallthepreviousstudiesofthelaserenergydeposition,itwasassumedthattheradiationlossesarenegligibleduetodifficultyinfindingthem.Ourstudyhasvalidatedthatassumptionwithproperjustification.5.2FutureWork?Theworkdescribedinthisthesiswasdoneatatmosphericconditions.Laserenergydepositionalsohasapplicationsatlowpressureconditions.So,thereisaneedtostudylowpressureeffectively.?Hypersonicsolverwastakinglargetimetoconverge.Itsefficiencycanbeimproved.726ChapterReferences1.Radziemski,L.J.,etal.,Timeresolvedlaserinducedbreakdownspectrometryofaerosols.Analyticalchemistry,1983.55(8):p.12461252.2.Phuoc,T.X.,Laserinducedsparkignitionfundamentalandapplications.OpticsandLasersinEngineering,2006.44(5):p.351397.3.Radziemski,L.J.andD.A.Cremers,Laserinducedplasmasandapplications.1989.4.Cheroff,G.,F.Stern,andS.Triebwasser,QuantumEfficiencyofGaAsInjectionLasers.AppliedPhysicsLetters,1963.2(9):p.173174.5.Shen,Y.R.,Principlesofnonlinearoptics.1984.6.Cremers,D.A.,etal.,LaserInducedBreakdownSpectroscopy,ElementalAnalysis.2006:WileyOnlineLibrary.7.Miziolek,A.W.,V.Palleschi,andI.Schechter,Laserinducedbreakdownspectroscopy.2006:CambridgeUniversityPress.8.Kandala,R.andG.V.Candler,Numericalstudiesoflaserinducedenergydepositionforsupersonicflowcontrol.AIAAjournal,2004.42(11):p.22662275.9.Goodman,J.W.,Statisticaloptics.NewYork,WileyInterscience,1985,567p.,1985.1.10.Justin,J.Z.,Quantumfieldtheoryandcriticalphenomena.Clarendon,Oxford,1989.11.Einstein,A.,Thephotoelectriceffect.Ann.Phys,1905.17:p.132.12.Hirschfelder,J.O.,etal.,Moleculartheoryofgasesandliquids.Vol.26.1954:WileyNewYork.13.Eisberg,R.M.,Fundamentalsofmodernphysics.1967:Wiley.14.Chin,S.L.,MultiphotonlonizationofAtoms.2012:Elsevier.15.Delone,N.B.,Basicsofinteractionoflaserradiationwithmatter.1993:AtlanticaSguierFrontires.16.Mandel'Shtam,S.,etal.,Investigationofthesparkdischargeproducedinairbyfocusinglaserradiation,II.SovietPhysicsJETP,1966.22(1).17.Orr,D.,Magneticpulsationswithinthemagnetosphere:Areview.JournalofAtmosphericandTerrestrialPhysics,1973.35(1):p.150.18.Ramsden,S.andP.Savic,Aradiativedetonationmodelforthedevelopmentofalaserinducedsparkinair.1964,DTICDocument.19.DeMichelis,C.,Laserinducedgasbreakdown.IEEEJournalofQuantumElectronics,1969.5(4):p.188202.20.Ghosh,S.andK.Mahesh,Numericalsimulationofthefluiddynamiceffectsoflaserenergydepositioninair.JournalofFluidMechanics,2008.605:p.329354.21.Bradley,D.,etal.,Fundamentalsofhighenergysparkignitionwithlasers.CombustionandFlame,2004.138(1):p.5577.22.Mortazavi,M.,etal.,NumericalSimulationofEnergyDepositioninaSupersonicFlowPastaHemisphere.AIAAPaper2014,2014.944:p.118.7323.Dors,I.,C.Parigger,andJ.Lewis,Fluiddynamiceffectsfollowinglaserinducedopticalbreakdown.AIAApaper,2000.717:p.2000.24.Dors,I.G.andC.G.Parigger,Computationalfluiddynamicmodeloflaserinducedbreakdowninair.Appliedoptics,2003.42(30):p.59785985.25.Joarder,R.,G.Gebel,andT.Mosbach,Twodimensionalnumericalsimulationofadecayinglasersparkinairwithradiationloss.InternationalJournalofHeatandMassTransfer,2013.63:p.284300.26.Bogatyreva,N.,M.Bartlova,andV.Aubrecht.Meanabsorptioncoefficientsofairplasmas.inJournalofPhysics:ConferenceSeries.2011.IOPPublishing.27.Jasak,H.,A.Jemcov,andZ.Tukovic.OpenFOAM:AC++libraryforcomplexphysicssimulations.inInternationalworkshoponcoupledmethodsinnumericaldynamics.2007.28.Bansal,A.,A.Feldick,andM.Modest.SimulationofHypersonicFlowandRadiationoveraMarsReentryVehicleUsingOpenFOAM.in50th

  • AIAAAerospaceSciencesMeetingincludingtheNewHorizonsForumandAerospaceExposition.2012.29.Kurganov,A.andE.Tadmor,Newhighresolutioncentralschemesfornonlinearconservationlawsandconvectiondiffusionequations.JournalofComputationalPhysics,2000.160(1):p.241282.30.Lundstrom,A.,OpenFOAMtutorial:Reactingfoam.ChalmersUniversityofTechnology.2008.31.Gordon,S.andB.J.McBride,Computerprogramforcalculationofcomplexchemicalequilibriumcompositions,rocketperformance,incidentandreflectedshocks,andChapmanJouguetdetonations.1971.32.Anderson,J.D.andJ.Wendt,Computationalfluiddynamics.Vol.206.1995:Springer.33.Wang,A.andM.F.Modest,Highaccuracy,compactdatabaseofnarrowbandkdistributionsforwatervaporandcarbondioxide.JournalofQuantitativeSpectroscopyandRadiativeTransfer,2005.93(1):p.245261.34.Ankit,B.,F.Andrew,andM.Michael,SimulationofHypersonicFlowandRadiationoveraMarsReentryVehicleUsingOpenFOAM,in50thAIAAAerospaceSciencesMeetingincludingtheNewHorizonsForumandAerospaceExposition.2012,AmericanInstituteofAeronauticsandAstronautics.35.Druguet,M.C.,G.V.Candler,andI.Nompelis,EffectsofnumericsonNavierStokescomputationsofhypersonicdoubleconeflows.AIAAjournal,2005.43(3):p.616623.36.Kurganov,A.,S.Noelle,andG.Petrova,SemidiscretecentralupwindschemesforhyperbolicconservationlawsandHamiltonJacobiequations.SIAMJournalonScientificComputing,2001.23(3):p.707740.37.Roe,P.L.,ApproximateRiemannsolvers,parametervectors,anddifferenceschemes.Journalofcomputationalphysics,1981.43(2):p.357372.38.Butcher,J.C.,Thenumericalanalysisofordinarydifferentialequations:RungeKuttaandgenerallinearmethods.1987:WileyInterscience.39.Galloway,L.,Sutherland'sLaw.1976:WhiteLionPublishers.7440.Shuen,J.S.,M.S.Liou,andB.V.Leer,Inviscidfluxsplittingalgorithmsforrealgaseswithnonequilibriumchemistry.JournalofComputationalPhysics,1990.90(2):p.371395.41.Bansal,A.,Kdistributionmodelsforgasmixturesinhypersonicnonequilibriumflows.2011,ThePennsylvaniaStateUniversity.42.Modest,M.F.,Radiativeheattransfer.2013:Academicpress.43.Modest,M.F.,BackwardMonteCarlosimulationsinradiativeheattransfer.Journalofheattransfer,2003.125(1):p.5762.44.Sparrow,E.M.andR.D.Cess,Radiationheattransfer.SeriesinThermalandFluidsEngineering,NewYork:McGrawHill,1978,Augmenteded.,1978.1.45.Siegel,R.andJ.R.Howell,Thermalradiationheattransfer.NASASTI/ReconTechnicalReportA,1992.93:p.17522.46.Whiting,E.E.,etal.,NEQAIR96,Nonequilibriumandequilibriumradiativetransportandspectraprogram:user'smanual.1996.47.Sohn,I.,etal.,Advancedradiationcalculationsofhypersonicreentryflowsusingefficientdatabasingschemes.JournalofThermophysicsandHeatTransfer,2010.24(3):p.623637.48.Ask,R.andR.F.Power,RPPhotonicsEncyclopedia.49.Modest,M.F.,Chapter10RadiativePropertiesofMolecularGases,inRadiativeHeatTransfer(SecondEdition),M.F.Modest,Editor.2003,AcademicPress:Burlington.p.288360.50.Ralchenko,Y.,A.Kramida,andJ.Reader,NISTatomicspectradatabase(version4.0).NationalInstituteofStandardsandTechnology,Gaithersburg,MD,2010.51.Nicolet,W.,User'smanualforRAD/EQUIL/1973:Ageneralpurposeradiationtransportprogram.1973.52.Wiese,W.L.,M.Smith,andB.Glennon,Atomictransitionprobabilities.Vol.:HydrogenthroughNeon.Acriticaldatacompilation.NSRDSNBS4,Washington,DC:USDepartmentofCommerce,NationalBuereauofStandards,1966,1966.1.53.Chambers,L.H.,Predictingradiativeheattransferinthermochemicalnonequilibriumflowfields.Theoryanduser'smanualfortheLORANcode.1994.54.Simeonsson,J.B.andA.W.Miziolek,TimeresolvedemissionstudiesofArFlaserproducedmicroplasmas.Appliedoptics,1993.32(6):p.939947.55.Yoshikawa,K.K.andB.H.Wick,Radiativeheattransferduringatmosphereentryatparabolicvelocity.1961.56.Howe,J.T.andJ.R.Viegas,Solutionsoftheionizedradiatingshocklayer,includingreabsorptionandforeignspecieseffects,andstagnationregionheattransfer(Solutionsfornonadiabaticshocklayerinbluffbodystagnationregionathypersonicspeeds).1963.57.Hoshizaki,H.andK.Wilson,Convectiveandradiativeheattransferduringsuperorbitalentry.AIAAJournal,1967.5(1):p.2535.58.Olstad,W.B.,Stagnationpointsolutionsforinviscidradiatingshocklayers.1970.7559.Biberman,L.,S.Y.Bronin,andM.Brykin,Movingofabluntbodythroughthedense

  • atmosphereunderconditionsofsevereaerodynamicheatingandablation.Actaastronautica,1980.7(1):p.5365.60.Patch,R.,W.Shackleford,andS.Penner,Approximatespectralabsorptioncoefficientcalculationsforelectronicbandsystemsbelongingtodiatomicmolecules.JournalofQuantitativeSpectroscopyandRadiativeTransfer,1962.2(3):p.263271.61.Widom,B.,Statisticalmechanics:aconciseintroductionforchemists.2002:CambridgeUniversityPress.62.Reichl,L.E.andI.Prigogine,Amoderncourseinstatisticalphysics.Vol.71.1980:UniversityofTexaspressAustin.63.Gbel,F.andC.Mundt.ImplementationoftheP1radiationmodelintheCFDsolverNSMBandinvestigationofradiativeheattransferintheSSMEmaincombustionchamber.in17thAIAAInternationalSpacePlanesandHypersonicSystemsandTechnologiesConference.2011.64.Vdovin,A.,RadiationheattransferinOpenFOAM.FinalAssignmentfortheCourseCFDwithOpenSourceSoftware,2009.76

top related