an introduction to time-frequency analysis advisor : jian-jiun ding, ph. d. presenter : ke-jie liao...

50
An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP Lab MD531

Upload: alissa-forshaw

Post on 29-Mar-2015

218 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

An Introduction to Time-Frequency Analysis

Advisor : Jian-Jiun Ding, Ph. D.Presenter : Ke-Jie Liao

Taiwan ROCTaipei

National Taiwan UniversityGICE

DISP LabMD531

Page 2: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

2

Outline

Introduction STFT

Rectangular STFT Gabor Transform

Wigner Distribution Function Motions on the Time-Frequency Distribution

FRFT LCT

Applications on Time-Frequency AnalysisSignal Decomposition and Filter Design Sampling Theory Modulation and Multiplexing

Page 3: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

3

Introduction

Frequency? Another way to consider things.

Frequency related applications FDM Sampling Filter design , etc ….

Page 4: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

4

Introduction

Conventional Fourier transform 1-D Totally losing time information Suitable for analyzing stationary signal ,i.e. frequency does not vary with time.

[1]

Page 5: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

5

Introduction

Time-frequency analysis Mostly originated form FT Implemented using FFT

[1]

Page 6: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

6

Short Time Fourier Transform

Modification of Fourier Transform Sliding window, mask function, weighting function

Mathematical expression

Reversing Shifting FT

2( ) ( )( , ) ( ) { ( )}j fX t f x e d F xw t w t

w(t)

Page 7: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

7

Short Time Fourier Transform

Requirements of the mask function w(t) is an even function. i.e. w(t)=w(-t). max(w(t))=w(0),w(t1) w(t2) if |t1|<|t2|. when |t| is large.

An example of window functions( ) 0w t

t

Window width K

Page 8: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

8

Short Time Fourier Transform

Requirements of the mask function w(t) is an even function. i.e. w(t)=w(-t). max(w(t))=w(0),w(t1) w(t2) if |t1|<|t2|. when |t| is large.

An illustration of evenness of mask functions( ) 0w t

Signal

Mask

t0

Page 9: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

9

Short Time Fourier Transform

Effect of window width K Controlling the time resolution and freq. resolution.

Small K Better time resolution, but worse in freq. resolution

Large K Better freq. resolution, but worse in time resolution

Page 10: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

10

Short Time Fourier Transform

The time-freq. area of STFTs are fixed

K decreases

tt

f fMore details in time More details in freq.

Page 11: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

11

Rectangular STFT

Rectangle as the mask function Uniform weighting

Definition Forward

Inverse

where

2( , ) ( )t

jB

B

f

t

X t f x e d

21( ) ( , ) j ftx t X t f e df

1t B t t B

2B

1

Page 12: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

12

Rectangular STFT

Examples of Rectangular STFTs

cos(4 ) ,0 10

( ) cos(2 ) ,10 20

cos( ) , 20 30

t t

x t t t

t t

2 ,0 10

( ) 1 ,10 20

0.5 ,20 30i

t

f t t

t

B=0.25 B=0.5

t

f

t

f

10 20 30010 20 300

221100

Page 13: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

13

Rectangular STFT

Examples of Rectangular STFTs

cos(4 ) ,0 10

( ) cos(2 ) ,10 20

cos( ) , 20 30

t t

x t t t

t t

2 ,0 10

( ) 1 ,10 20

0.5 ,20 30i

t

f t t

t

B=1 B=3

t

f

t

f

0 10 20 30 0 10 20 30

0122

10

Page 14: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

14

Rectangular STFT

Properties of rec-STFTs Linearity

Shifting

Modulation

( ) ( ) ( )

( , ) ( , ) ( , )

h t x t y t

H t f X t f Y t f

00

20

2( ) ( , )t B

j f j f

t B

x e d X t f e

020

2[ ( ) ] ( , )t B

j f

t

j f

B

e fx e d X t f

Page 15: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

15

Rectangular STFT

Properties of rec-STFTs Integration

Power integration

Energy sum

2( ),

( , )0 ,

j fvx v v B t v B

X t f e dfotherwise

* *( , ) ( )( , ) ( )t B

t B

X t f df x dY t f y

* *(( , ) () (), )X t f df dt B xf y dY t

Page 16: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

16

Gabor Transform

Gaussian as the mask function

Mathematical expression

Since where

GT’s time-freq area is the minimal against other STFTs!

