an introduction to modeling, imaging and full waveform ... · pdf filean introduction to...

32
An Introduction to Modeling, Imaging and Full Waveform Inversion Pengliang Yang ISTerre, Univ. Grenoble Alpes, France [email protected] http://seiscope2.osug.fr 2016 Madagascar school, Zurich SEISCOPE Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 1 / 28

Upload: tranthuan

Post on 19-Mar-2018

221 views

Category:

Documents


1 download

TRANSCRIPT

An Introduction to Modeling, Imaging and Full Waveform Inversion

Pengliang Yang

ISTerre, Univ. Grenoble Alpes, [email protected]

http://seiscope2.osug.fr

2016 Madagascar school, Zurich

SEISCOPE

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 1 / 28

Outline SEISCOPE

1 The wave equation

2 Forward modeling

3 Absorbing boundary condition

4 Seismic imaging/migration

5 Full waveform inversion (FWI)

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 2 / 28

Outline SEISCOPE

1 The wave equation

2 Forward modeling

3 Absorbing boundary condition

4 Seismic imaging/migration

5 Full waveform inversion (FWI)

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 3 / 28

The wave equation SEISCOPE

Particle velocity vector v = [vx , vy , vz ]T ; stress vector σ = [σxx , σyy , σzz , σyz , σxz , σxy ]T

Newton’s law: ρ∂tvi = ∂jσij , i , j ∈ x , y , z = 1, 2, 3Generalized Hooke’s law: σij = cijklεkl

Voigt indexing: (11)→ 1, (22)→ 2, (33)→ 3, (23) = (32)→ 4, (13) = (31)→ 5,(12) = (21)→ 6

ρ∂tv = Dσ + fv

∂tσ = CDTv + fσ,C =

c11 c12 c13 c14 c15 c16

· c22 c23 c24 c25 c26

· · c33 c34 c35 c36

· · · c44 c45 c46

· SYM · · c55 c56

· · · · · c66

,DT =

∂x 0 00 ∂y 00 0 ∂z0 ∂z ∂y∂z 0 ∂x∂y ∂x 0

(1)

Triclinic: 21 independent coefficients in C

Monoclinic: 13 independent coefficients in C

Orthorombic: 9 independent coefficients in C

Transverse isotropic: 5 independent coefficients in C

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 4 / 28

Isotropic elastic medium:

C =

λ+ 2µ µ µ 0 0 0µ λ+ 2µ µ 0 0 0µ µ λ+ 2µ 0 0 00 0 0 µ 0 00 0 0 0 µ 00 0 0 0 0 µ

(2)

Acoustic medium (µ = 0): pressure p = (σxx + σyy + σzz)/3ρ∂tv = ∇p∂tp = κ∇ · v, κ = ρc2

(3)

1st order equation system → 2nd order equation

1

c2∂ttp − ρ∇ ·

(1

ρ∇p)

= f (4)

Constant density:

(1

c2∂tt −∇2)p = f ,∇2 = ∂xx + ∂yy + ∂zz (5)

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 5 / 28

Outline SEISCOPE

1 The wave equation

2 Forward modeling

3 Absorbing boundary condition

4 Seismic imaging/migration

5 Full waveform inversion (FWI)

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 6 / 28

Forward modeling SEISCOPE

Modeling=Simulate wave propagation by solving wave equation numerically

Which numerical method?

1 Finite difference method (FDM)

2 Finite element method (FEM) → Spectral element method (SEM)

3 Fourier/spectral method: pseudo spectral method (PSM), lowrank finite difference

Tradeoff between computation and accuracy?

FDM outperforms FEM and PSM due to excellent efficiency;

SEM, PSM, lowrank FD arrive at spectral accuracy in space;

FEM, SEM are more flexible to handle complex topography, generally moreexpensive than FDM;

In which domain: Time domain or Frequency domain?

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 7 / 28

Numerical methods: Recap SEISCOPE

1. Finite difference method (FDM) in time domain

direct discretization of the original differential equation, both in time and in space

explicit time integration: n→ n + 1, ( 1c2 ∂tt − ∂xx)p = f

pn+1j − 2pn

j + pn−1j

∆t2c2− ∂xxpn = f n ⇒ pn+1

j = 2pnj − pn−1

j +∆t2c2

∆x2(pn

j+1 − 2pnj + pn

j−1)

(6)

implicit time integration: n→ n + 1, matrix inversion

pn+1 − 2pn + pn−1

∆t2c2− ∂xxpn+1 = f n (7)

⇒ Apn+1 = b,A =

2 + α2 −1

−1. . .

