analog and digital electronics_u. a. bakshi and a. p. godse

Upload: bercin-dass

Post on 02-Jun-2018

238 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    1/142

    Scilab Textbook Companion for

    Analog And Digital Electronics

    by U. A. Bakshi And A. P. Godse1

    Created byPriyank Bangar

    B.TechElectronics Engineering

    NMIMSCollege Teacher

    No TeacherCross-Checked by

    August 10, 2013

    1Funded by a grant from the National Mission on Education through ICT,http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilabcodes written in it can be downloaded from the Textbook Companion Projectsection at the website http://scilab.in

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    2/142

    Book Description

    Title: Analog And Digital Electronics

    Author: U. A. Bakshi And A. P. Godse

    Publisher: Technical Publications, Pune

    Edition: 1

    Year: 2009

    ISBN: 9788184316902

    1

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    3/142

    Scilab numbering policy used in this document and the relation to theabove book.

    Exa Example (Solved example)

    Eqn Equation (Particular equation of the above book)

    AP Appendix to Example(Scilab Code that is an Appednix to a particularExample of the above book)

    For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 meansa scilab code whose theory is explained in Section 2.3 of the book.

    2

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    4/142

    Contents

    List of Scilab Codes 4

    1 Special Diodes 10

    2 Frequency Response 12

    3 Feedback Amplifiers 18

    4 Oscillators 41

    5 Combinational Logic Circuits 60

    6 Sequential Logic Circuits 84

    7 Shift Registers 86

    8 Counters 87

    9 Op amp Applications 119

    10 Voltage Regulators 138

    3

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    5/142

    List of Scilab Codes

    Exa 1.1 current through LED . . . . . . . . . . . . . . . . . . 10Exa 1.2 transition capacitance and constant K . . . . . . . . . 10Exa 2.1 maximum voltage gain. . . . . . . . . . . . . . . . . . 12Exa 2.2 gain of the amplifier . . . . . . . . . . . . . . . . . . . 12Exa 2.3 gain of an amplifier . . . . . . . . . . . . . . . . . . . 13Exa 2.4 low frequency response of the amplifier. . . . . . . . . 13Exa 2.5 low frequency response of the FET amplifier. . . . . . 14Exa 2.6 high frequency response of the amplifier . . . . . . . . 15Exa 2.7 high frequency response of the amplifier . . . . . . . . 16Exa 3.1 gain fL and fH . . . . . . . . . . . . . . . . . . . . . . 18Exa 3.2 Vo and second harmonic distortion with feedback . . . 18Exa 3.3 beta and Af. . . . . . . . . . . . . . . . . . . . . . . . 19Exa 3.4 beta and Av and Avf and Rif and Rof . . . . . . . . . 20

    Exa 3.5 Avf and Rif and Rof . . . . . . . . . . . . . . . . . . . 22Exa 3.6 Avf and Rif and Rof . . . . . . . . . . . . . . . . . . . 23Exa 3.7 D and Avf and Rif and Rof . . . . . . . . . . . . . . . 25Exa 3.8 voltage gain. . . . . . . . . . . . . . . . . . . . . . . . 27Exa 3.9 Avf . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Exa 3.10 Avf and Rif and Rof . . . . . . . . . . . . . . . . . . . 29Exa 3.11 voltage gain and input and output resistance . . . . . 31Exa 3.12 Ai and beta and Aif . . . . . . . . . . . . . . . . . . . 32Exa 3.13 beta and Av and Avf and Rif and Rof . . . . . . . . . 34Exa 3.14 gain and new bandwidth. . . . . . . . . . . . . . . . . 36Exa 3.15 show voltage gain with feedback . . . . . . . . . . . . 36

    Exa 3.16 GMf and Rif and Rof . . . . . . . . . . . . . . . . . . 37Exa 3.17 feedback factor and Rif and Rof . . . . . . . . . . . . 38Exa 3.18 gain with feedback and new bandwidth . . . . . . . . 39Exa 3.19 overall voltage gain and bandwidth . . . . . . . . . . . 40

    4

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    6/142

    Exa 4.1 C and hfe . . . . . . . . . . . . . . . . . . . . . . . . . 41

    Exa 4.2 frequency of oscillation . . . . . . . . . . . . . . . . . 42Exa 4.3 R and C. . . . . . . . . . . . . . . . . . . . . . . . . . 42Exa 4.4 C and RD. . . . . . . . . . . . . . . . . . . . . . . . . 42Exa 4.5 minimum and maximum R2. . . . . . . . . . . . . . . 43Exa 4.6 range over capacitor is varied . . . . . . . . . . . . . . 44Exa 4.7 frequency of oscillation . . . . . . . . . . . . . . . . . 44Exa 4.8 frequency of oscillation . . . . . . . . . . . . . . . . . 45Exa 4.9 calculate C . . . . . . . . . . . . . . . . . . . . . . . . 45Exa 4.10 series and parallel resonant freqency . . . . . . . . . . 46Exa 4.11 series and parallel resonant freqency . . . . . . . . . . 46Exa 4.12 Varify Barkhausen criterion and find frequency of oscil-

    lation . . . . . . . . . . . . . . . . . . . . . . . . . . . 47Exa 4.13 minimum and maximum values of R2 . . . . . . . . . 49Exa 4.14 frequency of oscillation and minimum hfe . . . . . . . 49Exa 4.15 range of frequency of oscillation. . . . . . . . . . . . . 50Exa 4.16 frequency of oscillation . . . . . . . . . . . . . . . . . 50Exa 4.17 gain of the transistor. . . . . . . . . . . . . . . . . . . 51Exa 4.18 new frequency and inductance . . . . . . . . . . . . . 51Exa 4.19 new frequency of oscillation . . . . . . . . . . . . . . . 52Exa 4.20 R and hfe . . . . . . . . . . . . . . . . . . . . . . . . . 52Exa 4.21 component values of wien bridge . . . . . . . . . . . . 53

    Exa 4.22 values of C2 and new frequency of oscillation . . . . . 54Exa 4.23 series and parallel resonant freqency and Qfactor . . . 55Exa 4.24 change in frequency and trimmer capacitance . . . . . 55Exa 4.25 design RC phase shift oscillator . . . . . . . . . . . . . 57Exa 4.26 range of capacitor . . . . . . . . . . . . . . . . . . . . 58Exa 4.27 change in frequency of oscillation . . . . . . . . . . . . 58Exa 5.1 design a combinational logic circuit. . . . . . . . . . . 60Exa 5.2 design a circuit with control line C and data lines. . . 61Exa 5.3 design combinational circuit. . . . . . . . . . . . . . . 62Exa 5.4 design logic circuit . . . . . . . . . . . . . . . . . . . . 63Exa 5.5 design circuit to detect invalid BCD number. . . . . . 64

    Exa 5.6 design two level combinational circuit . . . . . . . . . 65Exa 5.7 design 32 to 1 multiplexer . . . . . . . . . . . . . . . . 66Exa 5.8 design a 32 to 1 multiplexer . . . . . . . . . . . . . . . 66Exa 5.9 implement boolean function using 8to1 multiplexer . . 67Exa 5.10 implement boolean function using 4to1 multiplexer . . 67

    5

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    7/142

    Exa 5.11 implement boolean function using 8to1 MUX . . . . . 69

    Exa 5.12 implement boolean function using 4to1 MUX . . . . . 69Exa 5.13 implement boolean function using 8to1 MUX . . . . . 70Exa 5.14 implement boolean function using 8to1 MUX . . . . . 71Exa 5.15 implement boolean function using 8to1 MUX . . . . . 72Exa 5.16 determine boolean expression . . . . . . . . . . . . . . 72Exa 5.17 realize using 4 to 1 MUX . . . . . . . . . . . . . . . . 73Exa 5.18 design 1 to 8 DEMUX . . . . . . . . . . . . . . . . . . 74Exa 5.19 implement full subtractor . . . . . . . . . . . . . . . . 74Exa 5.20 construst 1 to 32 DEMUX. . . . . . . . . . . . . . . . 75Exa 5.21 design 3 to 8 decoder . . . . . . . . . . . . . . . . . . 76Exa 5.22 design 5 to 32 decoder . . . . . . . . . . . . . . . . . . 77

    Exa 5.23 design 4 line to 16 line decoder . . . . . . . . . . . . . 78Exa 5.24 implement using 74LS138 . . . . . . . . . . . . . . . . 78Exa 5.25 implement full substractor. . . . . . . . . . . . . . . . 79Exa 5.26 implement gray to binary code converter. . . . . . . . 79Exa 5.27 design 2 bit comparator . . . . . . . . . . . . . . . . . 80Exa 5.28 design full adder circuit . . . . . . . . . . . . . . . . . 81Exa 5.29 implement BCD to 7 segment decoder . . . . . . . . . 82Exa 5.31 implement 32 input to 5 output encoder . . . . . . . . 82Exa 6.4 analyze the circuit . . . . . . . . . . . . . . . . . . . . 84Exa 7.1 determine number of flip flops needed . . . . . . . . . 86

    Exa 8.1 count after 12 pulse . . . . . . . . . . . . . . . . . . . 87Exa 8.2 count in binary . . . . . . . . . . . . . . . . . . . . . . 87Exa 8.4 draw logic diagram. . . . . . . . . . . . . . . . . . . . 88Exa 8.5 output frequency . . . . . . . . . . . . . . . . . . . . . 88Exa 8.6 maximum operating frequency . . . . . . . . . . . . . 88Exa 8.8 design 4 bit up down ripple counter . . . . . . . . . . 89Exa 8.9 design divide by 9 counter . . . . . . . . . . . . . . . . 89Exa 8.10 design a divide by 128 counter . . . . . . . . . . . . . 90Exa 8.11 design divide by 78 counter . . . . . . . . . . . . . . . 90Exa 8.12 design divide by 6 counter . . . . . . . . . . . . . . . . 91Exa 8.13 find fmax . . . . . . . . . . . . . . . . . . . . . . . . . 91

    Exa 8.14 determine states . . . . . . . . . . . . . . . . . . . . . 92Exa 8.15 design MOD 10 counter . . . . . . . . . . . . . . . . . 92Exa 8.16 design down counter . . . . . . . . . . . . . . . . . . . 93Exa 8.17 design programmable frequency divider . . . . . . . . 94Exa 8.18 design a counter . . . . . . . . . . . . . . . . . . . . . 94

    6

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    8/142

    Exa 8.19 programmable frequency divider . . . . . . . . . . . . 96

    Exa 8.20 design divide by 2 and divide by 5 counter. . . . . . . 96Exa 8.21 design mod 9 counter . . . . . . . . . . . . . . . . . . 98Exa 8.22 determine MOD number and counter range . . . . . . 98Exa 8.23 design a divide by 20 counter . . . . . . . . . . . . . . 98Exa 8.24 design divide by 96 counter . . . . . . . . . . . . . . . 99Exa 8.25 design divide by 93 counter . . . . . . . . . . . . . . . 100Exa 8.26 design divide by 78 counter . . . . . . . . . . . . . . . 100Exa 8.28 7490 IC . . . . . . . . . . . . . . . . . . . . . . . . . . 100Exa 8.30 sketch output waveforms of counter. . . . . . . . . . . 101Exa 8.31 explain operation of circuit . . . . . . . . . . . . . . . 104Exa 8.32 design divide by 40000 counter . . . . . . . . . . . . . 105

    Exa 8.33 design modulo 11 counter . . . . . . . . . . . . . . . . 106Exa 8.34 design excess 3 decimal counter . . . . . . . . . . . . . 106Exa 8.35 modulus greater than 16. . . . . . . . . . . . . . . . . 107Exa 8.36 modulo 8 counter. . . . . . . . . . . . . . . . . . . . . 108Exa 8.37 synchronous decade counter . . . . . . . . . . . . . . . 108Exa 8.38 flip flops. . . . . . . . . . . . . . . . . . . . . . . . . . 110Exa 8.39 design mod 5 synchronous counter . . . . . . . . . . . 112Exa 8.40 design MOD 4 down counter . . . . . . . . . . . . . . 114Exa 8.41 design MOD 12 synchronous counter . . . . . . . . . . 115Exa 8.42 design 4 bit 4 state ring counter . . . . . . . . . . . . 117

    Exa 8.44 design 4 bit 8 state johnson counter . . . . . . . . . . 117Exa 8.45 johnson counter . . . . . . . . . . . . . . . . . . . . . 118Exa 9.1 output voltage . . . . . . . . . . . . . . . . . . . . . . 119Exa 9.3 input bias current . . . . . . . . . . . . . . . . . . . . 120Exa 9.4 design inverting schmitt trigger . . . . . . . . . . . . . 120Exa 9.5 threshold voltage . . . . . . . . . . . . . . . . . . . . . 121Exa 9.6 tripping voltage . . . . . . . . . . . . . . . . . . . . . 121Exa 9.8 time duration. . . . . . . . . . . . . . . . . . . . . . . 122Exa 9.9 calculate R1 and R2 . . . . . . . . . . . . . . . . . . . 123Exa 9.10 calculate trip point and hysteresis . . . . . . . . . . . 123Exa 9.11 design schmitt trigger . . . . . . . . . . . . . . . . . . 124

    Exa 9.12 design op amp schmitt trigger. . . . . . . . . . . . . . 125Exa 9.13 VUT and VLT and frequency of oscillation . . . . . . 126Exa 9.17 design op amp circuit . . . . . . . . . . . . . . . . . . 127Exa 9.18 design monostable using IC 555. . . . . . . . . . . . . 127Exa 9.19 design a timer . . . . . . . . . . . . . . . . . . . . . . 128

