an mdo framework for the design of wind turbines...cp max: an mdo framework for the design of wind...

37
Cp-Max: an MDO framework for the design of wind turbines L. Sartori, Politecnico di Milano 5° Wind Energy Systems Engineering Workshop, Pamplona, Spain October, 4 th 2019

Upload: others

Post on 27-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Cp-Max: an MDO framework for the design of wind turbines

    L. Sartori, Politecnico di Milano

    5° Wind Energy Systems Engineering Workshop, Pamplona, Spain October, 4th 2019

  • -

    RESEARCH FRAMEWORK

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    Research framework

    • Wind turbines are steadily upscaling

    • Some design challenges:

    o High flexibility of elements

    o Unsteady, non-uniform inflow

    o Increased aero-elastic couplings

    o Increased dynamic complexity

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    Research framework

    • Multi-disciplinary design algorithms (MDO):

    o Improve physical description (modelling fidelity)

    o Implement a system-level design based on COE

    o Manage a wide number of different variables

    o Significant research in the last years

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    CP-MAX:

    A MULTI-DISCIPLINARY DESIGN PHILOSOPHY

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    Cp-Max Timeline

    2014: Roll-out of the 330kW-16m blade

    2011: Roll-out of the 2MW-45m blade

    2012: Roll-out of the 700kW-23m blade

    2007: First implementation, parametric design only

    2011: External 3D FEM module

    2012 - 2015: Studies about aero-structural design

    2016: Cp-Max in its new multi-level architecture

    2017: Prebend design module

    2017-2019: Extensive testing and design studies

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

    Cp-Max development team

    Prof. Carlo L. Bottasso

    Chair of Wind Energy

    Technisce Universität München

    [email protected]

    Prof. Alessandro Croce

    Head of PoliWind Lab

    Politecnico di Milano

    [email protected]

    Luca Sartori

    Post-doc researcher

    Politecnico di Milano

    [email protected]

    Carlo R. Sucameli

    PhD Candidate

    Technisce Universität München

    [email protected]

    Helena Canet Tarrés

    PhD Candidate

    Technisce Universität München

    [email protected]

  • -

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

    Software architecture

  • -

    Multi-body modelling of wind turbines

    Simulation tool: Cp-Lambda

    • Multibody solver

    • Lifting line + BEM Inflow

    • Spatial grid + wind time history

    • Nonlinear beam formulation (Bauchau et al. 2001)

    • Fully-populated mass/stiffness matrix

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    MACRO DESIGN LOOP

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    Macro Design Loop (MDL)

    𝛾

    • Optimizes global features of the turbine to minimize COE

    • Macro design variables:

    𝑔 𝑔 𝑔 𝑔 𝒑𝒈= [ 𝑅, 𝐻, 𝜑, 𝛾, 𝜎𝑐 , 𝜏𝑐 , 𝜎𝑡 , 𝜏𝑡 ]

    𝜑

    Shape Rotor radius 𝐻 parameters

    Hub height

    Rotor tilt angle

    𝑅

    Blade coning

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    Macro Design Loop (MDL)

    • The shape parameters are computed from chord and thickness distributions:

    Ch

    ord

    c(r

    ) [m

    ]

    r/R [-]

    η [-]

    Th

    ickn

    ess τ

    (η)

    [-]

    Rotor solidity 𝑔 𝜎𝑐 =

    𝑔 = Rotor tapering 𝜏𝑐

    𝑔 Thickness solid area 𝜎𝑡

    𝑔

    =

    Thickness weighted area 𝜏𝑡 =

    𝑅 3 𝑐 𝑟 𝑑𝑟

    0

    𝜋𝑅2

    𝑅 𝑑𝑟 𝑟 𝑟𝑐

    0𝑅

    𝑑𝑟 𝑟 𝑐 0

    1 1 𝜂𝑑𝜂 𝑡

    100 0

    1 𝜂𝑑𝜂 𝑡𝜂

    01

    𝜂𝑑𝜂 𝑡 0

    • They link the MDL with the submodules

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    Macro Design Loop (MDL)

    • Simplified workflow of the MDL:

    MDL (𝐶𝑂𝐸∗, 𝒑∗𝒈) = 𝑀𝑖𝑛𝐶𝑂𝐸(𝒑𝒂, 𝒑𝒃, 𝒑𝒔, 𝒑𝒈,𝑫)

    ∗ ADS ( 𝒑𝒂, 𝐴𝐸𝑃

    ∗) = 𝑀𝑎𝑥𝐴𝐸𝑃(𝒑𝒂, 𝒑𝒃, 𝒑𝒔, 𝒑𝒈, 𝑫) ∗ CST ( 𝒓ε

    ∗) = 𝐶𝑟𝑒𝑎𝑡𝑒𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐿𝑎𝑤𝑠( 𝒑𝒂, 𝒑𝒃, 𝒑𝒔, 𝒑𝒈, 𝑫) ∗ ∗ PDS ( 𝒑𝒃, 𝐴

    ∗𝛿) = 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑃𝑟𝑒𝑏𝑒𝑛𝑑( 𝒑𝒂, 𝒑𝒃, 𝒑𝒔, 𝒑𝒈, 𝑫, 𝒓ε

    ∗ ) SDS ∗ ∗ ∗ ∗ ) ( 𝒑𝒔, 𝐼𝐶𝐶

    ∗) = 𝑀𝑖𝑛𝐼𝐶𝐶( 𝒑𝒂, 𝒑𝒃 , 𝒑𝒔, 𝒑𝒈,𝑫, 𝒓ε

    ∗ ∗ ∗ 𝐶𝑂𝐸 = 𝐶𝑜𝑠𝑡𝑀𝑜𝑑𝑒𝑙(𝐴𝐸𝑃∗, 𝐼𝐶𝐶∗, 𝒑𝒂 , 𝒑𝒃 , 𝒑𝒔 , 𝒑𝒈, 𝑫, 𝒓ε∗ )

    • Available cost models: Scaling (NREL, 2006), Industrial (SANDIA), Refined scaling (INNWIND)

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    DESIGN SUBMODULES

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    Aerodynamic Design Submodule (ADS)

    • Optimizes the aerodynamic design variables 𝒑𝒂 of the rotor to maximize AEP

    𝒑𝒂 ∗ , 𝐴𝐸𝑃∗ = max

    𝒑𝒂 (𝐴𝐸𝑃 𝒑𝒂 , 𝒑𝒃, 𝒑𝒔, 𝒑𝑔 )

    s.t.:

    𝒗𝒕𝒊𝒑 ≤ 𝒗𝒕𝒊𝒑 𝒎𝒂𝒙

    𝒈𝒂 𝒑𝒂 , 𝒑𝒈 ≤ 𝟎

    Design variables:

    • Chord

    • Twist

    • Thickness (position of airfoils)

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    Aerodynamic Design Submodule (ADS)

    Chord, twist and thickness are parameterized by multiplicative/additive bumping functions

    𝑐 η = 𝑠𝑐(η)𝑐𝑏𝑙(η) 𝜃 η = 𝑠𝜃(η)𝜃𝑏𝑙(η) 𝑡 η = 𝑠𝑡(η)𝑡𝑏𝑙(η)

    𝑠𝑐(η) = 𝒏𝑐 η 𝒄 𝑠𝜃(η) = 𝒏𝜃(η)𝜽 𝑠𝑡(η) = 𝒏𝑡 η 𝒕

    n are spline shape functions

    θ, c and t are the associated nodal parameters

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    Aerodynamic Design Submodule (ADS)

    • Theoretical AEP from flexible Cp-TSR curves

    • The structure is frozen

    • Blade shape and thickness constrained

    by the MDL: 𝐴𝑒𝑟𝑜(𝑐 η , 𝑅) = 𝑔 𝜎𝑐 𝜎𝑐 𝐴𝑒𝑟𝑜(𝑐 η , η, 𝑅) = 𝑔 𝜏𝑐 𝜏𝑐 𝐴𝑒𝑟𝑜(𝑡 η , 𝑅) = 𝑔 𝜎𝑡 𝜎𝑡 𝐴𝑒𝑟𝑜(𝑡 η , η, 𝑅) = 𝑔 𝜏𝑡 𝜏𝑡

    • Other constraints on max chord, tip speed, shape regularity

    Ch

    ord

    c(r

    ) [m

    ]

    r/R [-]