. . .

. . .. . . −1−1 2 + αM

, αj =∆x2

c2j ∆t2

(8)

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 8 / 28

1. Finite difference method (FDM) in frequency domain: solve Helmholz equation

direct discretization of the original differential equation, both in frequency and space

implicit scheme with matrix inversion p = A−1 f

(1

c2∂tt − ∂xx)p = f ⇒ −ω

2

c2p − ∂xx p = f ⇒ −ω

2

c2j

pj −pj+1 − 2pj + pj−1

∆x2= f (9)

. . .

. . .. . .

· · · − 1∆x2

2∆x2 − ω2

cj2 − 1

∆x2 · · ·. . .

. . .. . .

︸ ︷︷ ︸

A

...pn−1

pn

pn+1

...

︸ ︷︷ ︸

p

=

...

f...

︸︷︷︸

f

(10)

very efficient for multiple sources due to only 1 time of matrix inversion:[p1, p2, . . .] = A−1 [f1, f2, . . .]

easy to incorporate attenuation c(ω) = c0(1− isign(ω)2Q

) → more diagonal dominantfor stable matrix inversion

filling the matrix in multifrontal parallel solver: MUMPS, umfpack, ...

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 9 / 28

Numerical methods: Recap SEISCOPE

2. Finite element method (FEM): matrix inversion at each time step⇒ solving the weak form of the differential equation, test/basis function φj ∈ [0, 1]Second order wave equation with displacement∫ 1

0

(∂ttu(x , t)− c2(x)∂xxu(x , t)− f (x , t)

)φj(x)dx = 0 (11)

⇒ state variable u(x , t) =∑N

i=1 ui (t)φi (x): polynomial expansion separable over spaceand time∑

i

∂ttui

∫ 1

0

φiφjdx︸ ︷︷ ︸Mji

+c2∑i

ui

∫ 1

0

∂xφi∂xφjdx︸ ︷︷ ︸Kji

=

∫ 1

0

f φjdx ⇒ M∂ttu + Ku = f ′ (12)

Mun+1 − 2un + un−1

∆t2+ Kun = f ′ ⇒ un+1 = 2un − un−1 + M−1(f ′ − Kun) (13)

SEM (Komatisch et al., 1998): specific mesh, diagonal mass matrix M−1 forefficient wave extrapolation by choosing GLL collocation points

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 10 / 28

Numerical methods: Recap SEISCOPE

3. Fourier/spectral methods: computing spatial derivative using Fourier transform

Pseudo spectral method (PSM):

f (x) =

∫f (k)e ikxdk,⇒ ∂x f =

∫ikf (k)e ikxdk, ∂xx f =

∫−k2f (k)e ikxdk (14)

1

c2∂ttp = (∂xx + ∂zz)p ⇒ pn+1 = 2pn − pn−1 + ∆t2c2F−1[−(k2

x + k2z )Fpn] (15)

Lowrank finite difference method (Fomel et al., 2013):

p(x, t + ∆t) =

∫p(k, t)e iφ(x,k,∆t)dk,=

∫e ik·xW (x, k)p(k, t)dk, (16)

W (x, k) = e i [φ(x,k,∆t)−k·x],W (x, k) ≈M∑

m=1

N∑n=1

W (x, km)amnW (xn, k) (17)

Approximate lowrank decomposition leads to

p(x, t + ∆t) ≈M∑

m=1

W (x, km)N∑

n=1

amn

∫e ik·xW (xn, k)p(k, t)dk, (18)

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 11 / 28

Outline SEISCOPE

1 The wave equation

2 Forward modeling

3 Absorbing boundary condition

4 Seismic imaging/migration

5 Full waveform inversion (FWI)

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 12 / 28

Absorbing boundary condition (ABC) SEISCOPE

PA (Paraxial approximation, radiation) boundary condition (Clayton and Engquist, 1977):→ cancel the refection on the boundary using waves propagating in opposite directionaccording to pseudo differential operator decomposition

(1

c2∂tt − ∂xx − ∂zz)p = −(∂x +

1

c∂t√

1− S2)(∂x −1

c∂t√

1− S2)p = 0, S =∂z∂t/c

(19)

1st order approximation:√

1− S2 ≈ 1, perfect in 1D S = 0, accurate within aspecific range of angles in multi-dimensions!

