an svd in spherical surface wave tomographyqmi/presentations/2017rio.pdf · rio de janeiro, 2...

68
An SVD in Spherical Surface Wave Tomography Chemnitz University of Technology, Faculty of Mathematics An SVD in Spherical Surface Wave Tomography Michael Quellmalz (joint work with Ralf Hielscher and Daniel Potts) Chemnitz University of Technology Faculty of Mathematics New Trends in Parameter Identification for Mathematical Models Chemnitz Symposium on Inverse Problems on Tour Rio de Janeiro, 2 November 2017 2 November 2017 · Michael Quellmalz 1 / 24 tu-chemnitz.de/ qmi

Upload: trinhlien

Post on 11-Mar-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

An SVD in Spherical Surface Wave TomographyChemnitz University of Technology, Faculty of Mathematics

An SVD in Spherical Surface Wave Tomography

Michael Quellmalz(joint work with Ralf Hielscher and Daniel Potts)

Chemnitz University of TechnologyFaculty of Mathematics

New Trends in Parameter Identification for Mathematical ModelsChemnitz Symposium on Inverse Problems on Tour

Rio de Janeiro, 2 November 2017

2 November 2017 · Michael Quellmalz 1 / 24 tu-chemnitz.de/∼qmi

An SVD in Spherical Surface Wave Tomography

Content

1. IntroductionMotivation

2. Arc transformDefinitionSingular value decomposition

3. Special casesArcs starting in a fixed pointRecovery of local functionsArcs with fixed length

2 November 2017 · Michael Quellmalz 2 / 24 tu-chemnitz.de/∼qmi

Introduction

Content

1. IntroductionMotivation

2. Arc transformDefinitionSingular value decomposition

3. Special casesArcs starting in a fixed pointRecovery of local functionsArcs with fixed length

2 November 2017 · Michael Quellmalz 3 / 24 tu-chemnitz.de/∼qmi

Introduction

Funk–Radon transformI Sphere S2 = ξ ∈ R3 : ‖ξ‖ = 1I Function f : S2 → C

I Funk–Radon transform (a.k.a. Funktransform or spherical Radontransform)

F : C(S2)→ C(S2),

Ff(ξ) =

∫〈ξ,η〉=0

f(η) dλ(η)

Theorem [Funk 1911]

Any even function f can be reconstructed from Ff .

2 November 2017 · Michael Quellmalz 4 / 24 tu-chemnitz.de/∼qmi

Introduction

Funk–Radon transformI Sphere S2 = ξ ∈ R3 : ‖ξ‖ = 1I Function f : S2 → C

I Funk–Radon transform (a.k.a. Funktransform or spherical Radontransform)

F : C(S2)→ C(S2),

Ff(ξ) =

∫〈ξ,η〉=0

f(η) dλ(η)

Theorem [Funk 1911]

Any even function f can be reconstructed from Ff .

2 November 2017 · Michael Quellmalz 4 / 24 tu-chemnitz.de/∼qmi

Introduction

Funk–Radon transformI Sphere S2 = ξ ∈ R3 : ‖ξ‖ = 1I Function f : S2 → C

I Funk–Radon transform (a.k.a. Funktransform or spherical Radontransform)

F : C(S2)→ C(S2),

Ff(ξ) =

∫〈ξ,η〉=0

f(η) dλ(η)

Theorem [Funk 1911]

Any even function f can be reconstructed from Ff .

2 November 2017 · Michael Quellmalz 4 / 24 tu-chemnitz.de/∼qmi

IntroductionMotivation

Spherical surface wave tomography

I Seismic waves propagate along the surface of the earthI Speed of propagation depends on the position on S2

Method

I Measure the traveltimes of surface waves between many pairs ofepicenter and detector

I Reconstruct the local speed of propagation

Assumption

A wave propagates along the arc of a great circle.

2 November 2017 · Michael Quellmalz 5 / 24 tu-chemnitz.de/∼qmi

IntroductionMotivation

Spherical surface wave tomography

I Seismic waves propagate along the surface of the earthI Speed of propagation depends on the position on S2

Method

I Measure the traveltimes of surface waves between many pairs ofepicenter and detector

I Reconstruct the local speed of propagation

Assumption

A wave propagates along the arc of a great circle.

2 November 2017 · Michael Quellmalz 5 / 24 tu-chemnitz.de/∼qmi

IntroductionMotivation

Spherical surface wave tomography

I Seismic waves propagate along the surface of the earthI Speed of propagation depends on the position on S2

Method

I Measure the traveltimes of surface waves between many pairs ofepicenter and detector

I Reconstruct the local speed of propagation

Assumption

A wave propagates along the arc of a great circle.

