variable exponents spaces and their applications to fluid ... · variable exponents spaces and...

Post on 07-Oct-2020

8 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Variable Exponents Spaces and Their Applications toFluid Dynamics

Martin Rapp

TU Darmstadt

November 7, 2013

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 1 / 14

Overview

1 Variable Exponent Spaces

2 Applications to Fluid Dynamics

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 2 / 14

Variable Exponent Lebesgue Spaces

p : Ω ⊆ Rd → [1,∞] measurable is called exponent.

p+ := ess supx∈Ω p(x) p− := ess infx∈Ω p(x)

For measurable f define the modular

%p(·)(f ) :=

∫Ω|f (x)|p(x)χp 6=∞ dx + ‖f χp=∞‖∞

Lp(·)(Ω) := f : %p(·)(f ) <∞ with norm

‖f ‖p(·) := infλ > 0 : %p(·)

(f

λ

)≤ 1

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 3 / 14

Variable Exponent Lebesgue Spaces

p : Ω ⊆ Rd → [1,∞] measurable is called exponent.

p+ := ess supx∈Ω p(x) p− := ess infx∈Ω p(x)

For measurable f define the modular

%p(·)(f ) :=

∫Ω|f (x)|p(x)χp 6=∞ dx + ‖f χp=∞‖∞

Lp(·)(Ω) := f : %p(·)(f ) <∞ with norm

‖f ‖p(·) := infλ > 0 : %p(·)

(f

λ

)≤ 1

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 3 / 14

Variable Exponent Lebesgue Spaces

p : Ω ⊆ Rd → [1,∞] measurable is called exponent.

p+ := ess supx∈Ω p(x) p− := ess infx∈Ω p(x)

For measurable f define the modular

%p(·)(f ) :=

∫Ω|f (x)|p(x)χp 6=∞ dx + ‖f χp=∞‖∞

Lp(·)(Ω) := f : %p(·)(f ) <∞ with norm

‖f ‖p(·) := infλ > 0 : %p(·)

(f

λ

)≤ 1

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 3 / 14

Variable Exponent Lebesgue Spaces

p : Ω ⊆ Rd → [1,∞] measurable is called exponent.

p+ := ess supx∈Ω p(x) p− := ess infx∈Ω p(x)

For measurable f define the modular

%p(·)(f ) :=

∫Ω|f (x)|p(x)χp 6=∞ dx + ‖f χp=∞‖∞

Lp(·)(Ω) := f : %p(·)(f ) <∞ with norm

‖f ‖p(·) := infλ > 0 : %p(·)

(f

λ

)≤ 1

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 3 / 14

Variable Exponent Sobolev Spaces

Define the modular %k,p(·)(f ) :=∑

0≤α≤k

%p(·)(∂αf )

W k,p(·)(Ω) := f : %k,p(·)(f ) <∞ with norm

‖f ‖k,p(·) := infλ > 0 : %k,p(·)

(f

λ

)≤ 1

This norm is equivalent tok∑

m=0‖|∇mf |‖p(·)

Let Wk,p(·)0 (Ω) be the closure of C∞0 (Ω) w.r.t. ‖ · ‖k,p(·)

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 4 / 14

Variable Exponent Sobolev Spaces

Define the modular %k,p(·)(f ) :=∑

0≤α≤k

%p(·)(∂αf )

W k,p(·)(Ω) := f : %k,p(·)(f ) <∞ with norm

‖f ‖k,p(·) := infλ > 0 : %k,p(·)

(f

λ

)≤ 1

This norm is equivalent tok∑

m=0‖|∇mf |‖p(·)

Let Wk,p(·)0 (Ω) be the closure of C∞0 (Ω) w.r.t. ‖ · ‖k,p(·)

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 4 / 14

Variable Exponent Sobolev Spaces

Define the modular %k,p(·)(f ) :=∑

0≤α≤k

%p(·)(∂αf )

W k,p(·)(Ω) := f : %k,p(·)(f ) <∞ with norm

‖f ‖k,p(·) := infλ > 0 : %k,p(·)

(f

λ

)≤ 1

This norm is equivalent tok∑

m=0‖|∇mf |‖p(·)

Let Wk,p(·)0 (Ω) be the closure of C∞0 (Ω) w.r.t. ‖ · ‖k,p(·)