    7

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    9/142

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    10/142

    List of Figures

    8.1 sketch output waveforms of counter . . . . . . . . . . . . . . 104

    9

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    11/142

    Chapter 1

    Special Diodes

    Scilab code Exa 1.1 current through LED

    1 / / E xa mp le 1 . 12 clc

    3 format (5)

    4 disp ( Assume t h e d ro p a c r o s s t h e LED a s 2 V . )5 disp ( T he re fo re , VD = 2 V )6 disp ( From f i g . 1 . 1 1 , RS = 2 . 2 kohm and V S = 15 V )

    7 i s = ( 1 5 - 2 ) / ( 2 . 2 ) / / i n mA8 disp ( i s , T h e re fo r e , I S (mA) = VSVD / RS =)

    Scilab code Exa 1.2 transition capacitance and constant K

    1 / / E xa mp le 1 . 22 clc

    3 disp ( The t r a n s i s t o r c a p ac i t a n c e i s g i ve n by , )4 disp ( CT = C( 0 ) / [ 1+ |VR/VJ | n ] )5 disp ( Now C( 0 ) = 80pF , n = 1/3 a s d i f f u s e d j u n c ti o n

    )6 disp ( VR = 4 . 2 V, VJ = 0 . 7 V )

    10

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    12/142

    7 c t = ( ( 8 0 * 1 0 ^ - 1 2 ) / ( ( 1 + ( 4 . 2 / 0 . 7 ) ) ^ ( 1 / 3 ) ) ) * 1 0 ^ 1 2 // i n

    pF8 format (6)9 disp ( c t , T h e r e fo r e , CT( pF ) = )

    10 disp ( t he t r a n s i s t o r c a pa c it a nc e i s a l s o g i v en by , )11 disp ( CT = K / [ VR+VJ ] n )12 format (10)

    13 k = ( 4 1 . 8 2 * 1 0 ^ - 1 2 ) * ( ( 4 . 2 + 0 . 7 ) ^ ( 1 / 3 ) )

    14 disp (k , T h er ef or e , K = )

    11

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    13/142

    Chapter 2

    Frequency Response

    Scilab code Exa 2.1 maximum voltage gain

    1 / / E xa mp le 2 . 12 clc

    3 format (7)

    4 disp ( We know t h a t maximam v o l t a g e g a i n o f v o l t a g ea m p l i f i e r i s g iv en a s )

    5 m v = 2 0 0 * sqrt (2)

    6 disp ( m v , T h e r e fo r e , Maximum v o l t a g e g a i n = Ga in a tcut o f f x s q r t ( 2 ) = )

    Scilab code Exa 2.2 gain of the amplifier

    1 / / E xa mp le 2 . 22 clc

    3 format (6)

    4 disp ( We know tha t , )5 a = 1 0 0 / sqrt ( 1 + ( ( 1 0 0 0 / 2 0 ) ^ 2 ) )

    6 disp (a , Below midband : A = A mid / s q r t (1+( f 1/ f ) 2 ) = )

    12

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    14/142

    Scilab code Exa 2.3 gain of an amplifier

    1 / / E xa mp le 2 . 32 clc

    3 format (7)

    4 a = 2 0 0 * sqrt (2)

    5 disp (a , We know t ha t A mid = 3dB g a in x s q r t ( 2 )= )

    6 a m = 2 8 2 . 8 4 / ( sqrt ( 1 + ( ( ( 1 0 / 2 ) ^ 2 ) ) ) )

    7 format (6)

    8 disp ( a m , Above midband : A = A mid / s q r t (1+(f 1 / f ) 2 ) = ) // a ns we r i n t ex tb o ok i s wrong

    Scilab code Exa 2.4 low frequency response of the amplifier

    1 / / E xa mp le 2 . 4

    2 clc3 format (6)

    4 disp ( I t i s n e c e s s ar y t o a n al y ze e a ch n et w or k t od e te r m in e t h e c r i t i c a l f r e q u e n c y o f t h e a m p l i f i e r )

    5 disp ( ( a ) I n p ut RC n e tw o rk )6 f c 1 = 1 / ( 2 * % p i * [ 6 8 0 + 1 0 3 1 . 7 ] * ( 0 . 1 * 1 0 ^ - 6 ) )

    7 disp ( f c 1 , f c ( i n p u t ) ( i n Hz ) = 1 / 2p i [RS+(R1| |R2| | h ie ) ] C1 = ) // i n Hz

    8 disp ( ( b ) O ut pu t RC n e tw o r k )9 format (7)

    10 f c 2 = 1 / ( 2 * % p i * ( ( 2 . 2 + 1 0 ) * 1 0 ^ 3 ) * ( 0 . 1 * 1 0 ^ - 6 ) )11 disp ( f c 2 , f c ( o u t p u t ) ( i n Hz ) = 1 / 2p i (RC+

    RL) C2 = ) // i n Hz12 disp ( ( c ) B y p as s RC n e t w o r k )

    13

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    15/142

    13 r t h = ( ( 6 8 * 2 2 * 0 . 6 8 0 ) / ( ( 2 2 * 0 . 6 8 0 ) + ( 6 8 * 0 . 6 8 0 ) + ( 6 8 * 2 2 ) ) )

    *10^314 disp ( r t h , R t h ( i n ohm) = R1 | | R2 | | RS = )15 format (6)

    16 f c 3 = 1 / ( 2 * % p i * 1 7 . 2 3 * 1 0 * 1 0 ^ - 6 )

    17 disp ( f c 3 , f c ( b y p a s s ) ( i n Hz ) = 1 / 2p i [ (R t h+ hi e / be t a ) | | RE] CE)

    18 disp ( We h av e c a l c u l a t e d a l l t h e t h r e e c r i t i c a lf r e q u e n c i e s : )

    19 disp ( ( a ) f c ( i n p u t ) = 9 2 9 . 8 Hz )20 disp ( ( b ) f c ( o u t pu t ) = 1 3 0 . 4 5 Hz )21 disp ( ( c ) f c ( b y p a s s ) = 9 2 3 . 7 Hz )

    Scilab code Exa 2.5 low frequency response of the FET amplifier

    1 / / E xa mp le 2 . 52 clc

    3 disp ( I t i s n e c e s s ar y t o a n al y ze e a ch n et w or k t od e te r m in e t h e c r i t i c a l f r e q u e n c y o f t h e a m p l i f i e r )

    4 disp ( ( a ) I n p ut RC N et wo rk )5 disp ( f c = 1 / 2p i R i n C1 )6 format (6)

    7 r i n = ( 1 0 0 * 1 0 0 ) / ( 1 0 0 + 1 0 0 )

    8 disp ( r i n , wher e R i n ( i n Mohm) = RG | | R i n ( g a t e ) =RG | | | VGS/IGSS| = )

    9 format (5)

    10 f c 1 = 1 / ( 2 * % p i * 5 0 * 1 0 ^ 6 * 0 . 0 0 1 * 1 0 ^ - 6 )

    11 disp ( f c 1 , T h e r e fo r e , f c ( i n Hz ) = )12 disp ( ( b ) O ut pu t RC N et wo rk )

    13 format (6)14 f c 2 = 1 / ( 2 * % p i * ( 2 4 . 2 * 1 0 ^ 3 ) * ( 1 * 1 0 ^ - 6 ) )

    15 disp ( f c 2 , f c ( i n Hz ) = 1 / 2p i (RD+RL) C2 = )16 disp ( We h av e c a l c u l a t e d two c r i t i c a l f r e q u e n c i e s )17 disp ( ( a ) f c ( i n p u t ) = 3 . 1 8 Hz )

    14

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    16/142

    18 disp ( ( b ) f c ( o u t pu t ) = 6 . 5 7 7 Hz )

    Scilab code Exa 2.6 high frequency response of the amplifier

    1 / / E xa mp le 2 . 62 clc

    3 disp ( B e f o r e c a l c u l a t i n g c r i t i c a l f r e q u e n c i e s i t i sn e c e s s a r y t o c a l c u l a t e mid f re q u e n cy g ai n o f t heg iv en c i r c u i t . T h i s i s r e q u i r e d t o c a l c u l a t e C in (

    m i l l e r ) and C o ut ( m i l l e r ) )4 disp ( Av = h f e R o / R i )5 disp ( where Ri = h i e | | R1 | | R2 )6 disp ( and Ro = RC | | RL )7 format (6)

    8 a v = ( - 1 0 0 * 1 . 8 ) / 1 . 0 3 2

    9 disp ( a v , T h e re fo r e , Av = h f e (RC | | RL) / h i e | |R1| |R2= )

    10 disp ( N eg at iv e s i gn i n d i c a t e s 180 d eg re e s h i f tb et we en i n p u t and o u t pu t )

    11 format (7)

    12 c i n = ( 4 * ( 1 7 4 . 4 + 1 ) ) * 1 0 ^ - 3 // i n nF13 disp ( c i n , C in ( m i l l e r ) ( i n nF ) = C bc (Av+1) = )14 c o u t = ( 4 * 1 7 5 . 4 ) / ( 1 7 4 . 4 ) // i n pF15 format (4)

    16 disp ( c o u t , C out ( m i l l e r ) ( i n pF ) = C bc (Av+1) /Av = )

    17 disp ( We now a n a l y z e i n p u t and o u tp ut n et wo rk f o rc r i t i c a l fr eq ue nc y . )

    18 format (8)

    19 f c i = ( 1 / ( 2 * % p i * 4 1 0 * 0 . 7 2 1 6 * 1 0 ^ - 9 ) ) * 1 0 ^ - 3 // i n kHz

    20 disp ( f c i , f c ( i np ut ) ( i n kHz ) = 1 / 2p i ( Rs | |R1| |R2| | h i e ) ( C b e+C i n ( m i l l e r ) ) = )21 format (5)

    22 f c o = ( 1 / ( 2 * % p i * ( ( 2 2 * 1 0 ^ 6 ) / ( 1 2 . 2 * 1 0 ^ 3 ) ) * ( 4 * 1 0 ^ - 1 2 ) ) )

    * 1 0 ^ - 6 / / i n MHz

    15

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    17/142

    23 disp ( f c o , f c ( o ut pu t ) ( i n MHz) = 1 / 2p i (RC | | RL

    ) C o u t ( m i l l e r ) = )24 disp ( We h a ve c a l c u l a t e d b o th t h e c r i t i c a lf r e q u e n c i e s )

    25 disp ( ( a ) f c ( i n p u t ) = 5 3 7 . 9 4 7 kHz )26 disp ( ( b ) f c ( o u t p u t ) = 2 2 . 1 MHz )

    Scilab code Exa 2.7 high frequency response of the amplifier

    1 / / E xa mp le 2 . 72 clc

    3 disp ( B e f o r e c a l c u l a t i n g c r i t i c a l f r e q u e n c i e s i t i sn e c e s s a r y t o c a l c u l a t e mid f re q u e n cy g ai n o f t heg iv en a m p l i f i e r c i r c u i t . T h i s i s r e q u i r e d t oc a l c u l a t e C i n ( m i l l e r ) and C o u t ( m i l l e r ) )

    4 disp ( Av = gm RD )5 disp ( H er e , RD s h o u l d b r r e p l a c e d by RD | | RL )6 a v = - 6 * 2

    7 disp ( a v , T h e r e f o r e , Av = gm (RD | | RL) = )8 c i n = 2 * ( 1 2 + 1 ) // i n pF

    9 disp ( c i n , C i n ( m i l l e r ) ( i n pF ) = C g d ( A v + 1 ) = C r s s (Av+1) = )

    10 format (6)

    11 c o u t = ( 2 * 1 3 ) / 1 2 // i n pF12 disp ( c o u t , C o u t ( m i l l e r ) ( i n pF ) = C g d ( Av +1) / Av =

    )13 disp ( G gs = C i s s C r s s = 4 p F )14 disp ( We know a n a l y z e i n p u t and o u tp u t n et wo r k f o r

    c r i t i c a l fr eq ue nc y )15 disp ( f c ( i n p u t ) = 1 / 2 p i RSCT )

    16 disp ( = 1 / 2p i RS [ C g s+C i n ( m i l l e r) ] )17 format (4)

    18 f c 1 = ( 1 / ( 2 * % p i * 1 0 0 * 3 0 * 1 0 ^ - 1 2 ) ) * 1 0 ^ - 6 / / i n MHz19 disp ( f c 1 , f c ( i n p u t ) ( i n MHz)= )

    16

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    18/142

    20 f c 2 = ( 1 / ( 2 * % p i * ( ( 4 8 . 4 * 1 0 ^ 6 ) / ( 2 4 . 2 * 1 0 ^ 3 ) )

    * ( 2 . 1 6 6 * 1 0 ^ - 1 2 ) ) ) * 1 0 ^ - 6 / / i n MHz21 format (6)22 disp ( f c 2 , f c ( o ut pu t ) ( i n MHz) = 1 / 2p i (RD | | RL

    ) C o u t ( m i l l e r ) = )23 disp ( We h a ve c a l c u l a t e d b o th t h e c r i t i c a l

    f r e q u e n c i e s : )24 disp ( ( a ) f c ( i n p u t ) = 5 3 MHz )25 disp ( ( b ) f c ( o u t p u t ) = 3 6 . 7 4 MHz )

    17

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    19/142

    Chapter 3

    Feedback Amplifiers

    Scilab code Exa 3.1 gain fL and fH

    1 / / E xa mp le 3 . 12 clc

    3 disp ( ( a ) Gain w it h f e ed b a ck )4 format (5)

    5 a v = 1 0 0 0 / ( 1 + ( 0 . 0 5 * 1 0 0 0 ) )

    6 disp ( a v , AV mid = Av mid / 1+ b e t a Av mid = )