2 November 2017 · Michael Quellmalz 5 / 24 tu-chemnitz.de/∼qmi

IntroductionMotivation

Spherical surface wave tomography

I Seismic waves propagate along the surface of the earthI Speed of propagation depends on the position on S2

Method

I Measure the traveltimes of surface waves between many pairs ofepicenter and detector

I Reconstruct the local speed of propagation

Assumption

A wave propagates along the arc of a great circle.

2 November 2017 · Michael Quellmalz 5 / 24 tu-chemnitz.de/∼qmi

IntroductionMotivation

Spherical surface wave tomography

I Seismic waves propagate along the surface of the earthI Speed of propagation depends on the position on S2

Method

I Measure the traveltimes of surface waves between many pairs ofepicenter and detector

I Reconstruct the local speed of propagation

Assumption

A wave propagates along the arc of a great circle.

2 November 2017 · Michael Quellmalz 5 / 24 tu-chemnitz.de/∼qmi

IntroductionMotivation

Spherical surface wave tomography

I Seismic waves propagate along the surface of the earthI Speed of propagation depends on the position on S2

Method

I Measure the traveltimes of surface waves between many pairs ofepicenter and detector

I Reconstruct the local speed of propagation

Assumption

A wave propagates along the arc of a great circle.

2 November 2017 · Michael Quellmalz 5 / 24 tu-chemnitz.de/∼qmi

IntroductionSelected references

P. Funk.Uber Flachen mit lauter geschlossenen geodatischen Linien.Math. Ann., 74(2): 278 – 300, 1913.

J. H. Woodhouse and A. M. Dziewonski.Mapping the upper mantle: Three-dimensional modeling of earth structure byinversion of seismic waveforms.J. Geophys. Res. Solid Earth, 89(B7):5953–5986, 1984.

A. Amirbekyan, V. Michel, and F. J. Simons.Parametrizing surface wave tomographic models with harmonic spherical splines.Geophys. J. Int., 174(2):617–628, 2008.

R. Hielscher, D. Potts and M. Quellmalz.An SVD in spherical surface wave tomographyIn B. Hofmann, A. Leitao and J. Zubelli, Eds., New Trends in ParameterIdentification for Mathematical Models. Birkhauser, Basel, 2018.https://arxiv.org/abs/1706.05284

2 November 2017 · Michael Quellmalz 6 / 24 tu-chemnitz.de/∼qmi

IntroductionSelected references

P. Funk.Uber Flachen mit lauter geschlossenen geodatischen Linien.Math. Ann., 74(2): 278 – 300, 1913.

J. H. Woodhouse and A. M. Dziewonski.Mapping the upper mantle: Three-dimensional modeling of earth structure byinversion of seismic waveforms.J. Geophys. Res. Solid Earth, 89(B7):5953–5986, 1984.

A. Amirbekyan, V. Michel, and F. J. Simons.Parametrizing surface wave tomographic models with harmonic spherical splines.Geophys. J. Int., 174(2):617–628, 2008.

R. Hielscher, D. Potts and M. Quellmalz.An SVD in spherical surface wave tomographyIn B. Hofmann, A. Leitao and J. Zubelli, Eds., New Trends in ParameterIdentification for Mathematical Models. Birkhauser, Basel, 2018.https://arxiv.org/abs/1706.05284

2 November 2017 · Michael Quellmalz 6 / 24 tu-chemnitz.de/∼qmi

IntroductionSelected references

P. Funk.Uber Flachen mit lauter geschlossenen geodatischen Linien.Math. Ann., 74(2): 278 – 300, 1913.

J. H. Woodhouse and A. M. Dziewonski.Mapping the upper mantle: Three-dimensional modeling of earth structure byinversion of seismic waveforms.J. Geophys. Res. Solid Earth, 89(B7):5953–5986, 1984.

A. Amirbekyan, V. Michel, and F. J. Simons.Parametrizing surface wave tomographic models with harmonic spherical splines.Geophys. J. Int., 174(2):617–628, 2008.