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 4 / 14

Variable Exponent Sobolev Spaces

Define the modular %k,p(·)(f ) :=∑

0≤α≤k

%p(·)(∂αf )

W k,p(·)(Ω) := f : %k,p(·)(f ) <∞ with norm

‖f ‖k,p(·) := infλ > 0 : %k,p(·)

(f

λ

)≤ 1

This norm is equivalent tok∑

m=0‖|∇mf |‖p(·)

Let Wk,p(·)0 (Ω) be the closure of C∞0 (Ω) w.r.t. ‖ · ‖k,p(·)

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 4 / 14

Properties of Variable Exponent Spaces

Basic Properties of Lp(·)(Ω), W k,p(·)(Ω), Wk,p(·)0 (Ω)

Banach spaces

p+ <∞⇒ separable

1 < p− ≤ p+ <∞⇒ reflexive

Further Properties of the Lebesgue Spaces

Holder inequality∫Ω |f (x)g(x)| dx ≤ 2‖f ‖p(·)‖g‖p′(·), where 1

p + 1p′ = 1 a.e.(

Lp(·)(Ω))′

= Lp′(·)(Ω)

If Ω is bounded and p ≥ q a.e., thenLp(·)(Ω) → Lq(·)(Ω)

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 5 / 14

Properties of Variable Exponent Spaces

Basic Properties of Lp(·)(Ω), W k,p(·)(Ω), Wk,p(·)0 (Ω)

Banach spaces

p+ <∞⇒ separable

1 < p− ≤ p+ <∞⇒ reflexive

Further Properties of the Lebesgue Spaces

Holder inequality∫Ω |f (x)g(x)| dx ≤ 2‖f ‖p(·)‖g‖p′(·), where 1

p + 1p′ = 1 a.e.(

Lp(·)(Ω))′

= Lp′(·)(Ω)

If Ω is bounded and p ≥ q a.e., thenLp(·)(Ω) → Lq(·)(Ω)

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 5 / 14

Properties of Variable Exponent Spaces

Basic Properties of Lp(·)(Ω), W k,p(·)(Ω), Wk,p(·)0 (Ω)

Banach spaces

p+ <∞⇒ separable

1 < p− ≤ p+ <∞⇒ reflexive

Further Properties of the Lebesgue Spaces

Holder inequality∫Ω |f (x)g(x)| dx ≤ 2‖f ‖p(·)‖g‖p′(·), where 1

p + 1p′ = 1 a.e.(

Lp(·)(Ω))′

= Lp′(·)(Ω)

If Ω is bounded and p ≥ q a.e., thenLp(·)(Ω) → Lq(·)(Ω)

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 5 / 14

Properties of Variable Exponent Spaces

Basic Properties of Lp(·)(Ω), W k,p(·)(Ω), Wk,p(·)0 (Ω)

Banach spaces

p+ <∞⇒ separable

1 < p− ≤ p+ <∞⇒ reflexive

Further Properties of the Lebesgue Spaces

Holder inequality∫Ω |f (x)g(x)| dx ≤ 2‖f ‖p(·)‖g‖p′(·), where 1

p + 1p′ = 1 a.e.(

Lp(·)(Ω))′

= Lp′(·)(Ω)

If Ω is bounded and p ≥ q a.e., thenLp(·)(Ω) → Lq(·)(Ω)

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 5 / 14

Properties of Variable Exponent Spaces

Basic Properties of Lp(·)(Ω), W k,p(·)(Ω), Wk,p(·)0 (Ω)

Banach spaces

p+ <∞⇒ separable

1 < p− ≤ p+ <∞⇒ reflexive

Further Properties of the Lebesgue Spaces

Holder inequality∫Ω |f (x)g(x)| dx ≤ 2‖f ‖p(·)‖g‖p′(·), where 1

p + 1p′ = 1 a.e.(

Lp(·)(Ω))′

= Lp′(·)(Ω)

If Ω is bounded and p ≥ q a.e., thenLp(·)(Ω) → Lq(·)(Ω)

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 5 / 14

Properties of Variable Exponent Spaces

Basic Properties of Lp(·)(Ω), W k,p(·)(Ω), Wk,p(·)0 (Ω)

Banach spaces

p+ <∞⇒ separable

1 < p− ≤ p+ <∞⇒ reflexive

Further Properties of the Lebesgue Spaces

Holder inequality∫Ω |f (x)g(x)| dx ≤ 2‖f ‖p(·)‖g‖p′(·), where 1

p + 1p′ = 1 a.e.