    η [-]

    Th

    ickn

    ess τ

    (η)

    [-]

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    Control Synthesis Tool (CST)

    ∗ • Determines the control laws 𝒓𝜺 of the turbine

    • Required to perform DLC simulations

    • Available options:

    o PID on pitch + LUT on torque

    o PID on pitch + PID on torque (DTU)

    o MIMO-LQR model based

    o Individual Pitch Control

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    0.50

    0 2 4 6 8 10 12 14 16 18 20

    No torque to promote rotor acceleration

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    𝒑𝒃 ∗ , 𝐴𝛿

    ∗ = min 𝒑𝒃

    (𝐴𝛿 ∗ 𝒑𝒂

    ∗ , 𝒑𝒃, 𝒑𝒔, 𝒑𝑔, 𝑟𝜀 ∗ )

    s.t.:

    𝒈𝒂 𝒑𝒂 , 𝒑𝒈 ≤ 𝟎

    Design variables:

    • Prebend shape

    Prebend Design Submodule (PDS)

    • Optimizes prebend to maximize the deformed swept area

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    Prebend Design Submodule (PDS)

    • Prebend is parameterized by a Bézier curve

    • Static analysis at rated conditions

    • Possible constraints on:

    o Max tip prebend

    o Max steepness

    o Shape regularity

    Max (+) prebend

    Max (-) prebend

    Max steepness

    • No associated variables in the MDL Horizontal tangent

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    Structural Design Submodule (SDS)

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

    • Optimizes internal structure of blade, tower to minimize the ICC

    𝒑𝒔 ∗ , 𝐼𝐶𝐶∗ = min

    𝒑𝒔 (𝐼𝐶𝐶 𝒑𝒂

    ∗ , 𝒑𝒃 ∗ , 𝒑𝒔, 𝒑𝑔, 𝑟𝜀

    ∗ )

    s.t.:

    𝒈𝒔 𝒑𝒂 ∗ , 𝒑𝒃

    ∗ , 𝒑𝒔, 𝒑𝑔, 𝑟𝜀 ∗ ≤ 𝟎

    Design variables:

    • Thickness of blade structural components

    • Wall thickness of tower segments

    • Diameter of tower segments

  • -

    Structural Design Submodule (SDS)

    • Thickness of elements is defined at • Sectors defined along tower height selected stations

    • Mass, stiffness, stress/strain and • Sectional mass, stiffness computed by buckling computed analytically

    ANBA

    • Loads and deformations from

    Cp-Lambda sensors

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    Structural Design Submodule (SDS)

    Computation of DLC

    Aero-elastic optimization

    3D FEM verification

    Coarse solution

    Loads Displacements

    Refined solution

    Constraints:

    Blade tip deflection

    Frequencies

    Manufacturing limits

    Ultimate stress, strain

    Fatigue damage

    Buckling

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    AN EXAMPLE: DESIGN OF THE POLIMI

    20MW BASELINE WT

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    Definition of the initial 20 MW model

    • Initial aeroelastic definition obtained from upscaling the INNWIND.EU 10 MW

    Rated power 20 MW Rotor radius 126 m

    IEC Class IC Hub radius 3.95 m

    Rotor orientation Clockwise, upwind Hub height 168 m

    Control Variable speed Tower height 163 m

    Cut-In speed 4 m/s Blade mass 118 ton

    Cut-Out speed 25 m/s Hub mass 278 ton

    Rated wind speed 11.4 m/s Nacelle mass 1098 ton

    Max tip speed 90 m/s Tower mass 1779 ton

    Cone angle 2.5° Generator Inertia 8488 kg/m2

    Tilt angle 5° Generator efficiency 94%

    Reference: INNWIND Deliverable 1.25: PI-based assessment (application) on the results of WP2-WP4 for 20 MW wind turbines, June 2017

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

    http:INNWIND.EU

  • -

    Design assumptions

    • Classic spar-box layout

    • No initial prebend

    • Fixed-radius optimization

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    Baseline vs. Redesign comparison

    Chord Prebend

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    Baseline vs. Redesign comparison

    PS Spar Cap thickness SS Spar Cap thickness

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    Structural solution of the redesigned rotor