R. Hielscher, D. Potts and M. Quellmalz.An SVD in spherical surface wave tomographyIn B. Hofmann, A. Leitao and J. Zubelli, Eds., New Trends in ParameterIdentification for Mathematical Models. Birkhauser, Basel, 2018.https://arxiv.org/abs/1706.05284

2 November 2017 · Michael Quellmalz 6 / 24 tu-chemnitz.de/∼qmi

IntroductionSelected references

P. Funk.Uber Flachen mit lauter geschlossenen geodatischen Linien.Math. Ann., 74(2): 278 – 300, 1913.

J. H. Woodhouse and A. M. Dziewonski.Mapping the upper mantle: Three-dimensional modeling of earth structure byinversion of seismic waveforms.J. Geophys. Res. Solid Earth, 89(B7):5953–5986, 1984.

A. Amirbekyan, V. Michel, and F. J. Simons.Parametrizing surface wave tomographic models with harmonic spherical splines.Geophys. J. Int., 174(2):617–628, 2008.

R. Hielscher, D. Potts and M. Quellmalz.An SVD in spherical surface wave tomographyIn B. Hofmann, A. Leitao and J. Zubelli, Eds., New Trends in ParameterIdentification for Mathematical Models. Birkhauser, Basel, 2018.https://arxiv.org/abs/1706.05284

2 November 2017 · Michael Quellmalz 6 / 24 tu-chemnitz.de/∼qmi

Arc transform

Content

1. IntroductionMotivation

2. Arc transformDefinitionSingular value decomposition

3. Special casesArcs starting in a fixed pointRecovery of local functionsArcs with fixed length

2 November 2017 · Michael Quellmalz 7 / 24 tu-chemnitz.de/∼qmi

Arc transformDefinition

The arc transformI Function f : S2 → R

I Surface waves: f = 1c

(c ... speed of sound)I ξ, ζ ∈ S2 not antipodalI γ(ξ, ζ) great circle arc

Definition

t(ξ, ζ) =

∫γ(ξ,ζ)

f dγ

t is not continuous on S2 × S2

We choose a different parameterization

2 November 2017 · Michael Quellmalz 8 / 24 tu-chemnitz.de/∼qmi

Arc transformDefinition

The arc transformI Function f : S2 → R

I Surface waves: f = 1c

(c ... speed of sound)I ξ, ζ ∈ S2 not antipodalI γ(ξ, ζ) great circle arc

Definition

t(ξ, ζ) =

∫γ(ξ,ζ)

f dγ

t is not continuous on S2 × S2

We choose a different parameterization

2 November 2017 · Michael Quellmalz 8 / 24 tu-chemnitz.de/∼qmi

Arc transformDefinition

The arc transformI Function f : S2 → R

I Surface waves: f = 1c

(c ... speed of sound)I ξ, ζ ∈ S2 not antipodalI γ(ξ, ζ) great circle arc

Definition

t(ξ, ζ) =

∫γ(ξ,ζ)

f dγ

t is not continuous on S2 × S2

We choose a different parameterization

2 November 2017 · Michael Quellmalz 8 / 24 tu-chemnitz.de/∼qmi

Arc transformDefinition

The arc transformI Function f : S2 → R

I Surface waves: f = 1c

(c ... speed of sound)I ξ, ζ ∈ S2 not antipodalI γ(ξ, ζ) great circle arc

Definition

t(ξ, ζ) =

∫γ(ξ,ζ)

f dγ

t is not continuous on S2 × S2

We choose a different parameterization

2 November 2017 · Michael Quellmalz 8 / 24 tu-chemnitz.de/∼qmi

Arc transformDefinition

The arc transformI Function f : S2 → R

I Surface waves: f = 1c

(c ... speed of sound)I ξ, ζ ∈ S2 not antipodalI γ(ξ, ζ) great circle arc

Definition

t(ξ, ζ) =

∫γ(ξ,ζ)

f dγ

t is not continuous on S2 × S2

We choose a different parameterization

2 November 2017 · Michael Quellmalz 8 / 24 tu-chemnitz.de/∼qmi

Arc transformDefinition

The arc transformI Function f : S2 → R

I Surface waves: f = 1c

(c ... speed of sound)I ξ, ζ ∈ S2 not antipodalI γ(ξ, ζ) great circle arc

Definition

t(ξ, ζ) =

∫γ(ξ,ζ)

f dγ

t is not continuous on S2 × S2

We choose a different parameterization

2 November 2017 · Michael Quellmalz 8 / 24 tu-chemnitz.de/∼qmi

Arc transformDefinition

The arc transformI Function f : S2 → R

I Surface waves: f = 1c

(c ... speed of sound)I ξ, ζ ∈ S2 not antipodalI γ(ξ, ζ) great circle arc

Definition

t(ξ, ζ) =

∫γ(ξ,ζ)

f dγ

t is not continuous on S2 × S2

We choose a different parameterization

2 November 2017 · Michael Quellmalz 8 / 24 tu-chemnitz.de/∼qmi

Arc transformDefinition

The arc transform: alternative parameterization

I ψ = arccos(ξ>ζ) ... length of γI Q ∈ SO(3) such that

I Qξ = e−ψ/2 andI Qζ = eψ/2,

where eψ = (sinψ, cosψ, 0)