(Lp(·)(Ω)

)′= Lp′(·)(Ω)

If Ω is bounded and p ≥ q a.e., thenLp(·)(Ω) → Lq(·)(Ω)

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 5 / 14

Properties of Variable Exponent Spaces

Basic Properties of Lp(·)(Ω), W k,p(·)(Ω), Wk,p(·)0 (Ω)

Banach spaces

p+ <∞⇒ separable

1 < p− ≤ p+ <∞⇒ reflexive

Further Properties of the Lebesgue Spaces

Holder inequality∫Ω |f (x)g(x)| dx ≤ 2‖f ‖p(·)‖g‖p′(·), where 1

p + 1p′ = 1 a.e.(

Lp(·)(Ω))′

= Lp′(·)(Ω)

If Ω is bounded and p ≥ q a.e., thenLp(·)(Ω) → Lq(·)(Ω)

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 5 / 14

Properties of Variable Exponent Spaces

Basic Properties of Lp(·)(Ω), W k,p(·)(Ω), Wk,p(·)0 (Ω)

Banach spaces

p+ <∞⇒ separable

1 < p− ≤ p+ <∞⇒ reflexive

Further Properties of the Lebesgue Spaces

Holder inequality∫Ω |f (x)g(x)| dx ≤ 2‖f ‖p(·)‖g‖p′(·), where 1

p + 1p′ = 1 a.e.(

Lp(·)(Ω))′

= Lp′(·)(Ω)

If Ω is bounded and p ≥ q a.e., thenLp(·)(Ω) → Lq(·)(Ω)

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 5 / 14

log-Holder Continuity

An exponent p on a bounded domain Ω is called log-Holder continuous if

|p(x)− p(y)| ≤ c

log(e + 1|x−y |)

x , y ∈ Ω, x 6= y .

For d ≥ 2 and an exponent p define the Sobolev-conjugate exponent

p∗(x) :=

dp(x)

d−p(x) : p(x) < d

∞ : p(x) ≥ d .

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 6 / 14

log-Holder Continuity

An exponent p on a bounded domain Ω is called log-Holder continuous if

|p(x)− p(y)| ≤ c

log(e + 1|x−y |)

x , y ∈ Ω, x 6= y .

For d ≥ 2 and an exponent p define the Sobolev-conjugate exponent

p∗(x) :=

dp(x)

d−p(x) : p(x) < d

∞ : p(x) ≥ d .

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 6 / 14

p log-Holder Continuity

If Ω is bounded and p is log-Holder continuous, then the followingtheorems hold:

Poincare: ‖u‖p(·) ≤ c‖∇u‖p(·) for all u ∈W1,p(·)0 (Ω)

p+ < d ⇒W1,p(·)0 (Ω) → Lp∗(·)(Ω)

p+ < d ⇒W1,p(·)0 (Ω) →→ Lp∗(·)−ε(Ω)

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 7 / 14

p log-Holder Continuity

If Ω is bounded and p is log-Holder continuous, then the followingtheorems hold:

Poincare: ‖u‖p(·) ≤ c‖∇u‖p(·) for all u ∈W1,p(·)0 (Ω)

p+ < d ⇒W1,p(·)0 (Ω) → Lp∗(·)(Ω)

p+ < d ⇒W1,p(·)0 (Ω) →→ Lp∗(·)−ε(Ω)

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 7 / 14

p log-Holder Continuity

If Ω is bounded and p is log-Holder continuous, then the followingtheorems hold:

Poincare: ‖u‖p(·) ≤ c‖∇u‖p(·) for all u ∈W1,p(·)0 (Ω)

p+ < d ⇒W1,p(·)0 (Ω) → Lp∗(·)(Ω)

p+ < d ⇒W1,p(·)0 (Ω) →→ Lp∗(·)−ε(Ω)

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 7 / 14

p log-Holder Continuity

If Ω is bounded and p is log-Holder continuous, then the followingtheorems hold:

Poincare: ‖u‖p(·) ≤ c‖∇u‖p(·) for all u ∈W1,p(·)0 (Ω)

p+ < d ⇒W1,p(·)0 (Ω) → Lp∗(·)(Ω)

p+ < d ⇒W1,p(·)0 (Ω) →→ Lp∗(·)−ε(Ω)

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 7 / 14

From now on we assume

Ω ⊂ Rd bounded domain

p is log-Holder continuous

f ∈ Lp′(·)(Ω) or f ∈ Lp′(·)(Ω)d

δ ≥ 0

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 8 / 14

Navier-Stokes equations

Navier-Stokes equations

− div (δ + |Du|)p(·)−2Du + div (u⊗ u) +∇π = f in Ωdiv u = 0 in Ω

u = 0 on ∂Ω

Solving Methods

Classical theory of monotone operators:

Existence of weak solution u ∈W1,p(·)0 (Ω)d for p− > 3d

d+2 .