(1

c2∂tt−∂xx)p = (

1

c∂t−∂x)(

1

c∂t+∂x)p = 0⇒ x ∈ [0, L]

1c∂tp(0, t)− ∂xp(0, t) = 0

1c∂tp(L, t) + ∂xp(L, t) = 0

(20)

2nd order approximation:√

1− S2 ≈ 1− 12S2(

∂x −∂tc

+c∂zz2∂t

)p = 0⇒ ∂xtp −

1

c∂ttp +

c

2∂zzp = 0(x = 0) (21)

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 13 / 28

Sponge layers/Gaussian taper boundary condition (Cerjan et al., 1985):→ multiply an exponential decaying factor e−dx∆t in boundary layers at each time step

easy to implement, stable in any anisotropic medium!

a good choice for the damping profile to achieve PML-like effect:

dx = −3vmax

2Llog(Rc)

(xL

)2

,Rc = 10−3 ∼ 10−6 (22)

PML(Perfectly matched layer)(Berenger, 1994): 1st order wave equation system→ coordinate transformation in complex-valued anisotropic medium

x = x +1

∫ x

0

dx(s)ds ⇒ ∂x =1

1 + dxiω

∂x , (23)

intrinsically unstable in anisotropic medium for long duration simulation!

Frequency domain multiplication → Time domain convolution, implemented byrecursion with memory variables

∂tv = 1ρ∇p

∂tp = κ∇ · v⇒

∂tvi = 1

ρ∂ip − divi , i ∈ x , y , z

∂tp = κ(∂xvx + ∂yvy + ∂zvz)− (dx + dy + dz)p(24)

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 14 / 28

Outline SEISCOPE

1 The wave equation

2 Forward modeling

3 Absorbing boundary condition

4 Seismic imaging/migration

5 Full waveform inversion (FWI)

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 15 / 28

Imaging condition (IC) SEISCOPE

Deconvolution (U/D) IC (Claerbout, 1971): Recorded signal (upcoming wavefield atreceivers) = Earth’s reflectivity * downgoing source wavelet (downgoing wavefield).

U(x, t) = R(x) ∗ D(x, t)⇒ R(x) =U(x, t)

D(x, t), unstable (25)

Zero-lag crosscorrelation IC → illumination compensation

I (x) =nt∑i=1

U(x, ti )D(x, ti )⇒

I ′(x) =

∑nti=1 U(x, ti )D(x, ti )∑nt

i=1 D2(x, ti )

=U1D1 + · · ·+ UiDimax |·| + · · ·+ UntDnt

D1D1 + · · ·+ DiDimax |·| + · · ·+ DntDnt

(26)

requires simultaneous accesing to the source and receiver wavefields

Excitation amplitude IC (Chang and McMechan, 1986): taking maximum absoluteof downgoing wavefield at excitation time ti

I (x) =U(x, ti )

max |D(x, ti )|(27)

knowing ti is enough, no need for storing or reconstructing source wavefield

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 16 / 28

Imaging condition (IC)→ Angle gathers SEISCOPE

Extended IC (Sava and Fomel, 2006): redundant dimensions to evaluate energy focusing

Conventional IC:I (x) = R(x, t = 0),R(x, t) = U(x, t) ∗ D(x, t)

Space-shift IC: h = 0→ conventional IC

I (x, h) = R(x, h, t = 0),R(x, h, t) = U(x + h, t) ∗ D(x− h, t) (28)

Time-shift IC: τ = 0→ conventional IC

I (x, τ) = R(x, τ, t = 0),R(x, τ, t) = U(x, t + τ) ∗ D(x, t − τ) (29)

Practical usage in RTM and FWI: horizontal subsurface offset shift, (x ± h, y , z)

Implementated in frequency domain via Fourier transform

R(m, h) =∑ω

U(x + h, ω)D∗(x− h, ω) R(m, τ) =∑ω

U(x, ω)D∗(x, ω)e2iωτ (30)

Excitation amplitude IC+ extended time/space shift ⇒ an easier way to obtainangle gathers with low computation and memory cost? R(x, τ)⇒ R(x, θ)