DefinitionA : C(S2)→ C(SO(3)× [0, 2π]),

Af(Q,ψ) =

∫ ψ/2

−ψ/2f(Q−1eϕ) dϕ

2 November 2017 · Michael Quellmalz 9 / 24 tu-chemnitz.de/∼qmi

Arc transformDefinition

The arc transform: alternative parameterization

I ψ = arccos(ξ>ζ) ... length of γI Q ∈ SO(3) such that

I Qξ = e−ψ/2 andI Qζ = eψ/2,

where eψ = (sinψ, cosψ, 0)

DefinitionA : C(S2)→ C(SO(3)× [0, 2π]),

Af(Q,ψ) =

∫ ψ/2

−ψ/2f(Q−1eϕ) dϕ

2 November 2017 · Michael Quellmalz 9 / 24 tu-chemnitz.de/∼qmi

Arc transformDefinition

The arc transform: alternative parameterization

I ψ = arccos(ξ>ζ) ... length of γI Q ∈ SO(3) such that

I Qξ = e−ψ/2 andI Qζ = eψ/2,

where eψ = (sinψ, cosψ, 0)

DefinitionA : C(S2)→ C(SO(3)× [0, 2π]),

Af(Q,ψ) =

∫ ψ/2

−ψ/2f(Q−1eϕ) dϕ

2 November 2017 · Michael Quellmalz 9 / 24 tu-chemnitz.de/∼qmi

Arc transformSingular value decomposition

Notation: On the sphere S2

I Spherical coordinates

ξ(ϕ, ϑ) = sin(ϑ)eϕ + cosϑ(001

)

I Orthonormal basis on L2(S2): spherical harmonics of degree n ∈ N

Y kn (ϕ, ϑ) =

√2n+ 1

(n− k)!

(n+ k)!P kn (cosϑ) eikϕ, k = −n, . . . , n

I P kn ... associated Legendre function

2 November 2017 · Michael Quellmalz 10 / 24 tu-chemnitz.de/∼qmi

Arc transformSingular value decomposition

Notation: On the sphere S2

I Spherical coordinates

ξ(ϕ, ϑ) = sin(ϑ)eϕ + cosϑ(001

)

I Orthonormal basis on L2(S2): spherical harmonics of degree n ∈ N

Y kn (ϕ, ϑ) =

√2n+ 1

(n− k)!

(n+ k)!P kn (cosϑ) eikϕ, k = −n, . . . , n

I P kn ... associated Legendre function

2 November 2017 · Michael Quellmalz 10 / 24 tu-chemnitz.de/∼qmi

Arc transformSingular value decomposition

Notation: On the rotation group SO(3)

I Rotation group

SO(3) = Q ∈ R3×3 : Q−1 = Q>, det(Q) = 1

I Orthogonal basis on L2(SO(3)): rotational harmonics (WignerD-functions)

Dj,kn (Q) =

∫S2Y kn (Q−1ξ)Y j

n (ξ) dξ

2 November 2017 · Michael Quellmalz 11 / 24 tu-chemnitz.de/∼qmi

Arc transformSingular value decomposition

Notation: On the rotation group SO(3)

I Rotation group

SO(3) = Q ∈ R3×3 : Q−1 = Q>, det(Q) = 1

I Orthogonal basis on L2(SO(3)): rotational harmonics (WignerD-functions)

Dj,kn (Q) =

∫S2Y kn (Q−1ξ)Y j

n (ξ) dξ

2 November 2017 · Michael Quellmalz 11 / 24 tu-chemnitz.de/∼qmi

Arc transformSingular value decomposition

Theorem [Dahlen & Tromp 1998]

Let n ∈ N and k ∈ −n, . . . , n. Then

AY kn (Q,ψ) =

n∑j=−n

P jn(0)Dj,kn (Q) sj(ψ),

where

sj(ψ) =

ψ, j = 02 sin(jψ/2)

j , j 6= 0

and

P jn(0) =

(−1)

n+j2

√2n+14π

(n−j−1)!!(n+j−1)!!(n−j)!!(n+j)!! , n+ j even

0, n+ j odd.