    7 f l f = 5 0 / ( 1 + ( 0 . 0 5 * 1 0 0 0 ) ) // i n Hz8 disp ( f l f , (b ) f L f ( i n Hz ) = f L / 1+ b e t a Av mid

    = )9 f h f = ( ( 5 0 * 1 0 ^ 3 ) * ( 1 + ( 0 . 0 5 * 1 0 0 0 ) ) ) * 1 0 ^ - 6 / / i n MHz

    10 disp ( f h f , ( c ) f H f ( i n MHz) = f H ( 1+ be t a A v mi d) = )

    Scilab code Exa 3.2 Vo and second harmonic distortion with feedback

    1 / / E xa mp le 3 . 22 clc

    3 disp ( ( a ) b et a : 4 0 = 2 0l o g [ 1+ b e t a A ] )

    18

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    20/142

    4 disp ( T h e r e fo r e , 1+ be t a A = 1 0 0 )

    5 b = 9 9 / 1 0 0 06 format (6)

    7 disp (b , Th e r e f o r e , b e t a = )8 disp ( Gain o f t h e a m p l i f i e r w i t h f ee db ac k i s g iv en

    a s )9 a v f = 1 0 0 0 / 1 0 0

    10 disp ( a v f , A Vf = A V / 1+ b e t a A V = )11 disp ( ( b ) To m a in t ai n o ut p ut p ower 1 0 W, we s h o ul d

    m a in ta in o ut pu t v o l t a g e c o n st a n t and t o m a in ta i no ut pu t c on s ta n t w i th f ee db a ck g ai n r e q u i r e d Vs i s )

    12 v s f = 1 0 * 1 0 0 * 1 0 ^ - 3 // i n V13 disp ( v s f , V s f ( i n V) = Vs 100 = )14 disp ( ( c ) S eco nd h ar mo ni c d i s t o r t i o n i s r ed uc ed by

    f a c t o r 1 + b et a A )15 d 2 f = ( 0 . 1 / 1 0 0 ) * 1 0 0 // i n p e rc e nt a ge16 disp ( d 2 f , D 2 f ( i n p er c en ta ge ) = D 2 / 1+ b e t a A

    = )

    Scilab code Exa 3.3 beta and Af

    1 / / E xa mp le 3 . 32 clc

    3 disp ( ( a ) We know t h a t )4 disp ( dAf / Af = 0. 1/1+ b e t a A dA/A )5 disp ( T h e r e fo r e , 1+ be t a A = 3 7 . 5 )6 b = ( 3 6 . 5 / 2 0 0 0 ) * 1 0 0 // i n p e rc e nt a ge7 format (6)

    8 disp (b , T h e r e fo r e , b e ta ( i n p e r c e n t a g e ) = )

    9 a f = 2 0 0 0 / ( 1 + ( 0 . 0 1 8 2 5 * 2 0 0 0 ) )10 disp ( a f , ( b ) Af = A / 1+ b e t a A = )

    19

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    21/142

    Scilab code Exa 3.4 beta and Av and Avf and Rif and Rof

    1 / / E xa mp le 3 . 42 clc

    3 disp ( S t e p 1 : I d e n t i t y t op ol og y )4 disp ( The f e e db ac k v o l t a g e i s a p p l i e d a c r o s s t h e

    r e s i s t a n c e R e1 and i t i s i n s e r i e s w i t h i n p u ts i g n a l . Hence f ee db ac k i s v o l t a ge s e r i e s f ee db ac k. )

    5 disp ( )6 disp ( S te p 2 and S te p 3 : Fi nd i n pu t and o ut pu t

    c i r c u i t . )

    7 disp ( To f i n d i n p u t c i r c u i t , s e t Vo = 0 (c o n n ec t i ng C2 t o g ro un d ) , wh ich g i v e s p a r a l l e lc om bi na ti o n o f Re w it h Rf a t E1 . To f i n d o ut pu tc i r c u i t , s e t I i = 0 ( o pe n in g t h e i np ut node E1 a t

    e m i tt e r o f Q1 ) , whi ch g i v e s s e r i e s c om bi na ti ono f Rf and Re1 a c r o s s t he o ut pu t . The r e s u l t a n tc i r c u i t i s shown i n F i g . 3 . 3 2 )

    8 disp ( )9 disp ( S te p 4 : Find open l oo p v o l t a g e g ai n ( A v ) )

    10 format (5)

    11 r l 2 = ( 4 . 7 * 1 0 . 1 ) / ( 4 . 7 + 1 0 . 1 ) // i n kohm12 disp ( r l 2 , R L2 ( i n ko h m ) = R c 2 | | ( R e 1+Rf ) = )

    13 disp ( A i 2 = h f e = 100 )14 disp ( R i 2 = h i e = 1100 ohm )15 format (7)

    16 a v 2 = ( - 1 0 0 * 3 . 2 1 * 1 0 ^ 3 ) / 1 1 0 0

    17 disp ( a v 2 , A v2 = A i 2 R L2 / R i 2 = )18 disp ( A i 1 = h f e = 100 )19 format (5)

    20 r l 1 = ( 2 2 * 2 2 0 * 2 2 * 1 . 1 0 0 ) / ( ( 2 2 0 * 2 2 * 1 . 1 0 0 ) + ( 2 2 * 2 2 * 1 . 1 0 0 )

    + ( 2 2 * 2 2 0 * 1 . 1 0 0 ) + ( 2 2 * 2 2 0 * 2 2 ) ) / / i n ohm

    21 disp ( r l 1 * 1 0 ^ 3 , R L1 ( i n ohm ) = R c1 | | R3 | | R4 | |R i 2 = )

    22 r i 1 = 1 . 1 + ( 1 0 1 * ( ( 0 . 1 * 1 0 ) / ( 0 . 1 + 1 0 ) ) ) // i n kohm23 format (5)

    24 disp ( r i 1 , R i 1 ( i n kohm ) = h i e + (1+ h f e ) R e 1 e f f =

    20

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    22/142

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    23/142

    Scilab code Exa 3.5 Avf and Rif and Rof

    1 / / E xa mp le 3 . 52 clc

    3 disp ( S t e p 1 : I d e n t i t y t op ol og y )4 disp ( The f ee db ac k v o lt a g e i s a p pl i ed a c r o s s R1

    ( 10 0 ohm ) , which i s i n s e r i e s w it h i np ut s i g n a l .Hence f ee db a ck i s v o l t a g e s e r i e s f ee db a ck . )

    5 disp ( )6 disp ( S te p 2 and S te p 3 : Fi nd i n pu t and o ut pu t

    c i r c u i t )7 disp ( To f i n d i np ut c i r c u i t , s e t Vo = 0 , which

    g i v e s p a r a l l e l c om bi na ti on o f R1 w i t h R2 a t E1 a sshown i n t h e f i g . 3 . 4 5 . To f i n d o ut p u t c i r c u i t ,

    s e t I i = 0 by o pe ni ng t he i np ut node , E1 a te m i t t e r o f Q1 , whi ch g i v e s t he s e r i e s c om bi na ti on

    o f R2 a nd R1 a c r o s s t he o ut pu t . The r e s u l t a n tc i r c u i t i s shown i n f i g . 3 . 4 5 )

    8 disp ( )

    9 disp ( S te p 4 : Find t he open l oo p v o l t ag e g ai n ( Av ) )10 r l 2 = ( 4 . 7 * 4 . 8 ) / ( 4 . 7 + 4 . 8 ) // i n kohm11 format (5)

    12 disp ( r l 2 , R L2 ( i n kohm) = )13 disp ( S i nc e h oe = h r e = 0 we can u s e a pp ro x i ma te

    a n a l y s i s )14 disp ( A i 2 = h f e = 50 )15 disp ( R i 2 = h i e = 1 . 1 kohm )16 a v 2 = ( - 5 0 * 2 . 3 7 ) / 1 . 1

    17 format (7)

    18 disp ( a v 2 , A v2 = A i 2 R L2 / R i 2 = )19 r l 1 = ( 1 0 * 4 7 * 3 3 * 1 . 1 ) / ( ( 4 7 * 3 3 * 1 . 1 ) + ( 1 0 * 3 3 * 1 . 1 )

    + ( 1 0 * 4 7 * 1 . 1 ) + ( 1 0 * 4 7 * 3 3 ) ) / / i n ohm20 format (5)

    21 disp ( r l 1 * 1 0 ^ 3 , R L1 ( i n ohm ) = )

    22

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    24/142

    22 disp ( A i 1 = h f e = 50 )

    23 r i 1 = 1 . 1 + ( 5 1 * ( ( 0 . 1 * 4 . 7 ) / ( 4 . 8 ) ) ) // i n kohm24 format (6)25 disp ( r i 1 , R i 1 ( i n kohm ) = h i e + (1+ h f e ) Re = )26 a v 1 = ( - 5 0 * 9 4 2 ) / ( 6 . 0 9 3 * 1 0 ^ 3 )

    27 format (5)

    28 disp ( a v 1 , A v1 = A i 1 R L1 / R i 1 = )29 a v = - 7 . 7 3 * - 1 0 7 . 7 3

    30 format (7)

    31 disp ( a v , T h er ef or e , A v = A v1 A v 2 = )32 disp ( )33 disp ( S te p 5 : C a l c u l a te b et a and D )

    34 disp ( b e t a = R1 / R1+R2 = 1/ 48 )35 d = 1 + ( 8 3 2 . 7 5 / 4 8 ) / / i n ohm36 format (6)

    37 disp (d , D( i n ohm ) = 1 + A b e t a = )38 disp ( )39 disp ( S te p 5 : C a l c u l at e A vf , R of and R i f )40 a v f = 8 3 2 . 7 5 / 1 8 . 3 5

    41 disp ( a v f , A v f = A v / D = )42 r i f = 6 . 0 9 3 * 1 8 . 3 5 // i n kohm43 disp ( r i f , R i f ( i n ko h m ) = R i 1 D = )44 r o f = ( 2 . 3 7 * 1 0 ^ 3 ) / 1 8 . 3 5

    / / i n ohm45 format (7)46 disp ( r o f , R o f ( i n ohm ) = R o / D = )

    Scilab code Exa 3.6 Avf and Rif and Rof

    1 / / E xa mp le 3 . 62 clc

    3 disp ( S t e p 1 : I d e n t i f y t op ol og y )4 disp ( The f e e db ac k v o l t a g e i s a p p l i e d a c r o s s R e1= 1 .5 kohm , which i s i n s e r i e s w i t h i np ut s i g n a l. Hence f ee db ac k i s v o l t a ge s e r i e s f ee db ac k )

    5 disp ( )

    23

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    25/142

    6 disp ( S te p 2 and s t ep 3 : Fi nd i np ut and o ut p ut

    c i r c u i t )7 disp ( To f i n d i np ut c i r c u i t , s e t Vo = 0 , whichg i v e s p a r a l l e l c om bi na ti on o f R e1 w i t h R f a t E1

    a s shown i n f i g . 3 . 4 7 . To f i n d ouput c i r c u i t , s e tI i = 0 by o pe ni ng t he i np ut node , E1 a t e m i t t e ro f Q1 , whi ch g i v e s t he s e r i e s c o mb in at io n o f R f and R e1 a c r o s s t he o ut pu t . The r e s u l t a n t

    c i r c u i t i s shown i n f i g . 3 . 4 7 )8 disp ( )9 disp ( S te p 4 : Find t he open l oo p v o l t ag e g ai n ( Av ) )

    10 r l 2 = ( 2 . 2 * 5 7 . 5 ) / ( 2 . 2 + 5 7 . 5 ) // i n kohm

    11 format (6)12 disp ( r l 2 , R L2 ( i n ko h m ) = R c 2 | | ( R f + R e 1 ) = )13 disp ( S i n c e ho e R L 2 = 1 0 62 .1 19 ko h m = 0 . 0 0 2 1 1 9

    i s l e s s t han 0 . 1 we u se a pp ro xi ma te a n a l y s i s . )14 disp ( A i 2 = h f e = 200 )15 disp ( R i 2 = h i e = 2 kohm )16 a v 2 = ( - 2 0 0 * 2 . 1 1 9 ) / 2

    17 disp ( a v 2 , A v2 = A i 2 R L2 / R i 2 = )18 r l 1 = ( 1 2 0 * 2 ) / ( 1 2 2 ) // i n kohm19 disp ( r l 1 , R L1 ( i n kohm) = R C1 | | R i 2 = )20 disp (

    S i n c e ho e R L 1 = 1 0 61 .9 67 = 0 . 0 0 19 6 7 i sl e s s t ha n 0 . 1 we u se a pp ro xi ma te a n a l y s i s . )21 disp ( A i 1 = h f e = 200 )22 r i 1 = 2 + ( 2 0 1 * ( ( 1 . 5 * 5 6 ) / ( 5 7 . 5 ) ) ) // i n kohm23 format (7)

    24 disp ( r i 1 , R i 1 ( i n kohm ) = h i e + (1+ h f e ) Re = )25 a v 1 = ( - 2 0 0 * 1 . 9 6 7 ) / 2 9 5 . 6 3

    26 format (5)

    27 disp ( a v 1 , T h er ef or e , A v1 = A i 1 R L1 / R i 1 = )28 disp ( The o v e r a l l g ai n w it ho ut f ee db ac k i s )29 a v = - 1 . 3 3 * - 2 1 1 . 9

    30 format (7)31 disp ( a v , Av = A v1 A v 2 = )32 disp ( )33 disp ( S te p 5 : C a l c u l at e b et a )34 b e t a = 1 . 5 / 5 7 . 5

    24

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    26/142

    35 format (6)