    Shell Panels LE Panels

    Spar Panels Shear Webs

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    Baseline vs. Redesign comparison

    Units Baseline 20 MW Redesign 20 MW Var. %

    Rotor speed [RPM] 6.77 6.82 + 0.74

    Regulation Max tip speed

    Optimal TSR

    [m/s]

    [-]

    89.4

    7.73

    89.93

    7.86

    + 0.59

    + 1.68

    Rated wind speed [m/s] 11.56 11.45 - 0.95

    Design parameters

    Max chord

    Prebend at tip

    Spar caps fiber angle

    [m]

    [m]

    [deg]

    8.77

    0

    0

    8.27

    4

    6

    - 5.70

    -

    -

    Total blade mass [ton] 113.5 107.8 - 5.05

    KPIs AEP [GWh/yr] 91.63 91.74 + 0.12

    COE [€/MWh] 84.92 84.56 - 0.42

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    Baseline vs. Redesign comparison

    Ultimate loads Fatigue loads

    BR Blade Root

    HC Hub Center

    TT Tower Top

    TB Tower Base

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    STATE OF THE ART AND OUTLOOK

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    Completed research projects

    • Definition of 10~20 MW reference wind turbines

    • Definition of a 3.4 MW reference WT for the IEA-Task 37 project

    • Integration of active/passive load mitigation in the design

    • Development of upwind/downwind two-bladed rotors

    • Study of the impact of WF control on a single WT design

    • Global WT design with noise emissions constraints

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

    Completed industrial projects

    2MW - 45m

    300kW - 16m 700kW - 24m

    100kW - 10m

    1m (for wind tunnel)

  • -

    Ongoing activities

    • Integration of airfoil design

    • Development of numerical tools for aero-acoustic modelling and design

    • Application of the design to down-scaled WTs for wind tunnel

    • Integration of WF-level simulation and design modules

    • Integration of additional sub-component design modules (DT & generator, support structure)

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    Selected references

    P. Bortolotti, C.L. Bottasso, A. Croce, L. Sartori: Integration of multiple passive load mitigation technologies by automated design

    optimization—The case study of a medium‐size onshore wind turbine. Wind Energy, 2019, 22: 65–79, doi:10.1002/we.2270

    H. Canet, P. Bortolotti, C.L. Bottasso: Gravo-aeroelastic scaling of very large wind turbines to wind tunnel size.

    J. Phys. Conf. Ser., 2018, 1037, 042006, doi:10.1088/1742-6596/1037/4/042006

    P. Bortolotti, C.R. Sucameli, A. Croce, C.L. Bottasso: Integrated design optimization of wind turbines with noise emission constraints.

    J. Phys. Conf. Ser., 2018, 1037, 042005, doi:10.1088/1742-6596/1037/4/042005

    L. Sartori, P. Bortolotti, A. Croce, C.L. Bottasso: Integration of prebend optimization in a holistic wind turbine design tool.

    J. Phys. Conf. Ser., 2016, 753, 062006, doi:10.1088/1742-6596/753/6/062006

    P. Bortolotti, A. Croce, and C.L. Bottasso: Combined preliminary–detailed design of wind turbines.

    Wind Energ. Sci., 1, 1–18, 2016, doi:10.5194/wes-1-1-2016

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

  • -

    THANK YOU FOR YOUR ATTENTION

    L. Sartori

    Cp Max: an MDO framework for the design of wind turbines

    Cp-Max: an MDO framework for the design of wind turbines Cp-Max: an MDO framework for the design of wind turbines L. Sartori, Politecnico di Milano 5° Wind Energy Systems Engineering Workshop, Pamplona, Spain October, 42019 th

    FigureRESEARCH FRAMEWORK L. Sartori Cp Max: an MDO framework for the design of wind turbines Research framework• • Wind turbines are steadily upscaling