2 November 2017 · Michael Quellmalz 12 / 24 tu-chemnitz.de/∼qmi

Arc transformSingular value decomposition

Singular value decomposition [Hielscher, Potts, Q. 2017]

The operatorA : L2(S2)→ L2(SO(3)× [0, 2π]) is compact with the singularvalue decomposition

AY kn = σnE

kn, n ∈ N, k ∈ −n, . . . , n,

with singular values

σn =

√32π3

2n+ 1

√√√√π2

3

∣∣∣P 0n(0)

∣∣∣2 +n∑j=1

1

j2

∣∣∣P jn(0)∣∣∣2 ∈ O( 1√

n

)

and the orthonormal functions in L2(SO(3)× [0, 2π])

Enk = σ−1n

n∑j=−n

P jn(0)Dj,kn (Q) sj(ψ).

2 November 2017 · Michael Quellmalz 13 / 24 tu-chemnitz.de/∼qmi

Special cases

Content

1. IntroductionMotivation

2. Arc transformDefinitionSingular value decomposition

3. Special casesArcs starting in a fixed pointRecovery of local functionsArcs with fixed length

2 November 2017 · Michael Quellmalz 14 / 24 tu-chemnitz.de/∼qmi

Special casesArcs starting in a fixed point

Arcs from the north pole

I Fix one endpoint of the arcs as the northpole e3:

Bf(ξ(ϕ, ϑ)) =

∫γ(e3, ξ(ϕ,ϑ))

f dγ

I If f is differentiable, it can be recoveredfrom Bf by

f(ξ(ϕ, ϑ)) =d

dϑBf(ξ(ϕ, ϑ)).

2 November 2017 · Michael Quellmalz 15 / 24 tu-chemnitz.de/∼qmi

Special casesArcs starting in a fixed point

Arcs from the north pole

I Fix one endpoint of the arcs as the northpole e3:

Bf(ξ(ϕ, ϑ)) =

∫γ(e3, ξ(ϕ,ϑ))

f dγ

I If f is differentiable, it can be recoveredfrom Bf by

f(ξ(ϕ, ϑ)) =d

dϑBf(ξ(ϕ, ϑ)).

2 November 2017 · Michael Quellmalz 15 / 24 tu-chemnitz.de/∼qmi

Special casesArcs starting in a fixed point

Arcs between two sets

More general Theorem [Amirbekyan 2007]

Let S be an open subset of S2 and A,B ⊂ Snonempty sets with A ∪B = S. If f ∈ C(S2)and ∫

γ(ξ,ζ)f dγ = 0 ∀ξ ∈ A, ζ ∈ B,

then f ≡ 0 on S.

2 November 2017 · Michael Quellmalz 16 / 24 tu-chemnitz.de/∼qmi

Special casesRecovery of local functions

Theorem [Hielscher, Potts, Q. 2017]

Let f ∈ C(S2) and Ω be a convex subset of S2 whose closure Ω is strictlycontained in a hemisphere, i.e., there exists a ζ ∈ S2 such that 〈ξ, ζ〉 > 0 forall ξ ∈ Ω. If ∫

γ(ξ,η)f dγ = 0 for all ξ,η ∈ ∂Ω, (1)

then f = 0 on Ω.

Proof

I Extend f to zero outside Ω

I (1) implies that the Funk–Radon transform of f must vanishI f must be oddI Because supp f ⊂ Ω is contained in a hemisphere, f must vanish

2 November 2017 · Michael Quellmalz 17 / 24 tu-chemnitz.de/∼qmi

Special casesRecovery of local functions

Theorem [Hielscher, Potts, Q. 2017]

Let f ∈ C(S2) and Ω be a convex subset of S2 whose closure Ω is strictlycontained in a hemisphere, i.e., there exists a ζ ∈ S2 such that 〈ξ, ζ〉 > 0 forall ξ ∈ Ω. If ∫

γ(ξ,η)f dγ = 0 for all ξ,η ∈ ∂Ω, (1)

then f = 0 on Ω.

Proof

I Extend f to zero outside Ω

I (1) implies that the Funk–Radon transform of f must vanishI f must be oddI Because supp f ⊂ Ω is contained in a hemisphere, f must vanish

2 November 2017 · Michael Quellmalz 17 / 24 tu-chemnitz.de/∼qmi

Special casesRecovery of local functions

Theorem [Hielscher, Potts, Q. 2017]

Let f ∈ C(S2) and Ω be a convex subset of S2 whose closure Ω is strictlycontained in a hemisphere, i.e., there exists a ζ ∈ S2 such that 〈ξ, ζ〉 > 0 forall ξ ∈ Ω. If ∫

γ(ξ,η)f dγ = 0 for all ξ,η ∈ ∂Ω, (1)

then f = 0 on Ω.