    36 disp ( b e t a , b e ta = Vf / Vo = )37 disp ( )38 disp ( St e p 6 : c a l c u l a t e D , A vf , R i f , R of )39 d = 1 + ( 0 . 0 2 6 * 2 8 1 . 8 2 )

    40 disp (d , D = 1 + Av b e t a = )41 a v f = 2 8 1 . 8 2 / 8 . 3 2 7

    42 disp ( a v f , T h er e fo r e , A vf = Av / D = )43 r i = ( 2 9 5 . 6 3 * 1 5 0 ) / ( 2 9 5 . 6 3 + 1 5 0 ) // i n kohm44 format (5)

    45 disp ( r i , Ri ( i n ko h m ) = R i 1 | | R =)46 r i f = 9 9 . 5 * 8 . 3 2 7 // i n kohm

    47 format (7)48 disp ( r i f , R i f ( i n kohm) = R i D = )49 disp ( Ro = 1/ hoe = 1 Mohm )50 r o f = ( ( 1 * 1 0 ^ 6 ) / 8 . 3 2 7 ) * 1 0 ^ - 3 // i n kohm51 format (4)

    52 disp ( r o f , R of ( i n kohm ) = Ro / D = )53 r o = ( 1 0 0 0 * 2 . 1 1 9 ) / ( 2 . 1 1 9 + 1 0 0 0 ) // i n kohm54 format (7)

    55 disp ( r o , R o ( i n kohm) = Ro | | R c2 | | ( Rf+R e1 )= Ro | | R L2 = )

    56 r o f = ( 2 . 1 1 4 5 * 1 0 ^ 3 ) / 8 . 3 2 7 / / i n ohm57 format (4)

    58 disp ( r o f , R o f ( i n ohm ) = R o / D = )

    Scilab code Exa 3.7 D and Avf and Rif and Rof

    1 / / E xa mp le 3 . 72 clc

    3 disp ( S t e p 1 : I d e n t i t y t op ol og y )4 disp ( By s h o r t i ng o ut p ut v o l t a g e ( Vo = 0) ,f ee db ac k v o l t a g e Vf becomes z e ro and h en ce i t i sv o l t a g e s am pl in g . The f ee db ac k v o l t ag e i s a a p l i e d

    i n s e r i e s w i t h i np ut v o l t a ge h e n c e t h e t op ol og y

    25

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    27/142

    i s v o l t a ge s e r i e s f ee db ac k . )

    5 disp ( )6 disp ( S te p 2 and S te p 3 : Fi nd i n pu t and o ut pu tc i r c u i t . )

    7 disp ( To f i n d i n pu t c i r c u i t , s e t Vo = 0 . T h i sp l a c es t h e p a r a l l e l c o m b i n a ti o n o f r e s i s t o r 10 Kand 2 00 ohm a t f i r s t s o u r c e . To f i n d o ut pu tc i r c u i t , s e t I i = 0 . T h i s p l a c e s t h e r e s i s t o r 10

    K and 200 ohm i n s e r i e s a c r o s s t he o ut pu t . Ther e s u l t a n t c i r c u i t i s shown i n f i g . 3 . 5 0 . )

    8 disp ( )9 disp ( S te p 4 : R ep la ce FET wi th i t s e q u i v a l e n t

    c i r c u i t a s shown i n f i g . 3 . 5 1 )10 disp ( )11 disp ( S te p 5 : Find open l oo p t r a n s f e r g ai n . )12 disp ( Av = Vo / Vs = A v1 A v 2 )13 disp ( A v2 = u R L2 / R L2+ r d )14 r l 2 = ( 1 0 . 2 * 4 7 ) / ( 1 0 . 2 + 4 7 ) // i n kohm15 format (5)

    16 disp ( r l 2 , wher e R L2 ( i n kohm) = )17 a v 2 = ( - 4 0 * 8 . 3 8 ) / ( 8 . 3 8 + 1 0 )

    18 format (7)

    19 disp ( a v 2 , T h er e fo r e , A v2 =

    )

    20 disp ( A v1 = u R D e f f / r d +R D e f f +(1+u ) R s e f f )21 r d e f f = ( 4 7 * 1 0 0 0 ) / ( 4 7 + 1 0 0 0 ) // i n kohm22 format (6)

    23 disp ( r d e f f , w here R D ef f ( i n kohm) = R D | | R G2 =)

    24 disp ( R s e f f = 200 | | 10 K )25 a v 1 = ( - 4 0 * 4 4 . 9 8 * 1 0 ^ 3 ) / ( ( 1 0 * 1 0 ^ 3 ) + ( 4 4 . 8 9 * 1 0 ^ 3 )

    + ( 4 1 * ( ( 1 0 * 0 . 2 ) / ( 1 0 . 2 ) ) ) )

    26 disp ( a v 1 , A v1 = ) // a nsw e r i n t ex tb oo k i swrong

    27 o a v = - 2 8 . 5 9 * - 1 8 . 2 3 728 format (7)

    29 disp ( o a v , T h er e fo r e , O v e r al l Av = )30 disp ( )31 disp ( S te p 6 : C a l c u l at e b et a )

    26

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    28/142

    32 b e t a = 2 0 0 / ( 1 0 . 2 * 1 0 ^ 3 )

    33 disp ( b e t a , b e ta = Vf / Vo = )34 disp ( )35 disp ( S te p 7 : C a l c u l at e D, A vf , R i f , R o f )36 d = 1 + ( 0 . 0 1 9 6 * 5 2 1 . 3 9 )

    37 format (6)

    38 disp (d , D = 1 + Av b e t a = )39 a v f = 5 2 1 . 3 9 / 1 1 . 2 2

    40 disp ( a v f , A vf = Av / D = )41 disp ( Ri = R G = 1 Mohm )42 r i f = 1 1 . 2 2

    43 disp ( r i f , R i f ( i n Mohm) = R i D =)

    44 disp ( Ro = r d = 10 kohm )45 r o = ( 1 0 * 8 . 3 8 ) / ( 1 8 . 3 8 ) // i n kohm46 disp ( r o , R o ( i n ko h m ) = r d | | R L2 = )47 r o f = ( 4 . 5 5 9 * 1 0 ^ 3 ) / 1 1 . 2 2 / / i n ohm48 format (4)

    49 disp ( r o f , R o f ( i n ohm ) = R o / D = )

    Scilab code Exa 3.8 voltage gain

    1 / / E xa mp le 3 . 82 clc

    3 disp ( Here , o ut pu t v o l t a g e i s s am pl ed and f e d i ns e r i e s w i th t he i np ut s i g n a l . Hence t he t op o lo g yi s v o l t a ge s e r i e s f ee db ac k . )

    4 disp ( The open l oo p v o l t a g e g ai n f o r one s t a g e i sg i v e n a s , )

    5 disp ( Av = gm R e q )6 r e q = ( 8 * 4 0 * 1 0 0 0 ) / ( ( 4 0 * 1 0 0 0 ) + ( 8 * 1 0 0 0 ) + ( 8 * 4 0 ) ) // i n k

    ohm7 format (5)8 disp ( r e q , R eq ( i n ko h m ) = r d | | R d | | ( R i1+R 2

    ) =)9 a v = - 5 * 6 . 6 2

    27

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    29/142

    10 format (6)

    11 disp ( a v , Av = )12 a v m = - 3 3 . 1 1 ^ 313 disp ( a v m , Av = O v e r a l l v o l t a g e g a in = |A vmid| 3 = )

    // a ns we r i n t ex tb o ok i s wrong14 b e t a = 5 0 / ( 1 0 ^ 6 )

    15 format (7)

    16 disp ( b e t a , b e t a = Vf / Vo = R 1 / R g = R 1 /R 1+R 2 = )

    17 d = 1 + ( ( - 5 * 1 0 ^ - 5 ) * - 3 6 3 0 6 )

    18 format (6)

    19 disp (d , D = 1 + | Av | b e t a = )

    20 a v f = - 3 6 3 0 6 / 2 . 8 1 5 321 disp ( a v f , A vf = Av / D = )

    Scilab code Exa 3.9 Avf

    1 / / E xa mp le 3 . 92 clc

    3 disp ( Here , o ut p ut t e r m i n a l s a r e B a nd g ro un d , t h us

    t h e f or wa rd g ai n i s t he g ai n o f Q1 and i t i s , )4 disp ( A BN = 33. 11 )5 disp ( However , Q2 and Q3 must b e c o n s i d e r e d a s a

    p ar t o f f ee db a ck l oo p )6 disp ( Her e beta BN = V f / V B = V f / V o V o / V C

    V C/V B )7 disp ( where V B and V C a r e v o l t a g e s a t p o in t B a nd

    C , r e s p e c t i v e l y . )8 disp ( T h e re fo r e , beta BN = V f / V o A v3 A v2

    b e c a u s e V o /V C = A v3 and V C/ V B = A v2

    )9 b b n = - ( 5 * 1 0 ^ - 5 ) * ( 3 3 . 1 1 ^ 2 )10 format (7)

    11 disp ( b b n , T h er e fo r e , beta BN = R1/R g A v3 A v 2 = )

    28

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    30/142

    12 disp ( Note t ha t t he l oo p g ai n be t a BN A BN = A3

    Vo R1/Rg = 1 . 8 1 5 = A b e t a )13 disp ( I t s ho ul d be c l e a r t ht r e g a r d l e s s o fw he re t h eo ut pu t t e r mi n a l s a r e ta ke n , t he l oo p g ai n i sunch ange d . )

    14 a v f = - 3 3 . 1 1 / 2 . 8 1 5

    15 format (6)

    16 disp ( a v f , T h e r e fo r e , A v f = A BN / 1+A b e t a = )

    Scilab code Exa 3.10 Avf and Rif and Rof

    1 / / E x am pl e 3 . 1 02 disp ( S t e p 1 : I d e n t i f y t op ol og y )3 disp ( By s h o r t i ng o ut p ut v o l t a g e ( Vo = 0) ,

    f ee db ac k v o l t a g e Vf becomes z e ro and h en ce i t i sv o l t a g e s am pl in g . The f ee db ac k v o l t ag e i s a p p li e d

    i n s e r i e s w i t h t h e i np ut v o lt a ge h e n c e t het op o lo g y i s v o l t a g e s e r i e s f ee db ac k . )

    4 disp ( )5 disp ( S te p 2 and S te p 3 : Fi nd i n pu t and o ut pu t

    c i r c u i t . )6 disp ( To f i n d i n pu t c i r c u i t , s e t Vo = 0 . T h i s

    p l a c es t h e p a r a l l e l c o m b i n a ti o n o f r e s i s t o r 10 Kand 3 00 ohm a t f i r s t s o u r c e . To f i n d o ut pu tc i r c u i t , s e t I i = 0 . T h i s p l a c e s t h e r e s i s t o r 10K

    and 300 ohm i n s e r i e s a c r o s s t he o ut pu t . Ther e s u l t a n t c i r c u i t i s shown i n f i g . 3 . 5 4 . )

    7 disp ( )8 disp ( S te p 4 : R ep la ce FET wi th i t s e q u i v a l e n t

    c i r c u i t a s shown i n f i g . 3 . 5 5 . )

    9 disp ( )10 disp ( S te p 5 : Find open l oo p t r a n s f e r g ai n . )11 disp ( Av = Vo / Vs = A v1 A v 2 )12 disp ( A v2 = u R L2 / R L2+ r d )13 r l 2 = ( 1 0 . 3 * 2 2 ) / ( 1 0 . 3 + 2 2 ) // i n kohm

    29

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    31/142

    14 format (3)

    15 disp ( r l 2 , wher e R L2 ( i n kohm) = )16 a v 2 = ( - 5 0 * 7 ) / 1 717 format (6)

    18 disp ( a v 2 , A v2 = )19 disp ( A v1 = u R D e f f / r d +R D e f f +(1+u ) R s e f f )20 r d e f f = ( 2 2 * 1 0 0 0 ) / ( 2 2 + 1 0 0 0 ) // i n kohm21 disp ( r d e f f , R De f f ( i n kohm) = R D | | R G2 = )22 disp ( R s e f f = 330 | | 10K )23 a v 1 = ( - 5 0 * 2 1 . 5 3 ) / ( 1 0 + 2 1 . 5 3 + ( 5 1 * ( ( 0 . 3 3 * 1 0 ) / ( 1 0 + 0 . 3 3 ) ) )

    )

    24 disp ( a v 1 , T h er e fo r e , A v1 = )

    25 a v = - 2 0 . 5 9 * - 2 2 . 5 126 disp ( a v , O v e r a l l Av = A v1 A v 2 = )27 disp ( )28 disp ( S te p 6 : C a l c u l at e b et a )29 b e t a = 3 3 0 / ( 3 3 0 + 1 0 0 0 0 )

    30 format (7)

    31 disp ( b e t a , b e ta = V f / Vo = Rs / Rs+Rf = )32 disp ( )33 disp ( s t ep 7 : C a l c u l at e D, A vf , R i f , R o f )34 d = 1 + ( 0 . 0 3 1 9 * 4 6 3 . 5 )

    35 disp (d , D = 1 + Av b e t a =

    )

    36 a v f = 4 6 3 . 5 / 1 5 . 7 8 5

    37 format (6)

    38 disp ( a v f , A vf = Av / D = )39 disp ( Ri = R G = 1 Mohm )40 r i f = 1 5 . 7 8 5

    41 format (7)

    42 disp ( r i f , R i f ( i n kohm) = R i D =)43 r o = ( 1 0 * 7 ) / ( 1 0 + 7 ) // i n kohm44 format (6)

    45 disp ( r o , R o ( i n kohm) = r d | | R L2 = )

    46 r o f = ( 4 . 1 1 8 * 1 0 ^ 3 ) / 1 5 . 7 8 5 / / i n ohm47 format (4)

