an mdf modeling to compute the seepage field for fill dam

5
831 An FDM Modeling to Compute the Seepage Field for Fill Dam ZHAO Wanhua 1,2 1 Civil Department, Wuhan Polytechnic University, Wuhan, P.R.China, 430023 2 Economics and Management School, Wuhan University, Wuhan, P.R.China, 430072 [email protected] Abstract This Paper derives the differential equation to compute the seepage field based on the Darcy Law and continuity equation, then discrete the differential equation in finite difference method, establish a calculation matrix by changing it into algebraic equation, combined with the boundary condition, the seepage field can be computed. Besides, the seepage of a fill dam with homogeneous material is computed in this modeling, by dividing the grids, considering the boundary condition, the seepage water head is solved and witch can reflect the real engineering. It shows the modeling can compute the similar seepage field to some precision extent. Key words: seepage; numeral simulation; Finite Difference Method As for the filled dam, seepage is another significant reason which causes dam failure, the study to which is benefit to both theory and engineering application. The formal method used in analyzing the seepage flow is hydraulic method, then electronic simulation method occurs, which is used together with hydraulic method to verify each other, so that the more reasonable seepage computation result is achieved. It is difficult to get a precise result because of the simple presume for hydraulic method. It requires a precise result from reference book, in addition to this the seepage area and boundary condition is complicated, therefore, the numeral computation method is necessary. So far, the common methods are Finite Difference Method, Finite Element Method, Boundary Element Method, None Element Method, Numeral Manifold Method, all of these are based on seepage in continue medium theory. The FDM is widely applied in engineering computation as a discrete method, this model is established on FDM. 1. Governing Equation 1.1 Darcy Law Liquid flows among the porous medium, Darcy Law shows the direct proportion relationship between the seepage velocity and the hydraulic gradient and the character of earth will influence it in uniform porous medium. The normal form of Darcy Law is as flowing: dH u k ds = 1 Where: u is the seepage velocity; k is the seepage coefficient; H is the piezometric head on corresponding point, which is the summation for pressure head and the location altitude. Because of the linear relation , Darcy Law is adequate to the laminar flow with linear drag force, excepting the turbulence seepage in big pore like rock filled dam, most seepage can be defined as laminar flow, that why the Darcy Law is applied so widely. When Darcy Law is used in conducting seepage computation, the seepage coefficient k for earth, which could reflect the earth / s seepage character, the value is determined by the shape ,size ,ununiformity coefficient and temperature of earth grain. 1.2 Basic differential equation of motion for seepage If it is considered that the seepage in element is continue, the liquid can not be compressed, the earth framework can not be deformed, the continuity equation for steady seepage can be derived like this:

Upload: endless-love

Post on 13-Sep-2015

239 views

Category:

Documents


3 download

DESCRIPTION

An MDF Modeling to Compute the Seepage Field for Fill Dam

TRANSCRIPT

  • 831

    An FDM Modeling to Compute the Seepage Field for Fill Dam

    ZHAO Wanhua1,2

    1 Civil Department, Wuhan Polytechnic University, Wuhan, P.R.China, 430023

    2 Economics and Management School, Wuhan University, Wuhan, P.R.China, 430072 [email protected]

    AbstractThis Paper derives the differential equation to compute the seepage field based on the Darcy

    Law and continuity equation, then discrete the differential equation in finite difference method, establish

    a calculation matrix by changing it into algebraic equation, combined with the boundary condition, the

    seepage field can be computed. Besides, the seepage of a fill dam with homogeneous material is

    computed in this modeling, by dividing the grids, considering the boundary condition, the seepage water

    head is solved and witch can reflect the real engineering.

    It shows the modeling can compute the similar seepage field to some precision extent.

    Key words: seepage; numeral simulation; Finite Difference Method

    As for the filled dam, seepage is another significant reason which causes dam failure, the study to

    which is benefit to both theory and engineering application. The formal method used in analyzing the seepage flow is hydraulic method, then electronic simulation method occurs, which is used together with

    hydraulic method to verify each other, so that the more reasonable seepage computation result is

    achieved. It is difficult to get a precise result because of the simple presume for hydraulic method. It

    requires a precise result from reference book, in addition to thisthe seepage area and boundary

    condition is complicated, therefore, the numeral computation method is necessary.