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 17 / 28

Outline SEISCOPE

1 The wave equation

2 Forward modeling

3 Absorbing boundary condition

4 Seismic imaging/migration

5 Full waveform inversion (FWI)

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 18 / 28

FWI=Modeling engine+Optimization SEISCOPE

Objective=Waveform misfit

minm

C(m) =1

2‖dcal(m)− dobs‖ (31)

Given an initial model m0, iteratively update the model

mk+1 = mk + γk∆mk (32)

using different optimization methods: ∆mk = −H−1∇mC

Steepest descent method (SDM): ∆mk = −∇mC

Nonlinear conjugate gradient (NLCG) (Pica et al., 1990):∆mk = dk = −∇mC + βdk−1

Quasi-Newton method, L-BFGS (Brossier, 2011): H ≈ Ha approximate Hessianusing previously memorized gradients ∇C |k ,∇C |k−1,∇C |k−2, · · ·Newton method, Truncated Newton (Santosa and Symes, 1988; Metivier et al.,2014): compute Hessian vector product using CG method within few iterations

Gauss-Newton (Shin et al., 2001): Ha = J†J, approximate Hessian using first orderscattering information

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 19 / 28

Frequency domain FWI SEISCOPE

Frequency/Fourier domain FWI (Pratt et al., 1998): −( 1v2ω

2 +∇2)p = f

C(m) =1

2

∑s

∑r

∑ω

|d s,rcal (m, ω)− d s,r

obs(ω)|2, d s,rcal (m, ω) = Rs,r p (33)

Multiscale approach: from low frequency to high frequency

Extremely efficient for multisource problem: same A−1 for any source fi ,[p1, p2, . . .] = A−1 [f1, f2, . . .]

Easy for incorporating seismic attenuation: complex-valued velocity

Super-big matrix inversion requiring large storage in 3-D

No way for data windowing and selective inversion

→ Laplacian-Fourier domain (Shin and Cha, 2009): Fourier domain with dampedtraces

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 20 / 28

Time domain FWI SEISCOPE

Time domain: Convenient for data pre-processing: windowing, filtering, denoising

C(m) =1

2

∑s

∑r

∫ T

0

dt|d s,rcal (m, t)− d s,r

obs(t)|2, d s,rcal (m, t) = Rs,rp (34)

Lagrange functional with model parameter m ≡ c

L(m, p, p) = C(m) + 〈p, ( 1

c2∂tt −∇2)p − f 〉Ω×[0,T ] (35)

1 forward wave equation:

∂L

∂p= 0⇒ (

1

c2∂tt −∇2)p = f (36)

2 adjoint state equation: different misfit C only change adjoint source

∂L

∂p= 0⇒ (

1

c2∂tt −∇2)p = −∂C

∂p= −R†(Rp − dobs) (37)

3 update the model based on the gradient

∇mC =∂L

∂m= − 2

c3

∫ T

0

dtp∂ttp (38)

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 21 / 28

3D viscoelastic FWI in time domain (Yang et al., 2016a) SEISCOPE

1. Forward equation: ρ∂tv = Dσ + fv

∂tσ = CDTv − C :: Γ∑L`=1 y`ξ` + fσ

∂tξ` + ω`ξ` = ω`DTv, ` = 1, · · · , L,

(39)

2. Adjoint equation:ρ∂t v = Dσ +

∑L`=1 Dξ` + ∆dv

∂tσ = CDT v + C∆dσ

∂t ξ` − ω`ξ` = ω`y`(C :: Γ)C−1σ, ` = 1, · · · , L.(40)

where

Γ =

Q−111 Q−1

12 Q−113 Q−1

14 Q−115 Q−1

16

Q−121 Q−1

22 Q−123 Q−1

24 Q−125 Q−1

26

Q−131 Q−1

32 Q−133 Q−1

34 Q−135 Q−1

36

Q−141 Q−1

42 Q−143 Q−1

44 Q−145 Q−1

46

Q−151 Q−1

52 Q−153 Q−1

54 Q−155 Q−1

56

Q−161 Q−1

62 Q−163 Q−1

64 Q−165 Q−1

66

(41)

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 22 / 28

3. Gradient expression (Yang et al., 2016a):

∂χ

∂ρ=

∫ T

0

dtv†∂tv,

∂χ

∂CIJ=−

∫ T

0

dtσ†C−1 ∂C

∂CIJC−1(∂tσ − fσ),

∂χ

∂Q−1IJ

=

∫ T

0

dtσ†C−1(C ::∂Γ

∂Q−1IJ

)(L∑`=1

y`ξ`),∂χ

∂QIJ= −Q−2

IJ

∂χ

∂Q−1IJ

. (42)