Method of Lipschitz-Truncations:

Existence of weak solution u ∈W1,p(·)0 (Ω)d for p− > 2d

d+2 .(Diening, Malek, Steinhauer 2008 and Diening, Ruzicka 2010)

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 9 / 14

Navier-Stokes equations

Navier-Stokes equations

− div (δ + |Du|)p(·)−2Du + div (u⊗ u) +∇π = f in Ωdiv u = 0 in Ω

u = 0 on ∂Ω

Solving Methods

Classical theory of monotone operators:

Existence of weak solution u ∈W1,p(·)0 (Ω)d for p− > 3d

d+2 .

Method of Lipschitz-Truncations:

Existence of weak solution u ∈W1,p(·)0 (Ω)d for p− > 2d

d+2 .(Diening, Malek, Steinhauer 2008 and Diening, Ruzicka 2010)

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 9 / 14

Navier-Stokes equations

Navier-Stokes equations

− div (δ + |Du|)p(·)−2Du + div (u⊗ u) +∇π = f in Ωdiv u = 0 in Ω

u = 0 on ∂Ω

Solving Methods

Classical theory of monotone operators:

Existence of weak solution u ∈W1,p(·)0 (Ω)d for p− > 3d

d+2 .

Method of Lipschitz-Truncations:

Existence of weak solution u ∈W1,p(·)0 (Ω)d for p− > 2d

d+2 .(Diening, Malek, Steinhauer 2008 and Diening, Ruzicka 2010)

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 9 / 14

Navier-Stokes equations

Navier-Stokes equations

− div (δ + |Du|)p(·)−2Du + div (u⊗ u) +∇π = f in Ωdiv u = 0 in Ω

u = 0 on ∂Ω

Solving Methods

Classical theory of monotone operators:

Existence of weak solution u ∈W1,p(·)0 (Ω)d for p− > 3d

d+2 .

Method of Lipschitz-Truncations:

Existence of weak solution u ∈W1,p(·)0 (Ω)d for p− > 2d

d+2 .(Diening, Malek, Steinhauer 2008 and Diening, Ruzicka 2010)

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 9 / 14

convenction-diffusion equations

convection-diffusion equations

− div (δ + |∇u|)p(·)−2∇u + a · ∇u = f in Ωu = 0 on ∂Ω

where a ∈ Lr(·)(Ω) with div a = 0 is given.

Theorem

For 1 < p− ≤ p+ < d or d < p− ≤ p+ <∞. Let a ∈ Lr(·)σ (Ω)d , where r

is continuous and r > (p∗)′ a.e. or r = 1 respectively. Then there is a

weak solution u ∈W1,p(·)0 (Ω) of the equation.

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 10 / 14

convenction-diffusion equations

convection-diffusion equations

− div (δ + |∇u|)p(·)−2∇u + a · ∇u = f in Ωu = 0 on ∂Ω

where a ∈ Lr(·)(Ω) with div a = 0 is given.

Theorem

For 1 < p− ≤ p+ < d or d < p− ≤ p+ <∞. Let a ∈ Lr(·)σ (Ω)d , where r

is continuous and r > (p∗)′ a.e. or r = 1 respectively. Then there is a

weak solution u ∈W1,p(·)0 (Ω) of the equation.