    48 disp ( r o f , R o f ( i n ohm ) = R o / D = )

    30

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    32/142

    Scilab code Exa 3.11 voltage gain and input and output resistance

    1 / / E x am pl e 3 . 1 12 clc

    3 disp ( S t e p 1 : I d e n t i f y t op ol og y )4 disp ( The f e e db ac k v o l t a g e i s a p p l i e d a c r o s s t h e

    r e s i s t a n c e R e1 and i t i s i n s e r i e s w i t h i n p u ts i g n a l . Hence f ee db ac k i s v o l t a ge s e r i e s f ee db ac k. )

    5 disp ( )6 disp ( s t e p 2 and S te p 3 : Fi nd i n pu t and o ut pu t

    c i r c u i t . )7 disp ( To f i n d i n p u t c i r c u i t , s e t Vo = 0 (

    c o n n e c t i n g C2 t o g ro un d ) , w hi ch g i v e s p a r l l e lc om bi na ti o n o f Re w it h Rf a t E1 . To f i n d o ut pu tc i r u i t , s e t I i = 0 ( o pe n in g t he i np ut node E1 a te m i t t e r o f Q1 ) , which g i v e s s e r i e s c om bi na ti on od

    Rf and R e1 a c r o s s t he o ut pu t . The r e s u l t a n tc i r c u i t i s shown i n f i g . 3 . 5 7 )

    8 disp ( )9 disp ( S te p 4 : Find open l oo p v o l t a g e g ai n ( Av ) )

    10 r l 2 = ( 4 . 7 * 3 . 4 2 ) / ( 4 . 7 + 3 . 4 2 ) // i n kohm11 format (5)

    12 disp ( r l 2 , R L2 ( i n ko h m ) = R c 2 | | ( Rs+R) = )13 disp ( A i 2 = h f e = 50 )14 disp ( R i 2 = h i e = 1 00 0 ohm = 1 kohm )15 a v 2 = - 5 0 * 1 . 9 8

    16 format (3)

    17 disp ( a v 2 , A v2 = A i 2 R L2 / R i 2 = )18 disp ( A i 1 = h f e = 50 )19 format (7)

    20 r l 1 = ( ( 1 0 * 1 0 0 * 2 2 * 1 ) / ( ( 1 0 0 * 2 2 ) + ( 1 0 * 2 2 ) + ( 1 0 * 1 0 0 )

    + ( 1 0 * 1 0 0 * 2 2 ) ) ) * 1 0 ^ 3 / / i n ohm21 disp ( r l 1 , R L1 ( i n ohm ) = R c1 | | R3 | | R4 | | R i 2

    31

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    33/142

    = )

    22 disp ( R i 1 = h i e + (1+ h f e ) R e 1 e f f )23 r e 1 = 1 + ( 5 1 * ( ( 3 . 3 * 0 . 1 2 ) / ( 3 . 4 2 ) ) ) // i n kohm24 format (4)

    25 disp ( r e 1 , wher e R e 1 e f f ( i n kohm) = Rs | | R = )26 a v 1 = ( - 5 0 * 8 6 5 . 4 6 ) / 6 9 0 0

    27 format (5)

    28 disp ( a v 1 , A v1 = A i 1 R L1 / R i 1 = )29 disp ( The o v e r a l l v o l t a g e g ai n , )30 a v = - 6 . 2 7 * - 9 9

    31 format (7)

    32 disp ( a v , Av = A v1 A v 2 = )

    33 disp ( )34 disp ( S te p 5 : C a l c u l at e b et a )35 b e t a = 1 2 0 / ( 1 2 0 + 3 3 0 0 )

    36 format (6)

    37 disp ( b e t a , b e ta = Vf / Vo = Rs / Rs+R = )38 disp ( )39 disp ( S te p 6 : C a l c u l at e D, A vf , R i f , R of and R

    o f )40 d = 1 + ( 0 . 0 3 5 * 6 2 0 . 7 3 )

    41 format (7)

    42 disp (d , D = 1 + Av b e t a =

    )

    43 a v f = 6 2 0 . 7 3 / 2 2 . 7 2 5

    44 format (5)

    45 disp ( a v f , A vf = Av / D = )46 r i f = 6 . 9 * 2 2 . 7 2 5 // i n kohm47 format (6)

    48 disp ( r i f , R i f ( i n ko h m ) = R i 1 D = )49 disp ( R of = Ro / D = i n f i n i t y )50 r o f = ( 1 . 9 8 * 1 0 ^ 3 ) / 2 2 . 7 2 5 / / i n ohm51 disp ( r o f , R o f ( i n ohm ) = R o / D = R L2 / D = )

    Scilab code Exa 3.12 Ai and beta and Aif

    32

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    34/142

    1 / / E x am pl e 3 . 1 2

    2 clc3 disp ( S t e p 1 : I d e n t i f y t op ol og y )4 disp ( The f e eb da ck i s g i v en from e m i t te r o f Q2 t o

    t h e b a se o f Q2 . I f I o = 0 t h e n f ee db ac k c u r r e n tt h r o u g h 5 K r e g i s t e r i s z e r o , h e n c e i t i s c ur r e nt

    s am pl in g . As f ee db ac k s i g n a l i s mixed i n s hu ntw i t h i n p u t , t h e a m p l i f i e r i s c u rr e n t s h u n tf e ed b ac k a m p l i f i e r . )

    5 disp ( )6 disp ( S te p 2 and S te p 3 : Fi nd i np ut and o ut p ut )7 disp ( The i np u t c i r c u i t o f t h e a m p l i f i e r w i t h o u t

    f ee db ac k i s o b ta i ne d by o pe ni ng t he o ut pu t l oo pa t t he e m i t t e r o f Q2 ( I o = 0 ) . T h is p l a c e s R ( 5 K) i n s e r i e s w i t h Re f rom b as e t o e m i t te r o f Q1 .The o ut p u t c i r c u i t i s f o u nd by s h o rt i n g t he i np ut

    node , i . e . making Vi = 0 . T hi s p l a c e s R ( 5 K)i n p a r a l l e l w i t h Re . The r e s u l t a n t e q ui v a l e n tc i r c u i t i s shown i n f i g . 3 . 5 9 )

    8 disp ( )9 disp ( S t e p 4 : Find open c i r c u i t t r a n s f e r g ai n . )

    10 disp ( A I = I o / I s = Ic / I b2 I b 2 / I c 1 I c 1 /

    I b 1 I b1 / Is )

    11 disp ( We know th at I c 2 / I b 2 = A i2 = h f e = 50and )

    12 disp ( I c 1 / I b 1 = A i1 = h f e = 5 0 )13 disp ( I c 1 / I b 1 = 50 )14 disp ( L oo ki ng a t f i g . 3 . 5 9 we ca n w ri te , )15 disp ( I b 2 / I c 1 = R c1 / R c1+R i 2 )16 r i 2 = 1 . 5 + ( 5 1 * ( ( 5 * 0 . 5 ) / ( 5 . 5 ) ) ) // i n kohm17 format (8)

    18 disp ( r i 2 , wher e R i 2 ( i n kohm ) = h i e + (1+ h f e ) (R e2 | | R ) = )

    19 x 1 = - 2 / ( 2 + 2 4 . 6 8 1 8 )20 disp ( x 1 , I b 2 / I c 1 = )21 disp ( I b 1 / I s = R / R+R i 1 where R = Rs| | ( R

    + R e 2 ) )22 r = ( ( 1 * 5 . 5 ) / ( 1 + 5 . 5 ) ) * 1 0 ^ 3 / / i n ohm

    33

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    35/142

    23 format (9)

    24 disp (r , T h e r e f o r e , R( i n ohm ) = )25 disp ( and R i 1 = h i e + (1+ h f e ) R e1 = 1 6 . 8 kohm)

    26 x 1 = 8 4 6 . 1 5 3 8 / ( 8 4 6 . 1 5 3 8 + ( 1 6 . 8 * 1 0 ^ 3 ) )

    27 format (8)

    28 disp ( x 1 , T he r e f o re , I b1 / I s = )29 a i = 5 0 * 0 . 0 7 4 9 5 * 5 0 * 0 . 0 4 7 9 5

    30 format (7)

    31 disp ( a i , A I = )32 disp ( )33 disp ( S te p 5 : C a l c u l at e b et a )

    34 b e t a = 5 0 0 / ( 5 0 0 + ( 5 * 1 0 ^ 3 ) )35 disp ( b e t a , b e t a = I f / I o = R e2 / R e2| R = )36 disp ( )37 disp ( S te p 6 : C a l c u l at e D , A I f )38 d = 1 + ( 0 . 0 9 0 9 * 8 . 9 8 4 8 )

    39 disp (d , D = 1 + A I b e t a = )40 a i f = 8 . 9 8 4 8 / 1 . 8 1 6 8

    41 disp ( a i f , A I f = A I / D = )

    Scilab code Exa 3.13 beta and Av and Avf and Rif and Rof

    1 / / E x am pl e 3 . 1 32 clc

    3 disp ( S t e p 1 : I d e n t i f y t op ol og y )4 disp ( The f ee db ac k v o lt a g e i s a p pl i ed a c r o s s R1

    ( 15 0 ohm ) , which i s i n s e r i e s w it h i np ut s i g n a l .Hence f ee db a ck i s v o l t a g e s e r i e s f ee db a ck . )

    5 disp ( )

    6 disp ( S te p 2 and S te p 3 : Fi nd i n pu t and o ut pu tc i r c u i t )7 disp ( To f i n d i np ut c i r c u i t , s e t Vo = 0 , which

    g i v e s p a r a l l e l c om bi na ti on o f R1 w i t h R2 a t E1 a sshown i n t h e f i g . 3 . 6 1 . To f i n d o ut p u t c i r c u i t ,

    34

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    36/142

    s e t I i = 0 by o pe ni ng t he i np ut node , E1 a t

    e m i t t e r o f Q1 , whi ch g i v e s t he s e r i e s c om bi na ti ono f R2 a nd R1 a c r o s s t he o ut pu t . The r e s u l t a n tc i r c u i t i s shown i n f i g . 3 . 6 1 . )

    8 disp ( )9 disp ( S te p 4 : Find t he open l oo p v o l t ag e g ai n ( Av ) )

    10 r l 2 = ( 4 . 7 * 1 5 . 1 5 ) / ( 4 . 7 + 1 5 . 1 5 ) // i n kohm11 format (5)

    12 disp ( r l 2 , RL2 ( i n kohm) = )13 disp ( S i n c e ho e = h re = 0 , we ca n u se a pp ro xi ma te

    a n a l y s i s . )14 disp ( A i 2 = h f e = 500 )

    15 disp ( R i 2 = h i e = 1 1 00 ohm )16 a v 2 = ( - 5 0 0 * 3 . 5 9 * 1 0 ^ 3 ) / 1 1 0 0

    17 disp ( a v 2 , A v2 = A i 2 R L2 / R i 2 = )18 r l 1 = ( ( 1 0 * 4 7 * 3 3 * 1 . 1 ) / ( ( 4 7 * 3 3 * 1 . 1 ) + ( 1 0 * 3 3 * 1 . 1 )

    + ( 1 0 * 4 7 * 1 . 1 ) + ( 1 0 * 4 7 * 3 3 ) ) ) * 1 0 ^ 3 / / i n ohm19 disp ( r l 1 , R L1 ( i n ohm ) = 10K | | 47K | | 33K | | R i 2

    = )20 disp ( A i 1 = h f e = 500 )21 r i 1 = 1 . 1 + ( 5 0 1 * ( ( 0 . 1 5 * 1 5 ) / ( 0 . 1 5 + 1 5 ) ) ) // i n kohm22 disp ( r i 1 , R i 1 ( i n kohm ) = h i e + (1+ h f e ) Re = )23 a v 1 = ( - 5 0 0 * 9 4 2 ) / ( 7 5 . 5 * 1 0 ^ 3 )

    24 format (6)

    25 disp ( a v 1 , A v1 = A i 1 R L1 / R i 1 = )26 a v = - 6 . 2 3 8 * - 1 6 3 2

    27 disp ( a v , Av = A v1 A v 2 = )28 disp ( )29 disp ( S te p 5 : C a l c u l a te b et a and D )30 b e t a = 1 5 0 / ( 1 5 0 + 1 5 0 0 0 )

    31 format (7)

    32 disp ( b e t a , b e t a = R1 / R1+R2 = )33 d = 1 + ( 1 0 1 8 0 * 0 . 0 0 9 9 )

    34 format (8)35 disp (d , D = 1 + A b e t a = )36 disp ( )37 disp ( S te p 6 : C a l c u l at e A vf , R of and R i f )38 a v f = 1 0 1 8 0 / 1 0 1 . 7 8 2

    35

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    37/142

    39 format (4)

    40 disp ( a v f , A vf = Av / D = )41 r i f = 7 5 . 5 * 1 0 1 . 7 8 2 * 1 0 ^ - 3 // i n Mohm42 format (6)

    43 disp ( r i f , R i f ( i n Mo h m ) = R i 1 D = )44 r o f = ( 3 . 5 9 * 1 0 ^ 3 ) / 1 0 1 . 7 8 2

    45 disp ( r o f , R o f ( i n ohm ) = Ro / D = R L2 / D = )

    Scilab code Exa 3.14 gain and new bandwidth

    1 / / E x am pl e 3 . 1 42 clc

    3 disp ( Given : A vmid = 5 00 , f L = 10 0 kHz , f H = 2 0kHz and b e t a = 0 . 0 1 )

    4 a v f = 5 0 0 / ( 1 + ( 0 . 0 1 * 5 0 0 ) )