4. Constant-Q approximation by Least-squares method (Blanch et al., 1995; Yang et al.,2016a)

minγ`

χQ1 , χQ

1 =

∫ ωmax

ωmin

(L∑`=1

γ`ω`ω

ω2 + ω2`

− γ−1)2dω. (43)

in whichY IJ` (x) = y`Q

−1IJ (x) with y` = γ γ`. (44)

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 23 / 28

Accessing incident wavefield backwards SEISCOPE

1n

n N

2n

1n N 1/2 1( , )n np v

1/2 1( , )n np v

1/2( , )N Np v

3/2 1( , )N Np v

forward simulation

backward reconstruction

adjoint wavefieldforward wavefield

crosscorrelation

n N

1n N

1n

2n 3n

3n

adjoint simulation

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 24 / 28

Accessing incident wavefield backwards SEISCOPE

It is mandatory to access incident wavefield backwards to build FWI gradient (or applyimaging condition in RTM)

1 reading the stored forward wavefield from the disk, even with data compression (Sunand Fu, 2013; Boehm et al., 2016)Reading disk memory is extremely slow for I/O intensive problems!

2 inferring from the final snapshots and the saved boundaries via reverse propagation(RP) (Tromp et al., 2005; Dussaud et al., 2008; Clapp, 2008; Yang et al., 2014):Efficient: Computation is much faster compared with disk accessing; may involvelarge 3D boundary storage, which can be significantly reduced using interpolation(Yang et al., 2016c);

3 remodeling using checkpointing (Griewank, 1992; Griewank and Walther, 2000;Symes, 2007; Anderson et al., 2012) from stored state to another state: Muchbetter than disking reading, more expensive compared with reverse propagation dueto repeated modeling!

4 checkpointing-assisted reverse-forward simulation (CARFS) =RP+checkpointing(Yang et al., 2016b) works in both attenuating and non-attenuating medium!

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 25 / 28

Reverse propagation SEISCOPE

Reverse propagation based on the final snapshot and stored boundaries:

forward modeling:pn+1 = 2pn − pn−1 + ∆t2v 2∇2pn (45)

store boundary at each forward timestepping

reverse propagation:pn−1 = 2pn − pn+1 + ∆t2v 2∇2pn (46)

inject boundary at each backward timestepping

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 26 / 28

Exercises SEISCOPE

Goal:1 understand the fundamental gadgets in Madagascar2 write codes within the framework of Madagascar3 reproduce nummerical experiments using SConstruct

Method: FDM

Steps:

1 forward modeling with Clayton-Enquist ABC2 wavefield reconstruction by RP+stored boundaries3 full waveform inversion

Where is the exercise?1 RSFSRC/book/xjtu/modeling2fwi2 https://yangpl.wordpress.com/activities/

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 27 / 28

Acknowledgment SEISCOPE

Seiscope consortium for financial support on the travel

Community effort for developing Madagascar: a great tool

Sergy Fomel for the invitation

ETH Zurich for providing the sharing opportunity

Thanks for your attention!

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 28 / 28

Anderson, J. E., Tan, L., and Wang, D. (2012). Time-reversal checkpointing methods forRTM and FWI. Geophysics, 77:S93–S103.

Berenger, J.-P. (1994). A perfectly matched layer for absorption of electromagneticwaves. Journal of Computational Physics, 114:185–200.

Blanch, J., Robertson, J. O. A., and Symes, W. W. (1995). Modeling of a constant Q:Methodology and algorithm for an efficient and optimally inexpensive viscoelastictechnique. Geophysics, 60:176–184.

Boehm, C., Hanzich, M., de la Puente, J., and Fichtner, A. (2016). Wavefieldcompression for adjoint methods in full-waveform inversion. Geophysics, in press.

Brossier, R. (2011). Two-dimensional frequency-domain visco-elastic full waveforminversion: Parallel algorithms, optimization and performance. Computers &Geosciences, 37(4):444 – 455.

Cerjan, C., Kosloff, D., Kosloff, R., and Reshef, M. (1985). A nonreflecting boundarycondition for discrete acoustic and elastic wave equations. Geophysics,50(4):2117–2131.