2

( ) tew t

2 221.9143

( ) ( )

1.9

2

143

( , ) ( ) ( )t

j ft j f

t

txG t f e x ded e xe

2

0.00001ae | | 1.9143a

Page 17: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

17

Gabor Transform

Compared with rec-STFTs Window differences Resolution – The GT has better clarity Complexity

Discontinuity Weighting differences

Page 18: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

18

Gabor Transform

Compared with rec-STFTs Resolution – GT has better clarity

Example of 2

( ) ty t e

The rec-STFT The GT

Better resolution!

t

f

t

f

00

00

Page 19: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

19

Gabor Transform

Compared with the rec-STFTs Window differences Resolution – GT has better clarity

Example of 2

( ) ty t e

The rec-STFT The GT

GT’s area is minimal!

High freq. due to discon.

t

f

t0

0

0

0

Page 20: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

20

Gabor Transform

Properties of the GT Linearity

Shifting

Modulation

( ) ( ) ( )

( , ) ( , ) ( , )z x y

z x y

G t f G t f G t f

0

00

2( ) ( , ) ( , ) j f

xt

tx tG t tf G t f e

2 00

( )( , ) ( , )j tf x

x t eG f G t ft f

Same as the rec-STFT!

Page 21: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

21

Gabor Transform

Properties of the GT Integration

Power integration Energy sum Power decayed

2 22 ( 1)( , ) ( )kj tf tkxG t f e df e x kt

K=1-> recover original signal

Page 22: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

22

Gabor Transform

Gaussian function centered at origin

Generalization of the GT Definition

2 2

1.91

( ) 2 ( ) 2

43

1.9143

( , ) ( ) ( )

t

t j f t j fx

t

G t f e e x d e e x d

0

1 2

( ) tw t e 2

( ) tw t e

Page 23: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

23

Gabor Transform

plays the same role as K,B.(window width) increases -> window width decreases decreases -> window width increases

Examples : Synthesized cosine wave

1 0.1

t

f

t

f

0 10 20 30 0 10 20 30

0

21

012

Page 24: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

24

Gabor Transform

plays the same role as K,B.(window width) increases -> window width decreases decreases -> window width increases

Examples : Synthesized cosine wave

1.5 5

t

f

t

f

0 10 20 30 0 10 20 30

0

21

012

Page 25: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

25

Wigner Distribution Function

Definition

Auto correlated -> FT Good mathematical properties

Autocorrelation Higher clarity than GTs But also introduce cross term problem!

* *2( ) ( ) ( ) ( )2

( , ) {2

}2 2

j fx x t x tW t f e d F x t x t

Page 26: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

26

Wigner Distribution Function

Cross term problem WDFs are not linear operations.

( ) ( ) ( )h t g t s t 2 2( , ) | | ( , ) | | ( , )h g sW t f W t f W t f

* 2* * *( ) ( ) ( )[ ( )2

]2 2 2

j fg t s t g t s e dt

Cross term!

( ) ( )g t s t

* * * *( ) ( )g t s t

n(n-1) cross term!!

Page 27: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

27

Wigner Distribution Function

An example of cross term problem

2

2

( 4 )10

( 6 )

9 1( )1 9

tj t

j t t

e tx te t

1 1( 4) 9 1

2 5( )1( 2 6) 1 9

2

i

t tf t

t t

Without cross term With cross term

t

ff

t

0 0

00

Page 28: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

28

Wigner Distribution Function

Compared with the GT Higher clarity Higher complexity

An example WDF GT

4 4

( ) cos(4 )2

j t j te ex t t

t

f

t

f

00

0 0

Page 29: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

29

Wigner Distribution Function

But clarity is not always better than GTDue to cross term problem Functions with phase degree higher than 2

WDF GT

Indistinguishable!!