    5 format (6)

    6 disp ( a v f , A vf = A vmid / 1+ be ta A vmid = )7 f l f = 1 0 0 / ( 1 + ( 0 . 0 1 * 5 0 0 ) ) // i n Hz8 disp ( f l f , f L f ( i n Hz ) = f L / 1+ b et a A vmid = )9 f h f = 2 0 * ( 1 + ( 0 . 0 1 * 5 0 0 ) ) // i n kHz

    10 disp ( f h f , f H f ( i n kHZ ) = f H ( 1 + b e t a A v m i d ) = )

    11 b w = 1 2 0 - 0 . 0 1 6 6 7 / / i n kHZ12 format (9)

    13 disp ( b w , BW f ( i n kHz ) = f H f f L f = )

    Scilab code Exa 3.15 show voltage gain with feedback

    1 / / E x am pl e 3 . 1 52 clc

    3 disp ( S t e p 1 : I d e n t i f y t op ol og y )4 disp ( By s h o r t i n g o ut pu t ( Vo = 0 ) , f e ed b ac k v o l t a g e

    d o es n ot become z e r o . By o p en i ng t h e o u tp ut l o o p

    36

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    38/142

    f ee db a ck becomes z e ro and h en ce i t i s c u r re n t

    s am pl in g . The f ee db ac k i s a p p l i e d i n s e r i e s w i tht he i np ut s i g n al , h en ce t o po l og y u se d i s c u r r e n ts e r i e s f e ed b ac k . )

    5 disp ( )6 disp ( S te p 2 and S te p 3 : Fi nd i n pu t and o ut pu t

    c i r c u i t . )7 disp ( To f i n d i n p u t c i r c u i t , s e t I o = 0 . T h i s

    p l a c e s Re i n s e r i e s w it h i np ut . To f i n d o ut pu tc i r c u i t I i = 0 . T h i s p l ac e s Re i n o u t p u t s i d e .The r e s u l t a n t c i r c u i t i s shown i n f i g . 3 . 6 3 . )

    8 disp ( )

    9 disp ( St e p 4 : R e p l a c e t r a n s i s t o r w i t h i t s hp ar am et er e q u i v al e n t a s shown i n f i g . 3 . 6 4 . )

    10 disp ( )11 disp ( S te p 5 : Find open l oo p t r a n s f e r g ai n . )12 disp ( From q ua t i on ( 5 ) o f s e c t i o n 3 . 9 . 1 we h ave )13 disp ( A v f = I o R L / Vs = G Mf R L )14 disp ( = h f e R L / R s+ h i e +(1+ h f e ) Re )15 disp ( H er e R s = Rs | | R1 | | R2 )16 disp ( = Rs | | Rb b e c a u s e R b = R1

    | | R2 )17 disp (

    T h e r e fo r e , Vo / Vs = Vo/ Vi Vi/Vs)

    18 disp ( where Vi / Vs = Rb / Rs+Rb )19 disp ( T h er ef or e , Vo / Vs = ( h f e R L / R s+ h i e

    +(1+ h f e ) Re ) ( Rb / Rs+Rb) )20 disp ( D i v i d i n g b ot h n u me ra t or and d e n om i n at o r by Rs+

    Rb we ge t , )21 disp ( A v f = Vo / Vs = [h f eRc (Rb/Rb+Rs ) ] / R

    s+ h i e +(1+ h f e ) Re b e c a us e RL = Rc )22 disp ( = h f eRc [ 1 / 1 + ( R s /Rb ) ] / R s+ h i e

    +(1+ h f e ) Re )

    Scilab code Exa 3.16 GMf and Rif and Rof

    37

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    39/142

    1 / / E x am pl e 3 . 1 6

    2 clc3 disp ( R e f e r e xa mp le 3 . 1 5 )4 disp ( A v f = h f eRc [ 1 / 1 + ( R s /Rb ) ] / R s+ h i e

    +(1+ h f e ) Re where R s = Rs| |R1| |R2 )5 a v f = ( - 5 0 * ( 1 . 8 * 1 0 ^ 3 ) * [ 1 / ( 1 + ( 1 0 0 0 / 4 2 7 2 ) ) ] )

    / ( 8 1 0 + 1 0 0 0 + ( ( 1 + 5 0 ) * 1 0 0 0 ) )

    6 format (5)

    7 disp ( a v f , A v f = )8 g m f = - 1 . 3 8 / ( 1 . 8 * 1 0 ^ 3 )

    9 format (9)

    10 disp ( g m f , G Mf = A v f / R L = )

    11 disp ( b e t a = Vf / I o = I eRe / I o = I o Re / I o =Re = 1 K )

    12 disp ( G Mf = G M / 1+ b et a G M )13 g m = 1 / ( ( 1 / ( - 7 . 6 6 * 1 0 ^ - 4 ) ) + 1 0 0 0 )

    14 format (10)

    15 disp ( g m , T h e r e fo r e , G M = )16 d = 1 + ( - 1 0 0 0 * - 3 . 2 7 3 5 * 1 0 ^ - 3 )

    17 format (7)

    18 disp (d , D = 1 + G M b e t a = )19 r i = ( 1 + 1 . 3 6 ) // i n kohm20 format (5)

    21 disp ( r i , R i ( i n kohm) = Rs+( h i e +Re ) | | R D = )22 r i f = 2 . 3 6 * 4 . 2 7 3 5 // i n kohm23 format (3)

    24 disp ( r i f , R i f ( i n ko h m ) = R i D = )25 disp ( R o = i n f i n i t y )26 disp ( R o f = R o D = i n f i n i t y )27 disp ( R o f = R o f | | R L = R L = 1 . 8 kohm )

    Scilab code Exa 3.17 feedback factor and Rif and Rof

    1 / / E x am pl e 3 . 1 72 clc

    38

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    40/142

    3 disp ( R e f e r e xa mp le 3 . 1 5 )

    4 disp ( A v f = h f eRc [ 1 / 1 + ( R s /Rb ) ] / R s+ h i e+(1+ h f e ) Re where R s = Rs| |R1| |R2 )5 a v f = ( - 5 0 * ( 4 * 1 0 ^ 3 ) * [ 1 / ( 1 + ( 1 0 0 0 / 9 0 0 0 ) ) ] )

    / ( 9 0 0 + 1 0 0 0 + ( ( 1 + 1 5 0 ) * 1 0 0 0 ) )

    6 format (6)

    7 disp ( a v f , A v f = )8 g m f = - 1 . 1 7 7 / ( 4 * 1 0 ^ 3 )

    9 format (9)

    10 disp ( g m f , G Mf = A v f / R L = )11 disp ( b e t a = Vf / I o = I eRe / I o = I o Re / I o =

    Re = 1 K )

    12 disp ( G Mf = G M / 1+ b et a G M )13 g m = 1 / ( ( 1 / ( - 2 . 9 4 3 * 1 0 ^ - 4 ) ) + 1 0 0 0 )

    14 format (9)

    15 disp ( g m , T h e r e fo r e , G M = )16 d = 1 + ( - 1 0 0 0 * - 4 . 1 7 * 1 0 ^ - 4 )

    17 format (6)

    18 disp (d , D = 1 + G M b e t a = )19 r i = 1 + ( ( 2 * 9 ) / ( 2 + 9 ) ) // i n kohm20 disp ( r i , R i ( i n kohm) = Rs+( h i e +Re ) | | R D = )21 r i f = 2 . 6 3 6 * 1 . 4 1 7 // i n kohm22 format (6)

    23 disp ( r i f , R i f ( i n ko h m ) = R i D = )24 disp ( R o = i n f i n i t y )25 disp ( R o f = R o D = i n f i n i t y )26 disp ( R o f = R o f | | R L = R L = 4 kohm )

    Scilab code Exa 3.18 gain with feedback and new bandwidth

    1 / / E xam ple 3 . 1 8 .2 clc3 disp ( Given : A v mid = 4 0 , f L = 1 00 Hz , f H = 1 5

    kHz and b e t a = 0 . 0 1 )4 a v f = 4 0 0 / ( 1 + ( 0 . 0 1 * 4 0 0 ) )

    39

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    41/142

    5 format (3)

    6 disp ( a v f , A vf = A v mid / 1+ be ta A v m id = )7 f l f = 1 0 0 / ( 1 + ( 0 . 0 1 * 4 0 0 ) )8 disp ( f l f , f L f = f L / 1+ b e t a A v m id = )9 f h f = ( 1 5 ) * ( 1 + ( 0 . 0 1 * 4 0 0 ) ) // i n kHz

    10 disp ( f h f , f H f ( i n kHz ) = f H ( 1+ be t a A v mid ) =)

    11 b w = 7 5 - 0 . 0 2 // i n kHz12 format (6)

    13 disp ( b w , BW f ( i n kHz ) = f H f f L f = )

    Scilab code Exa 3.19 overall voltage gain and bandwidth

    1 / / E x am pl e 3 . 1 92 clc

    3 disp ( Gi v e n : Av = 10 , BW = 1 1 0 3 , n =3 )4 disp ( ( i ) O v er a l l v o l t ag e g ai n )5 disp ( The g ai n o f c as ca de d a m p l i f i e r w it ho ut

    f e e d b a c k = 1 0 1 0 1 0 = 1 0 0 0 )6 a v f = 1 0 0 0 / ( 1 + ( 0 . 1 * 1 0 0 0 ) )

    7 format (4)8 disp ( a v f , A v f = A v / 1 + A v b e t a = )9 disp ( ( i i ) B an dw id th o f c a s c a d e d s t a g e )

    10 disp ( Bandwidth o f c as c ad e d a m p l i f i e r w it ho utf e e d b a c k )

    11 b w = ( ( 1 * 1 0 ^ 6 ) * sqrt ( ( 2 ^ ( 1 / 3 ) ) - 1 ) ) * 1 0 ^ - 3 // i n kHz12 format (7)

    13 disp ( b w , BW( ca sc ad e ) ( in kHz ) = BWs q r t ( 2 ( 1 / n ) 1 ) = )

    14 b w f = ( 5 0 9 . 8 2 * 1 0 ^ 3 * ( 1 + ( 0 . 1 * 1 0 0 0 ) ) ) * 1 0 ^ - 6 / / i n MHz

    15 format (6)16 disp ( b w f , BW f ( i n MHz ) = BW ( 1 + b e t a A v mid ) = )

    40

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    42/142

    Chapter 4

    Oscillators

    Scilab code Exa 4.1 C and hfe

    1 / / E xa mp le 4 . 12 clc

    3 disp ( R e f e r i n g t o e q u a t i o n ( 1 ) , )4 r i = ( 2 5 * 5 7 * 1 . 8 ) / ( ( 5 7 * 1 . 8 ) + ( 2 5 * 1 . 8 ) + ( 2 5 * 5 7 ) ) // i n k

    ohm5 format (6)

    6 disp ( r i , R i ( i n kohm) = R1 | | R2 | | h i e = )7 disp ( Now R i + R3 = R )8 r 3 = 7 . 1 - 1 . 6 3 1 // i n kohm9 format (5)

    10 disp ( r 3 , T h e re fo r e , R3 ( i n kohm) = R R i = )11 k = 2 0 / 7 . 1

    12 format (6)

    13 disp (k , K = R C / R = )14 disp ( Now f = 1 / 2p i RCs q r t (6+4K) )15 c = ( 1 / ( sqrt ( 6 + ( 4 * 2 . 8 1 6 ) ) * 2 * % p i * 7 . 1 * 1 0 * 1 0 ^ 6 ) ) * 1 0 ^ 1 2

    // i n pF16 format (8)17 disp (c , T h e r e fo r e , C( i n pF ) = )18 disp ( h f e >= 4 K + 2 3 + 2 9 / K )19 h f e = ( 4 * 2 . 8 1 6 ) + 2 3 + ( 2 9 / 2 . 8 1 6 )

    41

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    43/142

    20 format (7)

    21 disp ( h f e , h f e >

    = )

    Scilab code Exa 4.2 frequency of oscillation

    1 / / E xa mp le 4 . 22 clc

    3 disp ( The g i v en v a l ue s a re , R = 4 . 7 kohm and C =0 . 4 7 uF )

    4 f = 1 / ( 2 * % p i * sqrt ( 6 ) * ( 4 . 7 * 1 0 ^ 3 ) * ( 0 . 4 7 * 1 0 ^ - 6 ) ) // i nHz5 format (7)

    6 disp (f , f ( i n Hz ) = 1 / 2p i s q r t ( 6 )RC = )

    Scilab code Exa 4.3 R and C

    1 / / E xa mp le 4 . 3

    2 clc3 disp ( f = 1 kHz )4 disp ( Now f = 1 / 2p i s q r t ( 6 )RC )5 disp ( Choos e C = 0 . 1 uF )6 r = 1 / ( sqrt ( 6 ) * 2 * % p i * 0 . 1 * 1 * 1 0 ^ - 3 ) / / i n ohm7 format (8)

    8 disp (r , T h e r e fo r e , R( i n ohm ) = )9 disp ( Choose R = 680 ohm s ta nd ar d v al ue )

    Scilab code Exa 4.4 C and RD

    1 / / E xa mp le 4 . 42 clc

    42

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    44/142

    3 disp ( U si n g t he e x p r e s s i o n f o r t he f r eq u en c y )

    4 disp ( Now , f = 1 / 2 p i RCs q r t ( 6 ) )5 f = ( 1 / ( sqrt ( 6 ) * 2 * % p i * 9 . 7 * 5 * 1 0 ^ 6 ) ) * 1 0 ^ 9 // i n nF6 format (5)

    7 disp (f , T h e r e fo r e , C( i n nF ) = )8 disp ( Now u s i n g t h e e q u a t i o n ( 2 7 ) )9 disp ( | A | = g m R L )