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 10 / 14

Sketch of the Proof

Solve by classical theory of monotone operators for every n ∈ N∫Ω

(δ + |∇un|)p(·)−2∇un · ∇ϕ dx −∫

Ωunan · ∇ϕ dx

+1

n

∫Ω|un|q−2unϕ dx = (f , ϕ)

in W1,p(·)0 (Ω) ∩ Lq(Ω) where the an are smooth divergence free

functions with an → a in Lr(·)(Ω)

Get a sequence un ∈W1,p(·)0 (Ω) ∩ Lq(Ω) which is bounded in

W1,p(·)0 (Ω)

There is a weakly convergent subsequence: un u in W1,p(·)0 (Ω)

For limit in nonlinear p(·)-Laplacian use method ofLipschitz-Truncations

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 11 / 14

Sketch of the Proof

Solve by classical theory of monotone operators for every n ∈ N∫Ω

(δ + |∇un|)p(·)−2∇un · ∇ϕ dx −∫

Ωunan · ∇ϕ dx

+1

n

∫Ω|un|q−2unϕ dx = (f , ϕ)

in W1,p(·)0 (Ω) ∩ Lq(Ω) where the an are smooth divergence free

functions with an → a in Lr(·)(Ω)

Get a sequence un ∈W1,p(·)0 (Ω) ∩ Lq(Ω) which is bounded in

W1,p(·)0 (Ω)

There is a weakly convergent subsequence: un u in W1,p(·)0 (Ω)

For limit in nonlinear p(·)-Laplacian use method ofLipschitz-Truncations

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 11 / 14

Sketch of the Proof

Solve by classical theory of monotone operators for every n ∈ N∫Ω

(δ + |∇un|)p(·)−2∇un · ∇ϕ dx −∫

Ωunan · ∇ϕ dx

+1

n

∫Ω|un|q−2unϕ dx = (f , ϕ)

in W1,p(·)0 (Ω) ∩ Lq(Ω) where the an are smooth divergence free

functions with an → a in Lr(·)(Ω)

Get a sequence un ∈W1,p(·)0 (Ω) ∩ Lq(Ω) which is bounded in

W1,p(·)0 (Ω)

There is a weakly convergent subsequence: un u in W1,p(·)0 (Ω)

For limit in nonlinear p(·)-Laplacian use method ofLipschitz-Truncations

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 11 / 14

Sketch of the Proof

Solve by classical theory of monotone operators for every n ∈ N∫Ω

(δ + |∇un|)p(·)−2∇un · ∇ϕ dx −∫

Ωunan · ∇ϕ dx

+1

n

∫Ω|un|q−2unϕ dx = (f , ϕ)

in W1,p(·)0 (Ω) ∩ Lq(Ω) where the an are smooth divergence free

functions with an → a in Lr(·)(Ω)

Get a sequence un ∈W1,p(·)0 (Ω) ∩ Lq(Ω) which is bounded in

W1,p(·)0 (Ω)

There is a weakly convergent subsequence: un u in W1,p(·)0 (Ω)

For limit in nonlinear p(·)-Laplacian use method ofLipschitz-Truncations

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 11 / 14

Sketch of the Proof

Solve by classical theory of monotone operators for every n ∈ N∫Ω

(δ + |∇un|)p(·)−2∇un · ∇ϕ dx −∫

Ωunan · ∇ϕ dx

+1

n

∫Ω|un|q−2unϕ dx = (f , ϕ)

in W1,p(·)0 (Ω) ∩ Lq(Ω) where the an are smooth divergence free

functions with an → a in Lr(·)(Ω)

Get a sequence un ∈W1,p(·)0 (Ω) ∩ Lq(Ω) which is bounded in

W1,p(·)0 (Ω)

There is a weakly convergent subsequence: un u in W1,p(·)0 (Ω)

For limit in nonlinear p(·)-Laplacian use method ofLipschitz-Truncations

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 11 / 14

Sketch of the Proof

u solves then∫Ω

(δ +∇u)p(·)−2∇u · ∇ϕ dx −∫

Ωuan · ∇ϕ dx = (f , ϕ)

for all ϕ ∈W 1,∞0 (Ω)

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 12 / 14

References

L. Diening, P. Harjulehto, P. Hasto, M. Ruzicka (2011):

Lebesgue and Sobolev Spaces with Variable Exponents

Springer-Verlag , Berlin Heidelberg.

L. Diening, J. Malek, M. Steinhauer (2008):

On Lipschitz Truncations of Sobolev Functions (With Variable Exponent) andTheir Selected Applications

ESAIM: Control, Optimisation and Calculus of Variations 14(2):211-232.

L. Diening, M. Ruzicka (2010):

An existence result for non-Newtonian fluids in non-regular domains

Discrete and Continuous Dynamical Systems Series S 3(2):255-268.

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 13 / 14

Thank you for your attention!

Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 2013 14 / 14

top related