    • • • Some design challenges:

    o o o High flexibility of elements

    o o Unsteady, non-uniform inflow

    o o Increased aero-elastic couplings

    o o Increased dynamic complexity

    FigureL. Sartori Cp Max: an MDO framework for the design of wind turbines Research framework • Multi-disciplinary design algorithms (MDO): o o o Improve physical description (modelling fidelity)

    o o Implement a system-level design based on COE

    o o Manage a wide number of different variables

    o o Significant research in the last years

    FigureL. Sartori Cp Max: an MDO framework for the design of wind turbines FigureCP-MAX: A MULTI-DISCIPLINARY DESIGN PHILOSOPHY L. Sartori Cp Max: an MDO framework for the design of wind turbines Cp-Max Timeline 2014: Roll-out of the 330kW-16m blade 2011: Roll-out of the 2MW-45m blade 2012: Roll-out of the 700kW-23m blade 2007: First implementation, parametric design only 2011: External 3D FEM module 2012 -2015: Studies about aero-structural design 2012 -2015: Studies about aero-structural design 2016: Cp-Max in its new multi-level architecture 2017: Prebend design module 2017-2019: Extensive testing and design studies L. Sartori Cp Max: an MDO framework for the design of wind turbines L. Sartori Cp Max: an MDO framework for the design of wind turbines Cp-Max development team Prof. Carlo L. Bottasso Chair of Wind Energy Technisce Universität Mchen [email protected] Prof. Alessandro Croce Head of PoliWind Lab Politecnico di Milano [email protected] Luca Sartori Post-doc researcher Politecnico di Milano [email protected] Carlo R. Sucameli PhD Candidate Technisce Universität Mchen [email protected] Helena Canet Tarrés PhD Candidate Technisce Universität Mchen helena.canL. Sartori Cp Max: an MDO framework for the design of wind turbines Software architecture Multi-body modelling of wind turbines Simulation tool: Cp-Lambda • • • Multibody solver

    • • Lifting line + BEM Inflow

    • • Spatial grid + wind time history

    • • Nonlinear beam formulation (Bauchau et al. 2001)

    • • Fully-populated mass/stiffness matrix

    FigureL. Sartori Cp Max: an MDO framework for the design of wind turbines FigureMACRO DESIGN LOOP L. Sartori Cp Max: an MDO framework for the design of wind turbines FigureMacro Design Loop (MDL) 𝛾 • • • Optimizes global features of the turbine to minimize COE

    • • Macro design variables:

    𝑔𝑔 𝑔𝑔 𝒑= [ 𝑅, 𝐻, 𝜑, 𝛾, 𝜎, 𝜏, 𝜎, 𝜏] Figure𝒈𝑐 𝑐 𝑡 𝑡

    𝜑 Figure

    Shape Rotor radius 𝐻 parameters Hub height Rotor tilt angle Figure𝑅 L. Sartori Cp Max: an MDO framework for the design of wind turbines Blade coning Blade coning Blade coning

    Macro Design Loop (MDL) • The shape parameters are computed from chord and thickness distributions: Chord c(r) [m] r/R [-] η [-] Thickness τ(η) [-] Rotor solidity 𝑔

    𝜎= 𝑐

    𝑔 = Rotor tapering 𝜏𝑔 𝑐

    Thickness solid area 𝜎𝑔 𝑡

    = Thickness weighted area 𝜏= 𝑡

    𝑅 3 𝑐 𝑟 𝑑𝑟 Figure

    00

    𝜋𝑅2

    𝑅 𝑑𝑟 𝑟 𝑟𝑐 Figure0

    𝑅 𝑑𝑟 𝑟 𝑐 Figure0

    11 𝜂𝑑𝜂 𝑡Figure

    100 0 1 𝜂𝑑𝜂 𝑡𝜂Figure0

    1 𝜂𝑑𝜂 𝑡 Figure0

    • They link the MDL with the submodules L. Sartori Cp Max: an MDO framework for the design of wind turbines Macro Design Loop (MDL) • Simplified workflow of the MDL: MDL (𝐶𝑂𝐸, 𝒑) = 𝑀𝑖𝑛𝐶𝑂𝐸(𝒑,𝒑,𝒑,𝒑,𝑫) ∗ ∗∗𝒈𝒂𝒃𝒔𝒈

    ( 𝒑, 𝐴𝐸𝑃) = 𝑀𝑎𝑥𝐴𝐸𝑃(𝒑, 𝒑, 𝒑, 𝒑, 𝑫) ADS 𝒂∗𝒂𝒃𝒔𝒈

    ∗ CST ( 𝒓) = 𝐶𝑟𝑒𝑎𝑡𝑒𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐿𝑎𝑤𝑠( 𝒑, 𝒑, 𝒑, 𝒑, 𝑫) ε∗𝒂𝒃𝒔𝒈