    10 disp ( T h e r e f o r e , | A | >= 2 9 )11 disp ( T h er ef or e , g m R L >= 2 9 )12 r l = ( 2 9 / ( 5 0 0 0 * 1 0 ^ - 6 ) ) * 1 0 ^ - 3 // i n kohm13 format (4)

    14 disp ( r l , T h er ef or e , R L ( i n kohm) >= 2 9 / g m = )

    15 disp ( R L = R D r d / R D+r d )16 r d = ( 4 0 ) / 4 . 8 8 2 3

    17 format (5)

    18 disp ( r d , T h er e f o re , R D ( i n ko h m ) = )19 disp ( While f o r minimum v a lu e o f R L = 5 . 8 kohm )20 disp ( R D = 6 . 7 8 kohm )

    Scilab code Exa 4.5 minimum and maximum R2

    1 / / E xa mp le 4 . 52 clc

    3 disp ( The f r e q u e n c y o f t h e o s c i l l a t o r i s g i v e n by , )4 disp ( f = 1 / 2p i sq r t ( R1R2C1C 2) )5 disp ( For f = 10 kHz , )6 r 2 = ( 1 / ( 4 * ( % p i ^ 2 ) * ( 1 0 0 * 1 0 ^ 6 ) * ( 1 0 * 1 0 ^ 3 ) * ( 0 . 0 0 1 * 1 0 ^ - 1 2 )

    ) ) // i n kohm7 format (6)

    8 disp ( r 2 , T h e re fo r e , R2 ( i n kohm) = )

    9 disp ( For f = 50 kHz , )10 r 2 = ( 1 / ( 4 * ( % p i ^ 2 ) * ( 2 5 0 0 * 1 0 ^ 6 ) * ( 1 0 * 1 0 ^ 3 )* ( 0 . 0 0 1 * 1 0 ^ - 1 2 ) ) ) // i n kohm

    11 format (6)

    12 disp ( r 2 , T h e re fo r e , R2 ( i n kohm) = )

    43

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    45/142

    13 disp ( So minimum v a l ue o f R2 i s 1 . 0 1 3 kohm w h i l e

    t h e maximum v a l u e o f R2 i s 2 5 . 3 3 kohm )

    Scilab code Exa 4.6 range over capacitor is varied

    1 / / E xa mp le 4 . 62 clc

    3 disp ( The f r e q u e n c y i s g i v e n by , )4 disp ( f = 1 / 2p i s q r t (C L e q ) )

    5 l e q = ( 2 * 1 0 ^ - 3 ) + ( 2 0 * 1 0 ^ - 6 )6 format (8)

    7 disp ( l e q , wher e L eq = L1 + L2 = )8 disp ( For f = f max = 2050 kHz )9 format (5)

    10 c = ( 1 / ( 4 * ( % p i ^ 2 ) * ( ( 2 0 5 0 * 1 0 ^ 3 ) ^ 2 ) * 0 . 0 0 2 0 2 ) ) * 1 0 ^ 1 2 //i n pF

    11 disp (c , T h e r e fo r e , C( i n pF ) = )12 disp ( For f = f m in = 950 kHz )13 c = ( 1 / ( 4 * ( % p i ^ 2 ) * ( ( 9 5 0 * 1 0 ^ 3 ) ^ 2 ) * 0 . 0 0 2 0 2 ) ) * 1 0 ^ 1 2 //

    i n pF

    14 format (6)15 disp (c , T h e r e fo r e , C( i n pF ) = )16 disp ( Hence C must be v a r i e d from 2 . 9 8 pF t o 1 3 . 8 9

    pF , t o g e t t he r e q u i r e d f r e q ue n cy v a r i a t i o n . )

    Scilab code Exa 4.7 frequency of oscillation

    1 / / E xa mp le 4 . 7

    2 clc3 disp ( The g i v e n v a l u e s a re , )4 disp ( L1 = 0 . 5 mH, L2 = 1 mH, C = 0 . 2 uF )5 disp ( Now f = 1 / 2p i s q r t (C L e q ) )6 l e q = 0 . 5 + 1 / / i n mH

    44

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    46/142

    7 disp ( l e q , a nd L e q ( i n mH) = L 1 + L2 = )

    8 f = ( 1 / ( 2 * % p i * sqrt ( 1 . 5 * 0 . 2 * 1 0 ^ - 9 ) ) ) * 1 0 ^ - 3 // i n kHz9 format (5)10 disp (f , T h e r e fo r e , f ( i n kHz ) = )

    Scilab code Exa 4.8 frequency of oscillation

    1 / / E xa mp le 4 . 82 clc

    3 disp ( The e q u i v a l e n t c a p a c i t a n ce i s g i ve n by , )4 c e q = ( 1 5 0 * 1 . 5 * 1 0 ^ - 2 1 ) / ( ( 1 5 0 * 1 0 ^ - 1 2 ) + ( 1 . 5 * 1 0 ^ - 9 ) ) //

    i n F5 format (12)

    6 disp ( c e q , C eq ( i n F) = C1C2 / C1+C2 =)7 disp ( Now , f = 1 / 2 p i s q r t ( L C e q ) )8 f = ( 1 / ( 2 * % p i * sqrt ( 5 0 * 1 3 6 . 3 6 3 * 1 0 ^ - 1 8 ) ) ) * 1 0 ^ - 6 // i n

    MHz9 format (6)

    10 disp (f , f ( i n MHz) = )

    Scilab code Exa 4.9 calculate C

    1 / / E xa mp le 4 . 92 clc

    3 disp ( The g i v e n v a l u e s a re , )4 disp ( L = 100 uH , C1 = C2 = C and f = 500

    kHz )5 disp ( Now , f = 1 / 2p i s q r t ( L C e q ) )6 c e q = 1 / ( 4 * ( % p i ^ 2 ) * ( 1 0 0 * 1 0 ^ - 6 ) * ( ( 5 0 0 * 1 0 ^ 3 ) ^ 2 ) ) // i n

    F7 format (11)

    8 disp ( c e q , T h e r e f o r e , C e q ( i n F ) = )

    45

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    47/142

    9 disp ( but C eq = C1C2 / C1+C2 and C1 = C2 = C

    )10 disp ( T he re fo re , C eq = C / 2 )11 c = 1 . 0 1 3 2 * 2

    12 format (6)

    13 disp (c , T h e r e fo r e , C( i n nF ) = )

    Scilab code Exa 4.10 series and parallel resonant freqency

    1 / / E x am pl e 4 . 1 02 clc3 f s = ( 1 / ( 2 * % p i * sqrt ( 0 . 4 * 0 . 0 8 5 * 1 0 ^ - 1 2 ) ) ) * 1 0 ^ - 6 // i n

    MHz4 format (6)

    5 disp ( f s , ( i ) f s ( i n MHz) = 1 / 2p i s q r t ( LC) = )6 c e q = 0 . 0 8 5 / 1 . 0 8 5 // i n pF7 disp ( c e q , ( i i ) C e q ( i n pF ) = CC M / C+C M = )8 f p = ( 1 / ( 2 * % p i * sqrt ( 0 . 4 * 0 . 0 7 8 * 1 0 ^ - 1 2 ) ) ) * 1 0 ^ - 6 // i n

    MHz ( t he a ns we r i n t ex tb o ok i s wrong )9 disp ( f p , T h e re fo r e , f p ( i n MHz) = 1 / 2p i s q r t ( L

    C eq ) = )10 i n c = ( ( 0 . 8 9 9 - 0 . 8 5 6 ) / 0 . 8 5 6 ) * 1 0 0 // i n p e rc e n t ag e11 disp ( i n c , ( i i i ) % i n c re a s e = )12 q = ( 2 * % p i * 0 . 4 * 0 . 8 5 6 * 1 0 ^ 6 ) / ( 5 * 1 0 ^ 3 )

    13 format (8)

    14 disp (q , ( i v ) Q = o me ga s L / R = 2p i f sL / R = )

    Scilab code Exa 4.11 series and parallel resonant freqency

    1 / / E x am pl e 4 . 1 12 clc

    3 disp ( C M = 2 pF )4 f s = ( 1 / ( 2 * % p i * sqrt ( 2 * 0 . 0 1 * 1 0 ^ - 1 2 ) ) ) * 1 0 ^ - 6 / / i n MHz

    46

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    48/142

    5 format (6)

    6 disp ( f s , Now f s ( i n MHz) = 1 / 2p i s q r t ( LC) = )7 c e q = ( 2 * 0 . 0 1 * 1 0 ^ - 2 4 ) / ( 2 . 0 1 * 1 0 ^ - 1 2 ) // i n F8 format (9)

    9 disp ( c e q , C eq ( i n F) = C MC / C M+C = )10 f p = ( 1 / ( 2 * % p i * sqrt ( 2 * 9 . 9 5 * 1 0 ^ - 1 5 ) ) ) * 1 0 ^ - 6 / / i n MHz11 format (6)

    12 disp ( f p , f p = 1 / 2p i s q r t ( L C eq ) = )13 disp ( So f s a n d f p v a l ue s a r e a lm os t same . )

    Scilab code Exa 4.12 Varify Barkhausen criterion and find frequency ofoscillation

    1 / / ex am pl e 4 . 1 2 .2 clc

    3 disp ( From t h e g i v e n i n f o r m a t i o n we c an w r it e , )4 disp ( A = 16106/ j omega and b et a =

    1 0 3 / [ 2 103+ j omega ] 2 )5 disp ( To v e r i f y t he B ar kh au sen c o n d i t i o n means t o

    v e r i f y w he th er | A b e t a| = 1 a t a f re qu en cy f o r

    w h i c h A b et a = 0 d e gr e e . Le t us e xp r e ss , A b e t ai n i t s r e c t a ng l u a r form . )

    6 disp ( A b e t a = 16106103 / j omega [ 2 103 + jome ga ] 2 = 16109 / j omega [ 4 1 0 6 + 4 1 0 3 jomega+(j omega ) 2 ] )

    7 disp ( = 16109 / j omega [ 4 1 0 6 + 4 1 0 3 j omegaomega 2 ] a s j2 = 1 )

    8 disp ( = 16109 / 4 1 0 6j omega+4103j2 omega2j omega 3 ] )

    9 disp ( = 16109 / j omega [4106 omega

    2 ] [ ome ga2 4 1 0 3 ] )10 disp ( R a t i o n a l i s i n g t he d en om in at or f u n c t i o n we g et , )

    11 disp ( A b e t a = 16109[ omega2 4 1 0 3 j omega [ 4106 omega 2 ] ] / [ [omega2 4103] j omega

    47

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    49/142

    [ 4106 o m e g a 2 ] ] [ omega2 4 1 0 3 j omega

    [ 4106 omega 2 ] ] )12 disp ( U si ng ( ab ) ( a +b ) = a 2 b 2 i n t h ede nomi nat or , )

    13 disp ( A b e t a = 1 6 1 0 9 [ o m e g a 24103+ j omega [ 4106 omega 2 ] ] / [omega2 4 1 0 3 ] 2 [ jomega [ 4106 o m e g a 2 ] 2 )

    14 disp ( A b e t a = 1 6 1 0 9 [ o m e g a 24103+ j omega [ 4106 omega 2 ] ] / 1 6 1 0 6 omega4 + omega2(4106 omega 2) 2 )

    15 disp ( Now t o h a ve A b et a = 0 d eg re e , t he i m ag i na r yp ar t o f A b et a must be z e ro . T h is i s p o s s i b l e

    when , )16 disp ( T h e r e fo r e , omega ( 4 1 0 6 o m e g a 2 ) = 0 )17 disp ( T h er e f o re , omega = 0 o r 4 1 0 6 ome ga2 =

    0 )18 disp ( T h e r e fo r e , omega 2 = 41 0 6

    N e gl e c ti n g z e r o v al ue o f f r eq u en c y )19 disp ( T h e re fo r e , omega = 2 1 0 3 r a d / s e c )20 disp ( At t h i s f r eq u e nc y | A b e t a| ca n be o b ta i ne d as ,

    )21 disp ( | A b e t a | = 1 6 1 0 9 [ 4 1 0 3 o me ga 2 ] /

    1 6 1 0 6 omega4+omega2[4 106 o m e g a 2 ] 2a t omega = 2 1 0 3 )22 a b = ( 2 . 5 6 * 1 0 ^ 2 0 ) / ( 2 . 5 6 * 1 0 ^ 2 0 )

    23 disp ( a b , | A b e t a| = )24 disp ( T h e r e fo r e , At omega = 2 1 0 3 r ad / s e c , A b e t a

    = 0 d eg r e e a s i ma gi na ry p ar t i s z er o w hi l e | Ab e t a| = 1 . Thus B a rk ha u se n C r i t e r i o n i s s a t i s f i e d. )

    25 disp ( The f r e q u e n c y a t w hi ch c i r c u i t w i l l o s c i l l a t ei s t he v al u e o f omega f o r which | A b e t a| = 1 a ndA b et a = 0 d e g re e a t t he same t im e )

    26 disp ( i . e . omega = 2 1 0 3 r ad / s e c )27 disp ( But omega = 2p i f )28 f = ( 2 * 1 0 ^ 3 ) / ( 2 * % p i ) // i n Hz29 format (9)

    30 disp (f , T h e r e fo r e , f ( i n Hz ) = o mega / 2 p i = )