    So far, the common methods are Finite Difference Method, Finite Element Method, Boundary

    Element Method, None Element Method, Numeral Manifold Method, all of these are based on seepage

    in continue medium theory. The FDM is widely applied in engineering computation as a discrete

    method, this model is established on FDM.

    1. Governing Equation

    1.1 Darcy Law

    Liquid flows among the porous medium, Darcy Law shows the direct proportion relationship

    between the seepage velocity and the hydraulic gradientand the character of earth will influence it in

    uniform porous medium. The normal form of Darcy Law is as flowing:

    dHu k

    ds=

    1

    Where: u is the seepage velocity; k is the seepage coefficient; H is the piezometric head on

    corresponding point, which is the summation for pressure head and the location altitude. Because of the

    linear relation , Darcy Law is adequate to the laminar flow with linear drag force, excepting the

    turbulence seepage in big pore like rock filled dam, most seepage can be defined as laminar flow, that

    why the Darcy Law is applied so widely.

    When Darcy Law is used in conducting seepage computation, the seepage coefficient k for earth,

    which could reflect the earth/s seepage character, the value is determined by the

    shape ,size ,ununiformity coefficient and temperature of earth grain.

    1.2 Basic differential equation of motion for seepage

    If it is considered that the seepage in element is continue, the liquid can not be compressed, the earth

    framework can not be deformed, the continuity equation for steady seepage can be derived like this:

  • 832

    0yx zuu u

    x y z

    + + =

    2

    Form the equation (1), the projection velocities in three directions can be expressed as:

    x x

    dHu k

    dx=

    y ydH

    u kdy

    = 3

    z z

    dHu k

    dz=

    Then substitute (2) with (3):

    2 2 2

    2 2 20x y z

    H H Hk k k

    x y z

    + + =

    4

    When in isotropy seepage area, the seepage coefficient is the same for all direction, the equation (4) can

    be transformed into:

    2 2 2

    2 2 20

    H H H

    x y z

    + + =

    5

    From the equation (5), for uncompressed steady seepage, the water head accords with the Laplace

    equation, so, the seepage field can be deducted by this equation with boundary condition.

    2. Governing equation discrete and solving

    This model applies the FDM to separate governing equation (5), for 2-dimensional seepage flow

    (Figure 1):

    (i,j)(i-1,j)

    (i,j+1)

    (i+1,j)

    (i,j-1) Figure1. Two Dimensional Difference Grids

    Equation (5) can be expressed in difference scheme:

    ( )

    ( )

    ( 1, ) ( , ) ( , ) ( 1, )

    ( 1, ) ( , ) ( , ) ( 1, )

    ( 1, ) ( 1, ) 2

    ( , 1) ( , ) ( , ) ( , 1)

    ( , 1) ( , ) ( , ) ( , 1)0

    ( , 1) ( , 1) 2

    H i j H i j H i j H i j

    x i j x i j x i j x i j

    x i j x i j

    H i j H i j H i j H i j

    y i j y i j y i j y i j

    y i j y i j

    + +

    +

    + + + =

    +

    6

  • 833

    If the grid size is the same, this equation is simplified to:

    2 2

    ( 1, ) ( 1, ) ( , 1) ( , 1)0

    H i j H i j H i j H i j

    x y

    + + + =

    7

    For the universality of equation(6), the geometric parameter of every node is given, the unknown

    parameters for each algebraic formula are H(i1j)H(ij)H(i+1j)H(ij-1)H(ij+1)which form the following

    matrix to solve the seepage field.

    (1,1) (1,2) (1, 2) (1, 1)

    (2,1) (2,2) (2, 2) (2, 2)

    ( ,1) ( 1, ) ( , 1) ( , ) (

    ... ... ... ... ... ... ... ...

    ... ... ... ... ... ... ... ...

    ... ... ... ...

    ... ... ... ...

    ... ... ... ...

    ... ... ... ...

    ... ... ... ...

    ... ...

    n n

    n n

    i i j i j i j

    K K K K

    K K K K

    K K K K K

    (1,1)

    (1,2)

    ( 1, )

    ( , 1)

    ( , )

    , 1) ( 1, ) ( , 1) ( , 1)

    (

    ( 1,1) ( 1, 1)

    ...

    ...

    ... ... ...

    ... ... ...

    ... ...

    ... ...

    ... ...

    ... ... ... ... ... ... ... ... ... ...

    i j

    i j

    i j

    i j i j i n i j

    i

    n n n

    H

    H

    H

    H

    H

    K K H

    H

    K K

    + + +

    +

    1, )

    0

    ...