    ∗∗ PDS (𝒑,𝐴) = 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑃𝑟𝑒𝑏𝑒𝑛𝑑(𝒑,𝒑,𝒑,𝒑,𝑫, 𝒓) ∗ ∗∗ ∗𝒃∗𝛿𝒂𝒃𝒔𝒈ε∗SDS )

    (𝒑,𝐼𝐶𝐶) = 𝑀𝑖𝑛𝐼𝐶𝐶(𝒑, 𝒑,𝒑,𝒑,𝑫, 𝒓𝒔∗𝒂𝒃𝒔𝒈ε

    ∗∗∗ 𝐶𝑂𝐸 = 𝐶𝑜𝑠𝑡𝑀𝑜𝑑𝑒𝑙(𝐴𝐸𝑃,𝐼𝐶𝐶, 𝒑, 𝒑, 𝒑,𝒑,𝑫, 𝒓) ∗∗𝒂𝒃𝒔𝒈ε∗

    • Available cost models: Scaling (NREL, 2006), Industrial (SANDIA), Refined scaling (INNWIND) L. Sartori Cp Max: an MDO framework for the design of wind turbines FigureDESIGN SUBMODULES L. Sartori Cp Max: an MDO framework for the design of wind turbines Aerodynamic Design Submodule (ADS) • Optimizes the aerodynamic design variables 𝒑of the rotor to maximize AEP 𝒂

    𝒑𝒂 ∗ , 𝐴𝐸𝑃∗ = max 𝒑𝒂 (𝐴𝐸𝑃 𝒑𝒂 , 𝒑𝒃, 𝒑𝒔, 𝒑𝑔 ) s.t.: 𝒗𝒕𝒊𝒑 ≤ 𝒗𝒕𝒊𝒑 𝒎𝒂𝒙 𝒈𝒂 𝒑𝒂 , 𝒑𝒈 ≤ 𝟎 Design variables: • Chord • Twist • Thickness (position of airfoils) L. Sartori Cp Max: an MDO framework for the design of wind turbines Aerodynamic Design Submodule (ADS) Chord, twist and thickness are parameterized by multiplicative/additive bumping functions 𝑐 η Figure

    𝑐𝑏𝑙𝜃 η = 𝑠(η)𝑐(η)

    𝜃𝑏𝑙𝑡 η = 𝑠(η)𝜃(η)

    𝑡𝑏𝑙= 𝑠(η)𝑡(η)

    𝑠(η) = 𝒏η 𝒄 𝑐𝑐 Figure

    𝑠(η) = 𝒏(η)𝜽 𝜃𝜃

    𝑠(η) = 𝒏η 𝒕 𝑡𝑡 Figure

    Figuren are spline shape functions θ, c and t are the associated nodal parameters FigureL. Sartori Cp Max: an MDO framework for the design of wind turbines Aerodynamic Design Submodule (ADS) • • • Theoretical AEP from flexible Cp-TSR curves

    • • The structure is frozen

    • • Blade shape and thickness constrained by the MDL:

    𝐴𝑒𝑟𝑜(𝑐 η , 𝑅) = Figure𝑔

    𝜎𝑐 𝐴𝑒𝑟𝑜𝜎𝑐 (𝑐 η , η, 𝑅) = Figure𝑔

    𝜏𝑐 𝐴𝑒𝑟𝑜𝜏𝑐 (𝑡 η , 𝑅) = Figure𝑔

    𝜎𝜎𝑡

    𝐴𝑒𝑟𝑜𝜎𝑡 (𝑡 η , η, 𝑅) = Figure𝑔

    𝜏𝜏𝜏𝑡

    𝜏𝜏𝑡

    • Other constraints on max chord, tip speed, shape regularity Chord c(r) [m] r/R [-] η [-] Thickness τ(η) [-] L. Sartori Cp Max: an MDO framework for the design of wind turbines Control Synthesis Tool (CST) ∗ • • • Determines the control laws 𝒓of the turbine 𝜺