Proof

I Extend f to zero outside Ω

I (1) implies that the Funk–Radon transform of f must vanishI f must be oddI Because supp f ⊂ Ω is contained in a hemisphere, f must vanish

2 November 2017 · Michael Quellmalz 17 / 24 tu-chemnitz.de/∼qmi

Special casesRecovery of local functions

Theorem [Hielscher, Potts, Q. 2017]

Let f ∈ C(S2) and Ω be a convex subset of S2 whose closure Ω is strictlycontained in a hemisphere, i.e., there exists a ζ ∈ S2 such that 〈ξ, ζ〉 > 0 forall ξ ∈ Ω. If ∫

γ(ξ,η)f dγ = 0 for all ξ,η ∈ ∂Ω, (1)

then f = 0 on Ω.

Proof

I Extend f to zero outside Ω

I (1) implies that the Funk–Radon transform of f must vanishI f must be oddI Because supp f ⊂ Ω is contained in a hemisphere, f must vanish

2 November 2017 · Michael Quellmalz 17 / 24 tu-chemnitz.de/∼qmi

Special casesRecovery of local functions

Theorem [Hielscher, Potts, Q. 2017]

Let f ∈ C(S2) and Ω be a convex subset of S2 whose closure Ω is strictlycontained in a hemisphere, i.e., there exists a ζ ∈ S2 such that 〈ξ, ζ〉 > 0 forall ξ ∈ Ω. If ∫

γ(ξ,η)f dγ = 0 for all ξ,η ∈ ∂Ω, (1)

then f = 0 on Ω.

Proof

I Extend f to zero outside Ω

I (1) implies that the Funk–Radon transform of f must vanishI f must be oddI Because supp f ⊂ Ω is contained in a hemisphere, f must vanish

2 November 2017 · Michael Quellmalz 17 / 24 tu-chemnitz.de/∼qmi

Special casesRecovery of local functions

Theorem [Hielscher, Potts, Q. 2017]

Let f ∈ C(S2) and Ω be a convex subset of S2 whose closure Ω is strictlycontained in a hemisphere, i.e., there exists a ζ ∈ S2 such that 〈ξ, ζ〉 > 0 forall ξ ∈ Ω. If ∫

γ(ξ,η)f dγ = 0 for all ξ,η ∈ ∂Ω, (1)

then f = 0 on Ω.

Proof

I Extend f to zero outside Ω

I (1) implies that the Funk–Radon transform of f must vanishI f must be oddI Because supp f ⊂ Ω is contained in a hemisphere, f must vanish

2 November 2017 · Michael Quellmalz 17 / 24 tu-chemnitz.de/∼qmi

Special casesArcs with fixed length

Arcs with fixed length

We fix the arclength ψ ∈ [0, 2π] and define

Aψ = A(·, ψ) : L2(S2)→ L2(SO(3)).

2 November 2017 · Michael Quellmalz 18 / 24 tu-chemnitz.de/∼qmi

Special casesArcs with fixed length

Arcs with fixed length

We fix the arclength ψ ∈ [0, 2π] and define

Aψ = A(·, ψ) : L2(S2)→ L2(SO(3)).

2 November 2017 · Michael Quellmalz 18 / 24 tu-chemnitz.de/∼qmi

Special casesArcs with fixed length

Singular Value Decomposition [Hielscher, Potts, Q. 2017]

Let ψ ∈ (0, 2π) be fixed. The operatorAψ : L2(S2)→ L2(SO(3)) has theSVD

AψY kn = µn(ψ)Zkn,ψ, n ∈ N, k ∈ −n, . . . , n,

with singular values

µn(ψ) =

√√√√ n∑j=−n

8π2

2n+ 1

∣∣∣P jn(0)∣∣∣2 sj(ψ)2

and singular functions

Zkn,ψ =1

µn(ψ)

n∑j=−n

P jn(0) sj(ψ)Dj,kn ∈ L2(SO(3)).

