wpi pi computational fluid dynamics i

Post on 23-Dec-2021

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

PPPPIIIIWWWW Computational Fluid Dynamics I

Reviewof

Fluid Dynamics

Instructor: Hong G. ImUniversity of Michigan

Fall 2001

PPPPIIIIWWWW Computational Fluid Dynamics IOutline

Outline

Basic relations for continuum fluid mechanicsReynolds transport theoremDivergence theorem

Derivation of equations governing fluid flowConservation of massConservation of momentumConservation of energyConstitutive relations

PPPPIIIIWWWW Computational Fluid Dynamics IBasic Relations

),( txφ

∫∫∫ ⋅+∂∂=

CSCVV

dSdVt

dVDtD

sys

)( nuφφφ

Reynolds Transport Theorem

Rate of changein system

For any vector or scalar function that represents a flow property

Rate of changein control volume

Flux through control surface

zw

yv

xu

ttDtD

∂∂+

∂∂+

∂∂+

∂∂=∇⋅+

∂∂= u

Material derivative

PPPPIIIIWWWW Computational Fluid Dynamics I

+ flux out

Basic Relations

At t=t CV

)(tφ

At t=t+dtCV

=CV

)( dtt +φ− flux in

PPPPIIIIWWWW Computational Fluid Dynamics I

The Divergence (Gauss) Theorem:Conversion of surface integral to volume integral

dVdSCVCS∫∫ ⋅∇=⋅ )()( φnφ

Basic Relations

PPPPIIIIWWWW Computational Fluid Dynamics I

Reynolds Transport Theorem:

Basic Relations

: System integral to control volume integral

∫∫∫ ⋅+∂∂=

CSCVV

dSdVt

dVDtD

sys

)( nuφφφ

⋅∇+∂∂=

CV

dVt

)( uφφ

PPPPIIIIWWWW Computational Fluid Dynamics IConservation Equations

),(),( tt xx ρφ =

Conservation of Mass (Continuity)

If RTT yields

Since the equation holds for arbitrary control volume,

dVt

dVDtD

CVVsys∫∫

⋅∇+∂∂== )(0 uρρρ

0)( =⋅∇+∂∂ uρρt

PPPPIIIIWWWW Computational Fluid Dynamics IConservation Equations

Or, in Lagrangian form,

Continuity Equation:

uuu ⋅∇+∇⋅+∂∂=⋅∇+

∂∂ ρρρρρ

tt)(

0=⋅∇+= uρρDtD

0or0)( =⋅∇+=⋅∇+∂∂ uu ρρρρ

DtD

t

PPPPIIIIWWWW Computational Fluid Dynamics IConservation Equations

Conservation of MomentumIf RTT yields),(),( tt xuxφ ρ=

dVt

dVDtD

CVVsys∫∫

⋅∇+∂∂= )( uuuu ρρρ

∫∫ +⋅=CVCS

dVdS fnT ρ)(

[ ]∫ +⋅∇=CV

dVfT ρ

Surface force (stress) Body force (gravity)

Divergence theorem

PPPPIIIIWWWW Computational Fluid Dynamics IConservation Equations

Conservation of Momentum

fTuuu ρρρ +⋅∇=⋅∇+∂∂ )(t

Alternatively, subtracting

⋅∇+∂∂⋅−⋅∇+

∂∂ )()( uuuuu ρρρρ

tt

)continuity(⋅u

fTuuu ρρρρρ +⋅∇==∇⋅+∂∂=

DtD

t)(

fTu ρρ +⋅∇=DtD

PPPPIIIIWWWW Computational Fluid Dynamics IConservation Equations

Constitutive Relation – Stress Tensor

DUuT µµκ 2])32([ +⋅∇−+−= p

In tensor notation

Bulk viscosity = 0 (Stokes assumption)

∂∂

+∂∂+

∂∂−+−=

i

j

j

i

k

kijijij x

uxu

xupT µδµκδ )

32(

Unit tensor

001010100

[ ]T)()(21 uuD ∇+∇= (Deformation tensor)

PPPPIIIIWWWW Computational Fluid Dynamics IConservation Equations

Conservation of Momentum (Final):

[ ] fDuu ρµµκρ +⋅∇+

⋅∇−∇+−∇= 2)

32(p

DtD

[ ]T)()(21 uuD ∇+∇=

PPPPIIIIWWWW Computational Fluid Dynamics IConservation Equations

Conservation of Energy

From RTT, for

⋅+= uuxxφ

21),(),( tet ρ

dVeet

dVeDtD

CVVsys∫∫

⋅+⋅∇+

⋅+

∂∂=

⋅+ )