3( ) exp( ( 5) 6 )x t j t j t

[1]t

f

t

f

0

0

0

0

Page 30: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

30

Wigner Distribution Function

Properties of WDFs Shifting

Modulation

Energy property

00( ) ( , ) ( , )xx t tW t f W t t f

2 0e (0

)( , ) ( , )j f t x

x tW t f W t f f

2 2( , ) | ( ) | | ( ) |xW t f dtdf x t dt X f df

Page 31: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

31

Wigner Distribution Function

Properties of WDFs Recovery property is real Energy property Region property Multiplication Convolution Correlation Moment Mean condition frequency and mean condition time

( , )xW t f

Page 32: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

32

Motions on the Time-Frequency Distribution

Operations on the time-frequency domain Horizontal Shifting (Shifting on along the time axis)

Vertical Shifting (Shifting on along the freq. axis)

0,0 0

0 0

2( ) ( , )

( ) ( , )

jSTFT GTx

WDFx

ftx t t S t t f

x t t W t t f

e

t

f

0

0

2 ,0

20

( ) ( , )

( ) ( , )

j f t STFT GTx

j f t WDFx

e x t S t f f

e x t W t f f

t

f

Page 33: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

33

Motions on the Time-Frequency Distribution

Operations on the time-frequency domain Dilation

Case 1 : a>1

Case 2 : a<1

,1( ) ( , )

| |

1( ) ( , )

| |

STFT GTx

WDFx

t tx S af

a aa

t tx W af

a aa

Page 34: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

34

Motions on the Time-Frequency Distribution

Operations on the time-frequency domain Shearing - Moving the side of signal on one

direction Case 1 :

Case 2 :

2

( ) ( )j aty t e x t

2

( ) ( )t

jay t e x t

( , ) ( , )

( , ) ( , )

y x

y x

aS t f S t f t

W t f W t taf

( , ) ( , )

( , ) ( , )

y x

y x

S t f S t f f

W t f W t f

a

fa

t

f

t

f

Moving this sidea>0

a>0

Moving this side

Page 35: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

35

Motions on the Time-Frequency Distribution

Rotations on the time-frequency domain Clockwise 90 degrees – Using FTs

t

f( ) { ( )}X f FT x t

2

| ( , ) | | ( , ) |

( , ) ( , )

( , ) ( , )

X

j ftX

x

x

X x

S t f S f t

G t f G f t

W t f W f t

e

Clockwise rotation 90

Page 36: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

36

Motions on the Time-Frequency Distribution

Rotations on the time-frequency domain Generalized rotation with any angles – Using WDFs

or GTs via the FRFT Definition of the FRFT

Additive property

2 2cot 2 csc cot( ) [ ( )] 1 cot ( )j u j ut j tFX u O x t j e e e x t du

{ [ ( )]} [ ( )]F F FO O x t O x t

Page 37: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

37

Motions on the Time-Frequency Distribution

Rotations on the time-frequency domain [Theorem]

The fractional Fourier transform (FRFT) with angle is equivalent to the clockwise rotation operation with angle for the WDF or GT.

( , ) ( cos sin , sin cos )

( , ) ( cos sin , sin cos )

X

X

x

x

W u v W u v u v

G u v G u v u v

Counterclockwise rotation matrix

NewOld'

'

cos sin

sin cos

u u

vv

'

'

cos sin

sin cos

u u

v v

New Old

Clockwise rotation matrix

Page 38: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

38

Motions on the Time-Frequency Distribution

Rotations on the time-frequency domain [Theorem]

The fractional Fourier transform (FRFT) with angle is equivalent to the clockwise rotation operation with angle for the WDF or GT.

Examples (Via GTs)

-5 0 5-5

0

5

-5 0 5-5

0

5

-5 0 5-5

0

5

(a) G (t, ) f (b) G (t, ) F (c) G (t, )

F [1]

Page 39: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

39

Motions on the Time-Frequency Distribution

Rotations on the time-frequency domain [Theorem]

The fractional Fourier transform (FRFT) with angle is equivalent to the clockwise rotation operation with angle for the WDF or GT.