    • • Required to perform DLC simulations

    • • • Available options:

    o o o PID on pitch + LUT on torque

    o o PID on pitch + PID on torque (DTU)

    o o MIMO-LQR model based

    o o Individual Pitch Control

    No torque to promote rotor acceleration L. Sartori Cp Max: an MDO framework for the design of wind turbines 𝒑𝒃 ∗ , 𝐴𝛿 ∗ = min 𝒑𝒃 (𝐴𝛿 ∗ 𝒑𝒂 ∗ , 𝒑𝒃, 𝒑𝒔, 𝒑𝑔, 𝑟𝜀 ∗ ) s.t.: 𝒈𝒂 𝒑𝒂 , 𝒑𝒈 ≤ 𝟎 Design variables: • Prebend shape Prebend Design Submodule (PDS) • • • Optimizes prebend to maximize the deformed swept area

    • • Prebend is parameterized by a Bézier curve

    • • Static analysis at rated conditions

    • • • Possible constraints on:

    o o o Max tip prebend

    o o Max steepness

    o o Shape regularity

    L. Sartori Cp Max: an MDO framework for the design of wind turbines Prebend Design Submodule (PDS) FigureMax (+) prebend Max (-) prebend Max steepness Figure• Horizontal tangent No associated variables in the MDL

    L. Sartori Cp Max: an MDO framework for the design of wind turbines Structural Design Submodule (SDS) L. Sartori Cp Max: an MDO framework for the design of wind turbines • Optimizes internal structure of blade, tower to minimize the ICC 𝒑𝒔 ∗ , 𝐼𝐶𝐶∗ = min 𝒑𝒔 (𝐼𝐶𝐶 𝒑𝒂 ∗ , 𝒑𝒃 ∗ , 𝒑𝒔, 𝒑𝑔, 𝑟𝜀 ∗ ) s.t.: 𝒈𝒔 𝒑𝒂 ∗ , 𝒑𝒃 ∗ , 𝒑𝒔, 𝒑𝑔, 𝑟𝜀 ∗ ≤ 𝟎 Design variables: • Thickness of blade structural components • Wall thickness of tower segments • Diameter of tower segments Structural Design Submodule (SDS) • • • • Thickness of elements is defined at • Sectors defined along tower height selected stations

    • Mass, stiffness, stress/strain and

    • • Sectional mass, stiffness computed by

    buckling computed analytically ANBA • Loads and deformations from Cp-Lambda sensors FigureFigureFigureL. Sartori Cp Max: an MDO framework for the design of wind turbines Structural Design Submodule (SDS) Computation of DLC Aero-elastic optimization 3D FEM verification Coarse solution Loads Displacements Refined solution Constraints: Blade tip deflection Frequencies Manufacturing limits Ultimate stress, strain Fatigue damage Buckling L. Sartori Cp Max: an MDO framework for the design of wind turbines FigureAN EXAMPLE: DESIGN OF THE POLIMI 20MW BASELINE WT L. Sartori Cp Max: an MDO framework for the design of wind turbines Definition of the initial 20 MW model • Initial aeroelastic definition obtained from upscaling the INNWIND.EU 10 MW

    Rated power Rated power Rated power 20 MW Rotor radius 126 m

    IEC Class IEC Class IC Hub radius 3.95 m

    Rotor orientation Rotor orientation Clockwise, upwind Hub height 168 m

    Control Control Variable speed Tower height 163 m

    Cut-In speed Cut-In speed 4 m/s Blade mass 118 ton

    Cut-Out speed Cut-Out speed 25 m/s Hub mass 278 ton

    Rated wind speed Rated wind speed 11.4 m/s Nacelle mass 1098 ton

    Max tip speed Max tip speed 90 m/s Tower mass 1779 ton

    Cone angle Cone angle 2.5° Generator Inertia 8488 kg/m2

    Tilt angle Tilt angle 5° Generator efficiency 94%

    Reference: INNWIND Deliverable 1.25: PI-based assessment (application) on the results of WP2-WP4 for 20 MW wind turbines, June 2017 L. Sartori Cp Max: an MDO framework for the design of wind turbines Design assumptions • • • Classic spar-box layout