21()

21(

21 uuuuuuu ρρρ

dVdSdSCVCSCS∫∫∫ ⋅+⋅⋅+⋅−= fuTnunq ρ)()(

[ ]dVCV∫ ⋅+⋅∇⋅+⋅∇−= fuTuq ρ)(

Heat flux Work by stress

Body force work

Divergence theorem

PPPPIIIIWWWW Computational Fluid Dynamics IConservation Equations

fuTuquuuuu ⋅+⋅⋅∇+⋅−∇=⋅+⋅∇+

⋅+

∂∂ ρρρ )()

21()

21( ee

t

Total Energy Equation

0)( =⋅∇+∂∂ uρρt

fuTuquuuuu ⋅+⋅⋅∇+⋅−∇=⋅+∇⋅+

⋅+

∂∂ ρρρ )()

21(

21 ee

t

+⋅∇=∇⋅+

∂∂⋅ fTuuuu ρρρt

][ u:TT)(uT)(u ∇+⋅∇⋅=⋅⋅∇

)(: uTqu ∇+⋅−∇=∇⋅+∂∂ ete ρρ

PPPPIIIIWWWW Computational Fluid Dynamics IConservation Equations

Constitutive Relations

)(:)(: uUuT ∇−=∇ p

Tk∇−=q (Fourier’s Law)

),(),,( ρρ eTTepp == (Equation of State)

If viscous heating is neglected,

)()( uuu ⋅∇−=∇⋅+⋅−∇= ppp

)( uqu ⋅∇−⋅−∇=∇⋅+∂∂ pete ρρ

PPPPIIIIWWWW Computational Fluid Dynamics I

In Convective (Nonconservative) Form

Conservation Equations - Summary

0=⋅∇+ uρρDtD

fTu ρρ +⋅∇=DtD

)(: uTq ∇+⋅−∇=DtDeρ

PPPPIIIIWWWW Computational Fluid Dynamics I

In Conservative Form

Conservation Equations - Summary

0)( =⋅∇+∂∂ uρρt

fuuTu ρρρ +−⋅∇=∂∂ )(t

+⋅−⋅+⋅−∇=

⋅+

∂∂ qTuuuuuu )

21(

21 ee

tρρ

Discretized equations can satisfy the conservation properties more easily

PPPPIIIIWWWW Computational Fluid Dynamics I

In Integral Form (for fixed CV)

Conservation Equations - Summary

0=⋅+∂∂

∫∫CSCV

dSdVt

nuρρ

Useful in Finite Volume Methods

[ ]∫∫∫ ⋅−⋅+=∂∂

SCCVCV

dSdVdVt

)( nuunTfu ρρρ

+⋅+⋅−⋅⋅+

SC

dSqe uuunTnu )21()( ρ

∫∫ ⋅=⋅+∂∂

CVCV

dVdVet

fuuu ρρ )21(

PPPPIIIIWWWW Computational Fluid Dynamics I

Compressible Inviscid Flows

Conservation Equations – Special Cases

0=∂∂+

∂∂+

∂∂+

∂∂

zyxtGFEU

=

Ewvu

ρρρρρ

U

+

+=

upEuwuv

puu

)(

2

ρρρρρ

E

+

+=

vpEvw

pvuvv

)(

2

ρρρρρ

F

++

=

wpEpvw

vwuww

)(

2

ρρρρρ

G

TchTceRTp pv === ,,ρ

ReTepRcv

)1(,)1(,1

−=−=−

= γργγor

PPPPIIIIWWWW Computational Fluid Dynamics I

Incompressible Flows

Conservation Equations – Special Cases

0=DtDρ

0=⋅∇ u

Continuity equation reduces to

0=⋅∇+ uρρDtD

(Divergence-free)

Momentum equation with constant viscosity, κ=0

fuuuu +∇+∇−=∇⋅+∂∂ 2ν

ρp

t

ρµν /= Kinematic viscosity

PPPPIIIIWWWW Computational Fluid Dynamics I

Equation for Pressure

Conservation Equations – Special Cases

Taking divergence of the momentum equation

+∇+∇−=∇⋅+

∂∂⋅∇ fuuuu 2ν

ρp

t

Poisson’s equation

fuuuu ⋅∇+⋅∇∇+∇−=∇⋅⋅∇+⋅∇∂∂ )()()( 2

2

νρp

t

fuu ⋅∇+∇⋅⋅∇−=∇ ρρ )(2 p

which replaces the incompressibility condition.

(To be continued…)

top related