HenceAψ is injective.2 November 2017 · Michael Quellmalz 19 / 24 tu-chemnitz.de/∼qmi

Special casesArcs with fixed length

Singular values µn(ψ): dependency on nψ = 0.02π

0 5 10 15 20 25 30 35 40 45 50

0

0.2

0.4

0.6

0.8

polynomial degree n

(n+

1 2)µn(ψ

)2

2 November 2017 · Michael Quellmalz 20 / 24 tu-chemnitz.de/∼qmi

Special casesArcs with fixed length

Singular values µn(ψ): dependency on nψ = 0.10π

0 5 10 15 20 25 30 35 40 45 500

2

4

polynomial degree n

(n+

1 2)µn(ψ

)2

2 November 2017 · Michael Quellmalz 20 / 24 tu-chemnitz.de/∼qmi

Special casesArcs with fixed length

Singular values µn(ψ): dependency on nψ = 0.20π

0 5 10 15 20 25 30 35 40 45 50

2

4

6

8

polynomial degree n

(n+

1 2)µn(ψ

)2

2 November 2017 · Michael Quellmalz 20 / 24 tu-chemnitz.de/∼qmi

Special casesArcs with fixed length

Singular values µn(ψ): dependency on nψ = 0.40π

0 5 10 15 20 25 30 35 40 45 50

5

10

15

polynomial degree n

(n+

1 2)µn(ψ

)2

2 November 2017 · Michael Quellmalz 20 / 24 tu-chemnitz.de/∼qmi

Special casesArcs with fixed length

Singular values µn(ψ): dependency on nψ = 1.00π (half circle)

0 5 10 15 20 25 30 35 40 45 50

32

34

36

38

40

polynomial degree n

(n+

1 2)µn(ψ

)2

2 November 2017 · Michael Quellmalz 20 / 24 tu-chemnitz.de/∼qmi

Special casesArcs with fixed length

Singular values µn(ψ): dependency on nψ = 1.04π

0 5 10 15 20 25 30 35 40 45 50

35

40

45

polynomial degree n

(n+

1 2)µn(ψ

)2

2 November 2017 · Michael Quellmalz 20 / 24 tu-chemnitz.de/∼qmi

Special casesArcs with fixed length

Singular values µn(ψ): dependency on nψ = 1.90π

0 5 10 15 20 25 30 35 40 45 50

0

50

100

150

polynomial degree n

(n+

1 2)µn(ψ

)2

2 November 2017 · Michael Quellmalz 20 / 24 tu-chemnitz.de/∼qmi

Special casesArcs with fixed length

Singular values µn(ψ): dependency on nψ = 2.00π (Funk–Radon transform)

0 5 10 15 20 25 30 35 40 45 50

0

50

100

150

polynomial degree n

(n+

1 2)µn(ψ

)2

2 November 2017 · Michael Quellmalz 20 / 24 tu-chemnitz.de/∼qmi

Special casesArcs with fixed length

Singular values µn(ψ): dependency on arc-length ψ

0 π 2π0

50

100

150

ψ

(n+

1 2)µn(ψ

)2

n even

limitn = 0

0 π 2π0

10

20

30

40

ψ

n odd

limitn = 1

2 November 2017 · Michael Quellmalz 21 / 24 tu-chemnitz.de/∼qmi

Special casesArcs with fixed length

Singular values µn(ψ): dependency on arc-length ψ

0 π 2π0

50

100

150

ψ

(n+

1 2)µn(ψ

)2

n even

limitn = 2

0 π 2π0

10

20

30

40

ψ

n odd

limitn = 3

2 November 2017 · Michael Quellmalz 21 / 24 tu-chemnitz.de/∼qmi

Special casesArcs with fixed length

Singular values µn(ψ): dependency on arc-length ψ

0 π 2π0

50

100

150

ψ

(n+

1 2)µn(ψ

)2

n even

limitn = 4

0 π 2π0

10

20

30

40

ψ

n odd

limitn = 5

2 November 2017 · Michael Quellmalz 21 / 24 tu-chemnitz.de/∼qmi

Special casesArcs with fixed length

Singular values µn(ψ): dependency on arc-length ψ

0 π 2π0

50

100

150

ψ

(n+

1 2)µn(ψ

)2

n even

limitn = 6

0 π 2π0

10

20

30

40

ψ

n odd

limitn = 7

2 November 2017 · Michael Quellmalz 21 / 24 tu-chemnitz.de/∼qmi

Special casesArcs with fixed length

Singular values µn(ψ): dependency on arc-length ψ

0 π 2π0

50

100

150

ψ

(n+

1 2)µn(ψ

)2

n even

limitn = 8

0 π 2π0

10

20

30

40

ψ

n odd

limitn = 9

2 November 2017 · Michael Quellmalz 21 / 24 tu-chemnitz.de/∼qmi

Special casesArcs with fixed length

Singular values µn(ψ): dependency on arc-length ψ

0 π 2π0

50

100

150

ψ

(n+

1 2)µn(ψ

)2

n even

limitn = 100

0 π 2π0

10

20

30

40

ψ

n odd

limitn = 101

2 November 2017 · Michael Quellmalz 21 / 24 tu-chemnitz.de/∼qmi

Special casesArcs with fixed length

Singular values: asymptotic behavior

Theorem [Hielscher, Potts, Q. 2017]

