understanding formation and maintenance of...

Post on 17-Jun-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Understanding formation and maintenance of mixed-phase Arctic stratus through long-

term observation at two Arctic locations

Gijs de BoerE.W. Eloranta, G.J. Tripoli

The University of Wisconsin - Madison

AGU San Francisco, 14 December, 2007

Introduction

AGU San Francisco, 14 December, 2007

Introduction

AGU San Francisco, 14 December, 2007

IntroductionThese cloud structures are extremely prevalent in the Arctic:

- SHEBA: 48% occurrence in May (Rogers et al., 2001)- Low altitude stratus frequency of up to 70% during transitional seasons (Curry et al., 1996; Herman and Goody, 1976)- From Eureka: over 1700 30 minute cases for September 2005-December 2006.- From M-PACE: over 500 30 minute cases for mid September-mid November, 2004.

2004 (Barrow) 2005 (Eureka) 2006 (Eureka)0

500

1000

1500October Single Layer Stratus

Month

Num

ber o

f Cas

es

AGU San Francisco, 14 December, 2007

Introduction

From ARM Model intercomparison (Klein et al.)

AGU San Francisco, 14 December, 2007

Introduction

From ARM Model intercomparison (Klein et al.)

Introduction

- Ice Formation (Pruppacher and Klett, 1997)

AGU San Francisco, 14 December, 2007

•Homogeneous nucleation

•Heterogeneous nucleation•Deposition freezing•Contact freezing•Condensation freezing•Immersion freezing

•Some Multiplication Processes•Drop shattering•Ice-ice collisions•Splinter ejection during riming

AGU San Francisco, 14 December, 2007

Observations

• UW Arctic High Spectral Resolution Lidar• NOAA ETL Millimeter Cloud Radar• 12-hr. Radiosonde Frequency• In-situ from M-PACE

• Microwave Radiometer• U. Idaho Polar AERI• CALIPSO• CloudSAT

Instruments

Observations

AGU San Francisco, 14 December, 2007

Where does the ice come from?

Low IN, but substantial ice...

Example from M-PACE: CFDC Average out of cloud IN concentration for 9 and 10 October 2004: 0.16 1/LIce particle concentrations: ~10 1/L

So nucleation not by:-Deposition freezing-Condensation freezing -Contact freezingalone

Time (UT)

Altit

ude

(km

)

Lidar backscatter cross section (Masked values shown in black and white)

13 14 15 16 17 18 19 20 21 22 23

1.0

2.0

3.0

4.0

1/(m str)1e!8

1e!7

1e!6

1e!5

1e!4

1e!3

Time (UT)

Altit

ude

(km

)

Radar backscatter cross section (Masked values shown in black and white)

13 14 15 16 17 18 19 20 21 22 23

1.0

2.0

3.0

4.0

1/(m str)1e!14

1e!13

1e!12

1e!11

1e!10

1e!9

1e!8

1e!7

AGU San Francisco, 14 December, 2007

Observations

AGU San Francisco, 14 December, 2007

Observations

Time (UT)

Altit

ude

(km

)

Cloud Mask (Masked values shown in black and white)

13 14 15 16 17 18 19 20 21 22 23

1.0

2.0

3.0

4.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AGU San Francisco, 14 December, 2007

Observations

230 240 250 260 270 2800

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Temperature (K)

Norm

alize

d #

Probability Density Function

Cloud Min. Temp.Cloud Max. Temp.

AGU San Francisco, 14 December, 2007

Observations

230 240 250 260 270 2800

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Temperature (K)

Norm

alize

d #

Probability Density Function

Cloud Min. Temp.Cloud Max. Temp.

Hom

ogen

eous

Fre

ezin

g (<

-35

°C)

(Hag

en e

t al

., 19

81; J

ense

n et

al.,

1998

)

AGU San Francisco, 14 December, 2007

Observations

230 240 250 260 270 2800

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Temperature (K)

Norm

alize

d #

Probability Density Function

Cloud Min. Temp.Cloud Max. Temp.

Hom

ogen

eous

Fre

ezin

g (<

-35

°C)

(Hag

en e

t al

., 19

81; J

ense

n et

al.,

1998

)

Splin

ter

Ejec

tion

(> -

8°C

)(H

eym

sfiel

d an

d M

osso

p, 1

984)

230 235 240 245 250 255 260 265 270!10

!5

0

5

10

15

20

)*c. Tem1erature (7)

(Tcb!T

s*c)/!

< (7

/km

)

AGU San Francisco, 14 December, 2007

Observations

AGU San Francisco, 14 December, 2007

Observations

Why the horizontal variability in ice production?

AGU San Francisco, 14 December, 2007

Observations

Figures courtesy of M. Shupe (NOAA)

Why the horizontal variability in ice production?

Summary

AGU San Francisco, 14 December, 2007

Ice production likely not due to:- Homogeneous Nucleation (too warm)- Condensation, deposition or contact freezing alone (too few IN)- Drop splinter ejection during riming (too cold)

Summary

AGU San Francisco, 14 December, 2007

Ice production likely not due to:- Homogeneous Nucleation (too warm)- Condensation, deposition or contact freezing alone (too few IN)- Drop splinter ejection during riming (too cold)

Key to understanding ice production:- Likely lies with understanding controlling mechanisms for horizontal variability in observed precipitation

Summary

AGU San Francisco, 14 December, 2007

Ice production likely not due to:- Homogeneous Nucleation (too warm)- Condensation, deposition or contact freezing alone (too few IN)- Drop splinter ejection during riming (too cold)

Key to understanding ice production:- Likely lies with understanding controlling mechanisms for horizontal variability in observed precipitation

Future investigation- Numerical sensitivity experiments to look at individual processes.- Evaluate role of vertical velocity in cloud layer

top related