    • • No initial prebend

    • • Fixed-radius optimization

    FigureFigureL. Sartori Cp Max: an MDO framework for the design of wind turbines Baseline vs. Redesign comparison Chord Prebend FigureL. Sartori Cp Max: an MDO framework for the design of wind turbines Baseline vs. Redesign comparison PS Spar Cap thickness SS Spar Cap thickness FigureL. Sartori Cp Max: an MDO framework for the design of wind turbines Structural solution of the redesigned rotor Shell Panels LE Panels FigureSpar Panels Shear Webs FigureL. Sartori Cp Max: an MDO framework for the design of wind turbines Baseline vs. Redesign comparison Units Units Units Baseline 20 MW Redesign 20 MW Var. %

    Rotor speed Rotor speed [RPM] 6.77 6.82 + 0.74

    Regulation Regulation Max tip speed Optimal TSR [m/s] [-] 89.4 7.73 89.93 7.86 + 0.59 + 1.68

    TRRated wind speed [m/s] 11.56 11.45 -0.95

    Design parameters Design parameters Max chord Prebend at tip Spar caps fiber angle [m] [m] [deg] 8.77 0 0 8.27 4 6 -5.70 --

    TRTotal blade mass [ton] 113.5 107.8 -5.05

    KPIs KPIs AEP [GWh/yr] 91.63 91.74 + 0.12

    TRCOE [€/MWh] 84.92 84.56 -0.42

    L. Sartori Cp Max: an MDO framework for the design of wind turbines Baseline vs. Redesign comparison FigureUltimate loads Fatigue loads

    BR Blade Root HC Hub Center TT Tower Top TB Tower Base FigureFigureL. Sartori Cp Max: an MDO framework for the design of wind turbines FigureSTATE OF THE ART AND OUTLOOK L. Sartori Cp Max: an MDO framework for the design of wind turbines Completed research projects • • • Definition of 10~20 MW reference wind turbines

    • • Definition of a 3.4 MW reference WT for the IEA-Task 37 project

    • • Integration of active/passive load mitigation in the design

    • • Development of upwind/downwind two-bladed rotors

    • • Study of the impact of WF control on a single WT design

    • • Global WT design with noise emissions constraints

    • • Integration of airfoil design

    • • Development of numerical tools for aero-acoustic modelling and design

    • • Application of the design to down-scaled WTs for wind tunnel

    • • Integration of WF-level simulation and design modules

    • • Integration of additional sub-component design modules (DT & generator, support structure)

    FigureL. Sartori Cp Max: an MDO framework for the design of wind turbines L. Sartori Cp Max: an MDO framework for the design of wind turbines Completed industrial projects 2MW -45m 300kW -16m 700kW -24m 100kW -10m 1m (for wind tunnel) Ongoing activities L. Sartori Cp Max: an MDO framework for the design of wind turbines Selected references FigureP. Bortolotti, C.L. Bottasso, A. Croce, L. Sartori: Integration of multiple passive load mitigation technologies by automated design optimization—The case study of a medium‐size onshore wind turbine. Wind Energy, 2019, 22: 65–79, doi:10.1002/we.2270 H. Canet, P. Bortolotti, C.L. Bottasso: Gravo-aeroelastic scaling of very large wind turbines to wind tunnel size. J. Phys. Conf. Ser., 2018, 1037, 042006, doi:10.1088/1742-6596/1037/4/042006 P. Bortolotti, C.R. Sucameli, A. Croce, C.L. Bottasso: Integrated design optimization of wind turbines with noise emission constraints. J. Phys. Conf. Ser., 2018, 1037, 042005, doi:10.1088/1742-6596/1037/4/042005 L. Sartori, P. Bortolotti, A. Croce, C.L. Bottasso: Integration of prebend optimization in a holistic wind turbine design tool. J. Phys. Conf. Ser., 2016, 753, 062006, doi:10.1088/1742-6596/753/6/062006 P. Bortolotti, A. Croce, and C.L. Bottasso: Combined preliminary–detailed design of wind turbines. Wind Energ. Sci., 1, 1–18, 2016, doi:10.5194/wes-1-1-2016 L. Sartori Cp Max: an MDO framework for the design of wind turbines FigureTHANK YOU FOR YOUR ATTENTION L. Sartori Cp Max: an MDO framework for the design of wind turbines