Chang, W.-F. and McMechan, G. A. (1986). Reverse-time migration of offset verticalseismic profiling data using the excitation-time imaging condition. Geophysics,51(1):67–84.

Claerbout, J. (1971). Towards a unified theory of reflector mapping. Geophysics,36:467–481.

Clapp, R. (2008). Reverse time migration: Saving the boundaries. Technical ReportSEP-136, Stanford Exploration Project.

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 28 / 28

Clayton, R. and Engquist, B. (1977). Absorbing boundary conditions for acoustic andelastic wave equations. Bulletin of the Seismological Society of America, 67:1529–1540.

Dussaud, E., Symes, W. W., Williamson, P., Lemaistre, L., Singer, P., Denel, B., andCherrett, A. (2008). Computational strategies for reverse-time migration. In Society ofExploration Geophysics technical program expanded abstracts 2008, pages 2267–2271.Society of Exploration Geophysicists.

Fomel, S., Ying, L., and Song, X. (2013). Seismic wave extrapolation using lowranksymbol approximation. Geophysical Prospecting, 61(3):526–536.

Griewank, A. (1992). Achieving logarithmic growth of temporal and spatial complexity inreverse automatic differentiation. Optimization Methods and software, 1(1):35–54.

Griewank, A. and Walther, A. (2000). Algorithm 799: Revolve: An implementation ofcheckpointing for the reverse or adjoint mode of computational differentiation. ACMTrans. Math. Software, 26:19–45.

Komatisch, D., Tromp, J., and Vilotte, J. P. (1998). The spectral element method forelastic wave equations: application to 2D and 3D seismic problems. In Expandedabstracts, volume II, pages 1460–1463.

Metivier, L., Bretaudeau, F., Brossier, R., Operto, S., and Virieux, J. (2014). Fullwaveform inversion and the truncated Newton method: quantitative imaging ofcomplex subsurface structures. Geophysical Prospecting, 62:1353–1375.

Pica, A., Diet, J. P., and Tarantola, A. (1990). Nonlinear inversion of seismic reflectiondata in laterally invariant medium. Geophysics, 55(3):284–292.

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 28 / 28

Pratt, R. G., Shin, C., and Hicks, G. J. (1998). Gauss-Newton and full Newton methodsin frequency-space seismic waveform inversion. Geophysical Journal International,133:341–362.

Santosa, F. and Symes, W. W. (1988). Computation of the hessian for least-squaressolutions of inverse problems of reflection seismology. Inverse problems, 4(1):211.

Sava, P. and Fomel, S. (2006). Time-shift imaging condition in seismic migration.Geophysics, 71(6):S209–S217.

Shin, C. and Cha, Y. H. (2009). Waveform inversion in the Laplace-Fourier domain.Geophysical Journal International, 177:1067–1079.

Shin, C., Jang, S., and Min, D. J. (2001). Improved amplitude preservation for prestackdepth migration by inverse scattering theory. Geophysical Prospecting, 49:592–606.

Sun, W. and Fu, L.-Y. (2013). Two effective approaches to reduce data storage inreverse time migration. Computers & Geosciences, 56:69–75.

Symes, W. W. (2007). Reverse time migration with optimal checkpointing. Geophysics,72(5):SM213–SM221.

Tromp, J., Tape, C., and Liu, Q. (2005). Seismic tomography, adjoint methods, timereversal and banana-doughnut kernels. Geophysical Journal International, 160:195–216.

Yang, P., Brossier, R., Metivier, L., and Virieux, J. (2016a). A review on the systematicformulation of 3D multiparameter full waveform inversion in viscoelastic medium.Geophysical Journal International, 207(1):129–149.

Yang, P., Brossier, R., Metivier, L., and Virieux, J. (2016b). Wavefield reconstruction inattenuating media: A checkpointing-assisted reverse-forward simulation method.Geophysics, 81(6):R349–R362.

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 28 / 28

Yang, P., Brossier, R., and Virieux, J. (2016c). Wavefield reconstruction fromsignificantly decimated boundaries. Geophysics, 80(5):T197–T209.

Yang, P., Gao, J., and Wang, B. (2014). RTM using effective boundary saving: Astaggered grid GPU implementation. Computers & Geosciences, 68:64–72.

Yang et al. (ISTerre) Introduction to modeling, imaging and FWI Madagascar 28 / 28