    ( 1, 2)

    ( 1, 1)

    j

    H n n

    H n n

    =

    8

    In this matrix, the K(i1j)K (ij)K (i+1j)K (ij-1)K (ij+1) in every row is determined by the geometric

    values of every nodes, others are 0, this matrix can be solved combined with the boundary condition for

    the seepage area, the seepage head can be got in this way. The example is conducted as following.

    3. Engineering Example

    This example computes the seepage field of a homogenous earth dam, the dam has a height of 10m,

    the gradient for both upstream and downstream slops are 1:2, the upstream water level and downstream

    water level is 158.5m and 152.0m relatively, the configuration is showed in Figure2, the material filled

    is homogenous sandy clay, the seepage coefficient k=0.25m/d, the grids are divided as Figure3, there

    are 440 structural elements for the whole computation area. The boundary downstream and upstream

    immerging in water is defined as dank boundary, the dam bottom is considered as waterproof boundary,

    after obtaining the phreatic line, the modeling above can be applied to compute the steady seepage field

    within the seepage area, the results are showed in Figure 4, the parameter is seepage water head, here

    the unit used is total water height difference H, which is 6.5m in this example. It finds that the computation results reflect the real seepage flow in earth dam on the theory side.

    150.0

    158.5

    1:2.0

    160.0

    1:2.0

    152.0

    Figure2. The hydraulic condition and configuration for a homogeneous earth dam

  • 834

    Figure3. The seepage computation grids for a homogeneous earth dam

    90

    80

    70

    60

    50

    40

    30

    20

    10

    150.0

    158.5

    1:2.0

    160.0

    1:2.0

    152.0

    Figure4. The seepage water head contours for a homogeneous earth dam (Unit: 6.5m)

    4. Conclusion and Analyze

    This modeling based on the Darcy Equation and Continuity Equation, derives

    the differential equation to compute the seepage, the discrete is conducted by FDM, changing it into

    algebraic equation and establishing a matrix, which combined with the boundary condition within the

    seepage area, can get a computation seepage field. This paper computes a engineering example of seepage fielda seepage computation in a

    homogenous earth dam, dividing the computation grids, combining with the boundary condition, using

    this model to compute , then get a seepage computation results which fit the real seepage field in theory,

    it concludes that this modeling can compute the seepage in earth dam to some extent. Every coin has

    two sides, the shortages for this model is the presume that the seepage coefficients in three directions are

    the same, when deriving the governing equation, divide out them, that is different with the real dam,

    which influents the precision of the seepage computation,

    However, this model can meet the ordinary need for seepage computation; beside of this, the

    engineering example is used here in two dimensions, the three dimension example is never computed, so

    the rationality of the three dimensional modeling is still a developing area in this research.

    References [1] Mao Changxi.Seepage computation analyze and controlling(The second edition) [M].Beijing: China

    water conservancy and hydro-power press2003.9

    [2] Mao Changxi, Duan Xiangbao, Li Zuyi. Seepage numeral computation and software application

    [M].Nanjing: Hehai University Press1999.9

    [3] Zhu Yunming, Gong Daoyong. The computation for Three dimension saturated and un saturated

    seepage and the transgression surface processing [J].Advance of Hydraulic Science.2003.1,Vol.14

    No.1, 6771

    [4] Yan Fei, Zhan Meili,Su Baoyu. Model test for unsaturated seepage in dyke[J]. Geotechnical

    Engineering Journal. 2004.3, Vol.26 No.2,296298

  • 835

    [5] Shi Weimin, Zheng Yingren. Stability analysis for landslide when water falling in reservoir [J].

    Hydraulic Journal.2003.3(3),7680

    [6] Zhang Jiafa. The finite element simulation for three dimension saturated and unsaturated steady and

    unsteady seepage [J]. Journal of Yangtse River sciences academy . 1997.9, Vo1.4 No.3, 3538

    [7] Yu Wei. MATLAB used to solve Partial differential equation [M].Wuhan: Wuhan University Press

    2004

    [8] Zhou Chuangbing, Xiong Wenlin, Liang Yeguo. A new method for solving unpressurized seepage

    field [J].Study and Advance of Hydraulic Dynamics,1996,11(5): 528534.

    [9] Desai C. S. Finite element residual schemes for unconfined flow[J].International Journal for

    Numerical Methods in Engineering,1976,10 (6):14151 418.