Examples (Via GTs)

-5 0 5-5

0

5

-5 0 5-5

0

5

-5 0 5-5

0

5

(d) G (t, ) F (e) G (t, ) F (f) G (t, )

F [1]

Page 40: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

40

Motions on the Time-Frequency Distribution

Twisting operations on the time-frequency domain LCT s

t t

ff

( , , , )

( , , , )

( , ) ( , )

( , ) ( , )

X xa b c d

X xa b c d

W u v W du bv cu av

W au bv cu dv W u v

The area is unchanged

'

'

u d b u

c a vv

Old New

Inverse exist since ad-bc=1

a b

c d

LCT

Page 41: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

41

Applications on Time-Frequency Analysis

Signal Decomposition and Filter Design A signal has several components - > separable in

time ->

separable in freq. ->

separable in time-freq.

t f t

f

Vertical cut off line on the t-f domain

Horizontal cut off line on the t-f domain

Page 42: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

42

Applications on Time-Frequency Analysis

Signal Decomposition and Filter Design An example

t

f

1

2

1t0t

Nois

e

Signals

Rotation -> filtering in the FRFT domain

Page 43: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

43

Applications on Time-Frequency Analysis

Signal Decomposition and Filter Design An example The area in the t-f domain isn’t finite!

[1]

Page 44: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

44

Applications on Time-Frequency Analysis

Signal Decomposition and Filter Design An example

[1]

2 2 20.23 0.3 8.5 0.46 9.6( ) 0.5 0.5 0.5j t j t j t j t j tn t e e e

Page 45: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

45

Applications on Time-Frequency Analysis

Signal Decomposition and Filter Design An example

[1]

2 2 20.23 0.3 8.5 0.46 9.6( ) 0.5 0.5 0.5j t j t j t j t j tn t e e e

Page 46: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

46

Applications on Time-Frequency Analysis

Signal Decomposition and Filter Design An example

[1]

The area in the t-f domain isn’t finite!

Page 47: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

47

Applications on Time-Frequency Analysis

Sampling Theory Nyquist theorem : , B Adaptive sampling

2sf B

[1]

Page 48: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

48

Conclusions and Future work

Comparison among STFT,GT,WDF

Time-frequency analysis apply to image processing?

rec-STFT GT WDF

Complexity ㊣㊣㊣ ㊣㊣ ㊣Clarity ㊣ ㊣㊣ ㊣㊣㊣

勝 !

勝 !

Page 49: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

49

References

[1] Jian-Jiun Ding, Time frequency analysis and wavelet transform class note, the Department of Electrical Engineering, National Taiwan University (NTU), Taipei, Taiwan, 2007.

[2] S. C. Pei and J. J. Ding, ”Relations between Gabor transforms and fractional Fourier transforms and their applications for signal processing”, IEEE Trans. Signal Processing, vol.55,no. 10,pp.4839-4850.

[3] S. Qian and D. Chen, Joint Time-Frequency Analysis: Methods and Applications, Prentice-Hall, 1996.

[4] D. Gabor, ”Theory of communication”, J. Inst. Elec. Eng., vol. 93, pp.429-457, Nov. 1946.

[5] L. B. Almeida, ”The fractional Fourier transform and time-frequency representations, ”IEEE Trans. Signal Processing, vol. 42,no. 11, pp. 3084-3091, Nov. 1994.

[6] K. B. Wolf, “Integral Transforms in Science and Engineering,” Ch. 9: Canonical transforms, New York, Plenum Press, 1979.

Page 50: An Introduction to Time-Frequency Analysis Advisor : Jian-Jiun Ding, Ph. D. Presenter : Ke-Jie Liao Taiwan ROC Taipei National Taiwan University GICE DISP

50

References

[7] X. G. Xia, “On bandlimited signals with fractional Fourier transform,” IEEE Signal Processing Letters, vol. 3, no. 3, pp. 72-74, March 1996.

[8] L. Cohen, Time-Frequency Analysis, Prentice-Hall,

New York, 1995. [9] T. A. C. M. Classen and W. F. G. Mecklenbrauker,

“The Wigner distributiona tool for time-frequency signal analysis; Part I,” Philips J. Res., vol. 35, pp. 217-

250, 1980.