The singular values µn(ψ) ofAψ satisfy for odd n = 2m− 1

limm→∞

4m− 1

4µ2m−1(ψ)2 =

2πψ, ψ ∈ [0, π]

4π2 − 2πψ, ψ ∈ [π, 2π],

and for even n = 2m

limm→∞

4m+ 1

4µ2m(ψ)2 =

2πψ, ψ ∈ [0, π]

12πψ − 2π2, ψ ∈ [π, 2π].

2 November 2017 · Michael Quellmalz 22 / 24 tu-chemnitz.de/∼qmi

Special casesArcs with fixed length

ψ = 2π: Great circles [Funk 1911]

I Funk–Radon transform

F : C(S2)→ C(S2),

Ff(ξ) =

∫〈ξ,η〉=0

f(η) dγ(η)

I Injective only for even functions

ψ = π: Half-circle transform

I Injective for all functions [Groemer 1998], [Goodey & Weil 2006]I [Rubin 2017] half circles in one hemisphere

2 November 2017 · Michael Quellmalz 23 / 24 tu-chemnitz.de/∼qmi

Special casesArcs with fixed length

ψ = 2π: Great circles [Funk 1911]

I Funk–Radon transform

F : C(S2)→ C(S2),

Ff(ξ) =

∫〈ξ,η〉=0

f(η) dγ(η)

I Injective only for even functions

ψ = π: Half-circle transform

I Injective for all functions [Groemer 1998], [Goodey & Weil 2006]I [Rubin 2017] half circles in one hemisphere

2 November 2017 · Michael Quellmalz 23 / 24 tu-chemnitz.de/∼qmi

Special casesArcs with fixed length

ψ = 2π: Great circles [Funk 1911]

I Funk–Radon transform

F : C(S2)→ C(S2),

Ff(ξ) =

∫〈ξ,η〉=0

f(η) dγ(η)

I Injective only for even functions

ψ = π: Half-circle transform

I Injective for all functions [Groemer 1998], [Goodey & Weil 2006]I [Rubin 2017] half circles in one hemisphere

2 November 2017 · Michael Quellmalz 23 / 24 tu-chemnitz.de/∼qmi

Special casesArcs with fixed length

ψ = 2π: Great circles [Funk 1911]

I Funk–Radon transform

F : C(S2)→ C(S2),

Ff(ξ) =

∫〈ξ,η〉=0

f(η) dγ(η)

I Injective only for even functions

ψ = π: Half-circle transform

I Injective for all functions [Groemer 1998], [Goodey & Weil 2006]I [Rubin 2017] half circles in one hemisphere

2 November 2017 · Michael Quellmalz 23 / 24 tu-chemnitz.de/∼qmi

Special casesArcs with fixed length

ψ = 2π: Great circles [Funk 1911]

I Funk–Radon transform

F : C(S2)→ C(S2),

Ff(ξ) =

∫〈ξ,η〉=0

f(η) dγ(η)

I Injective only for even functions

ψ = π: Half-circle transform

I Injective for all functions [Groemer 1998], [Goodey & Weil 2006]I [Rubin 2017] half circles in one hemisphere

2 November 2017 · Michael Quellmalz 23 / 24 tu-chemnitz.de/∼qmi

Special casesArcs with fixed length

ψ = 2π: Great circles [Funk 1911]

I Funk–Radon transform

F : C(S2)→ C(S2),

Ff(ξ) =

∫〈ξ,η〉=0

f(η) dγ(η)

I Injective only for even functions

ψ = π: Half-circle transform

I Injective for all functions [Groemer 1998], [Goodey & Weil 2006]I [Rubin 2017] half circles in one hemisphere

2 November 2017 · Michael Quellmalz 23 / 24 tu-chemnitz.de/∼qmi

The end

\endinput

2 November 2017 · Michael Quellmalz 24 / 24 tu-chemnitz.de/∼qmi