    48

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    50/142

    Scilab code Exa 4.13 minimum and maximum values of R2

    1 / / E x am pl e 4 . 1 32 clc

    3 disp ( The f r e q u e n c y o f t h e o s c i l l a t o r i s g i v e n by , )4 disp ( f = 1 / 2p i sq r t ( R1R2C1C 2) )5 disp ( For f = 2 0 kHz , )6 r 2 = ( 1 / ( 4 * ( % p i ^ 2 ) * ( ( 2 0 * 1 0 ^ 3 ) ^ 2 ) * ( 1 0 * 1 0 ^ 3 )

    * ( ( 0 . 0 0 1 * 1 0 ^ - 6 ) ^ 2 ) ) ) * 1 0 ^ - 37 format (5)

    8 disp ( r 2 , T h e re fo r e , R2 ( i n kohm) = )9 disp ( For f = 7 0 kHz , )

    10 r 2 = ( 1 / ( 4 * ( % p i ^ 2 ) * ( ( 7 0 * 1 0 ^ 3 ) ^ 2 ) * ( 1 0 * 1 0 ^ 3 )

    * ( ( 0 . 0 0 1 * 1 0 ^ - 6 ) ^ 2 ) ) ) * 1 0 ^ - 3

    11 format (6)

    12 disp ( r 2 , T h e re fo r e , R2 ( i n kohm) = )13 disp ( So minimum v a l ue o f R2 i s 0 . 5 1 7 kohm w h i l e

    t h e maximum v a l u e o f R2 i s 6 . 3 3 kohm )

    Scilab code Exa 4.14 frequency of oscillation and minimum hfe

    1 / / E xam ple 4 . 1 4 .2 clc

    3 disp ( R = 6 kohm , C = 150 0 pF , R C = 18 kohm )4 k = 1 8 / 6

    5 disp (k , Now K = R C / R = )6 disp (

    T h e r e f o r e , f = 1 / 2p i RCs q rt (6+4K))

    7 f = ( 1 / ( 2 * % p i * ( 6 * 1 0 ^ 3 ) * ( 1 5 0 0 * 1 0 ^ - 1 2 ) * sqrt ( 6 + 1 2 ) ) )

    * 1 0 ^ - 3 / / i n kHZ8 format (6)

    9 disp (f , f ( i n kHz ) = )

    49

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    51/142

    10 h f e = ( 4 * 3 ) + 2 3 + ( 2 9 / 3 )

    11 disp ( h f e , ( h f e ) m in = 4K + 2 3 + 2 9/K = )

    Scilab code Exa 4.15 range of frequency of oscillation

    1 / / E xam ple 4 . 1 5 .2 clc

    3 format (6)

    4 disp ( For a Wien b r i d g e o s c i l l a t o r , )

    5 disp ( f = 1 / 2p i RC )6 f m = ( 1 / ( 2 * % p i * ( 1 0 0 * 1 0 ^ 3 ) * ( 5 0 * 1 0 ^ - 1 2 ) ) ) * 1 0 ^ - 3 // i nkHz

    7 disp ( f m , T h e r e fo r e , f m ax ( i n kHz ) = )8 f m i = ( 1 / ( 2 * % p i * ( 1 0 0 * 1 0 ^ 3 ) * ( 5 0 0 * 1 0 ^ - 1 2 ) ) ) * 1 0 ^ - 3

    9 disp ( f m i , and f m i n ( i n kHz ) = )10 f n = 3 1 . 8 3 + 5 0

    11 disp ( f n , Now f n e w ( i n kHz ) = f m ax + 5 0 1 0 3 = )12 disp ( The c o r r es p o n d i ng R = R w it h an a d d i t i o n a l

    r e s i s t a n c e R x i n p a r a l l e l )13 disp ( T h e r e f o r e , f = 1 / 2p i R C )

    14 r = ( 1 / ( 2 * % p i * ( 5 0 * 1 0 ^ - 1 2 ) * ( 8 1 . 8 3 * 1 0 ^ 3 ) ) ) * 1 0 ^ - 3 // i nkohm

    15 disp (r , T h e re fo r e , R ( i n kohm) = )16 rx =1/((1/3 8.89) -(1/100)) // i n kohm17 disp ( T h e re fo r e , R = R R x / R+R x )18 disp ( r x , T h er ef or e , R x ( i n kohm) =

    i n p a r a l l e l w i t h 100 kohm )

    Scilab code Exa 4.16 frequency of oscillation

    1 / / E xam ple 4 . 1 6 .2 clc

    3 format (6)

    50

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    52/142

    4 disp ( F or a H a r t l e y o s c i l l a t o r t h e f r e q u e n c y i s

    g i v e n by , )5 disp ( f = 1 / 2p i s q r t ( L e q C) where L e q= L1+L2 )

    6 l e q = 2 0 + 5 / / i n mH7 disp ( l e q , T h e r e f o r e , L e q ( i n mH) = 20+5 = )8 f = ( 1 / ( 2 * % p i * sqrt ( 2 5 * 5 0 0 * 1 0 ^ - 1 5 ) ) ) * 1 0 ^ - 3 // i n kHz9 disp (f , T h e r e fo r e , f ( i n kHz ) = )

    Scilab code Exa 4.17 gain of the transistor

    1 / / E x am pl e 1 4 . 72 clc

    3 disp ( For a H ar tl e y o s c i l l a t o r , )4 disp ( f = 1 / 2p i s q r t ( L e q C) where L e q

    = L1 + L2 + 2M )5 l e q = ( 1 / ( 4 * ( % p i ^ 2 ) * ( ( 1 6 8 * 1 0 ^ 3 ) ^ 2 ) * ( 5 0 * 1 0 ^ - 1 2 ) ) ) * 1 0 ^ 3

    / / i n mH6 format (6)

    7 disp ( l e q , T h e r e f o r e , L e q ( i n mH) = )

    8 l2= ((17.95*10^ -3) -(15*10^-3) -(5*10^-6)) *10^3 // i nmH

    9 disp ( l 2 , T h e r e fo r e , L2 ( i n mH) = )10 h f e = ( ( 1 5 * 1 0 ^ - 3 ) + ( 5 * 1 0 ^ - 6 ) ) / ( ( 2 . 9 4 5 * 1 0 ^ - 3 ) + ( 5 * 1 0 ^ - 6 ) )

    11 format (5)

    12 disp ( h f e , Now h f e = L1+M / L 2+M = )

    Scilab code Exa 4.18 new frequency and inductance

    1 / / E x am pl e 4 . 1 82 clc

    3 disp ( For a C o l p i t t s o s c i l l a t o r , )4 disp ( f = 1 / 2p i s q r t ( L C e q ) )

    51

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    53/142

    5 disp ( wh ere C eq = C1C2 / C1+C2 b u t C1 = C2 =

    0 . 0 0 1 uF )6 c e q = ( ( 0 . 0 0 1 * 1 0 ^ - 6 ) ^ 2 ) / ( 2 * ( 0 . 0 0 1 * 1 0 ^ - 6 ) ) // i n F7 format (7)

    8 disp ( c e q , T h e r e fo r e , C eq ( i n F ) = )9 disp ( L = 510 6 H )

    10 f = ( 1 / ( 2 * % p i * sqrt ( 2 5 * 1 0 ^ - 1 6 ) ) ) * 1 0 ^ - 6 / / i n MHz11 format (6)

    12 disp (f , T h e r e f o r e , f ( i n MHz) = )13 disp ( Now L i s d o u bl e d i . e . 1 0 uH )14 f 1 = ( 1 / ( 2 * % p i * sqrt ( 5 0 * 1 0 ^ - 1 6 ) ) ) * 1 0 ^ - 6 / / i n MHz15 format (5)

    16 disp ( f 1 , T h e r e f o r e , f ( i n MHz ) = )17 n f = 2 * 3 .1 8 3

    18 format (6)

    19 disp ( n f , New f r e q ue nc y ( i n MHz ) = 2 3 . 1 8 3 = )20 l = ( 1 / ( 4 * ( % p i ^ 2 ) * ( ( 6 . 3 6 6 * 1 0 ^ 6 ) ^ 2 ) * ( 5 * 1 0 ^ - 1 0 ) ) ) * 1 0 ^ 6

    // i n uH21 format (5)

    22 disp (l , T h e r e fo r e , L ( i n uH ) = )

    Scilab code Exa 4.19 new frequency of oscillation

    1 / / E x am pl e 4 . 1 92 clc

    3 disp ( For a Clapp o s c i l l a t o r , )4 disp ( f = 1 / 2p i s q r t ( LC 3) )5 disp ( where C3 = 63 pF )6 f = ( 1 / ( 2 * % p i * sqrt ( 3 1 5 * 1 0 ^ - 1 8 ) ) ) * 1 0 ^ - 6 / / i n MHz7 format (6)

    8 disp (f , T h e r e f o r e , f ( i n MHz) = )

    Scilab code Exa 4.20 R and hfe

    52

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    54/142

    1 / / E x am pl e 4 . 2 0

    2 clc3 disp ( R e fe r i n g t o e q u a ti o n ( 1 ) o f s e c t i o n 4 . 5 . 3 , t hei n p u t i mp ed an ce i s g i v e n by , )

    4 disp ( R i = R1 | | R2 | | h i e )5 disp ( Now R1 = 25 kohm , R2 = 47 kohm , and h i e

    = 2 kohm )6 format (7)

    7 r i = ( 2 5 * 4 7 * 2 ) / ( ( 4 7 * 2 ) + ( 2 5 * 2 ) + ( 2 5 * 4 7 ) ) // i n kohm8 disp ( r i , T h e re fo r e , R i ( i n kohm) = )9 disp ( K = R C / R )

    10 disp ( Now R C = 10 kohm . . . g i v e n )

    11 disp ( Now f = 1 / 2p i RCs q r t (6+4K) )12 disp ( T h er ef or e , Rs q r t ( 6+4K) = 3 1 8 3 0 . 9 8 9 )13 disp ( Now K = R C / R = 1 0 1 0 3 / R )14 disp ( T h er ef or e , Rs q r t ( 6 + ( 4 0 1 0 103/R ) ) =

    3 1 8 3 0 . 9 8 9 )15 disp ( T h e re fo r e , R 2 ( 6 + ( 4 0 1 0 103 /R) ) =

    ( 3 1 8 3 0 . 9 8 9 ) 2 )16 R = poly (0 , R )17 p 1 = 6 * R ^ 2 + ( 4 0 * 1 0 ^ 3 ) * R - ( 3 1 8 3 0 . 9 8 9 ) ^ 2

    18 t1 = roots ( p 1 )

    19 a n s 1 = t 1 ( 1 )

    20 format (6)

    21 disp ( ( - a n s 1 ) * 1 0 ^ - 3 , T h er e fo r e , R( i n kohm)=N e g le c t i n g n e ga t i ve v al ue )

    22 k = 1 0 / 1 6 . 7 4

    23 format (7)

    24 disp (k , T h e re fo r e , K = R C / R = )25 disp ( T he re fo re , h f e >= 4 K + 2 3 + 2 9 / K )26 h f e = ( 4 * 0 . 5 9 7 3 ) + 2 3 + ( 2 9 / 0 . 5 9 7 3 )

    27 format (6)

    28 disp ( h f e , h f e >= )

    Scilab code Exa 4.21 component values of wien bridge

    53

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    55/142

    1 / / E x am pl e 4 . 2 1

    2 clc3 disp ( The f r e q u e n c y i s g i v e n by , )4 disp ( f = 1 / 2p i RC )5 disp ( Le t t he r e s i s t a n c e v al ue t o be s e l e c t e d as , )6 disp ( R1 = R2 = R = 50 kohm )7 disp ( f = 1 / 2p i 5 0 1 0 3 C )8 f = ( 1 / ( 2 * % p i * ( 5 0 * 1 0 ^ 3 ) * 1 0 0 ) ) * 1 0 ^ 9 // i n nF9 format (6)

    10 disp (f , f ( i n nF ) = )11 disp ( and f max = 1 / 2p i 5 0 1 0 3 C )12 c = ( 1 / ( 2 * % p i * ( 5 0 * 1 0 ^ 3 ) * ( 1 0 * 1 0 ^ 3 ) ) ) * 1 0 ^ 9 // i n pF

    13 disp (c , C( i n nF ) = )14 disp ( Thus t o v ar y t he f r e qu e n cy fro m 1 00 Hz t o 10

    kHz , t he c a p a c i t o r r an ge s ho ul d be s e l e c t e d a s0 . 3 1 8 nF t o 3 1 . 83 nF )

    15 disp ( S i m i l a r l y k ee pi ng t he c a p a c i t or v al ue c on st an t, t h e r a n g e o f t h e r e s i s t a n c e v al u e s can beo b t a i n e d . )

    Scilab code Exa 4.22 values of C2 and new frequency of oscillation

    1 / / E x am pl e 4 . 2 22 clc

    3 disp ( f = 2. 5 MHz, L = 10 uH , C1 = 0 . 02 uF )4 disp ( For C o l p i t t s o s c i l l a t o r , t h e f r e qu e n c y i s

    g i v e n by , )5 disp ( f = 1 / 2 p i s q r t ( L C e q ) )6 c e q = ( 1 / ( 4 * ( % p i ^ 2 ) * ( ( 2 . 5 * 1 0 ^ 6 ) ^ 2 ) * ( 1 0 * 1 0 ^ - 6 ) ) ) * 1 0 ^ 1 2

    // i n pF

    7 format (8)8 disp ( c e q , T h e r e fo r e , C eq ( i n pF ) = )9 disp ( ( i ) But C eq = C1C2 / C1+C2)

    10 c 2 = ( ( 0 . 0 2 * 1 0 ^ - 6 ) / 4 9 . 3 4 8 ) * 1 0 ^ 9 // i n nF11 format (7)

    54

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    56/142

    12 disp ( c 2 , T h e r e fo r e , C2 ( i n nF ) = ) // a ns we r i n

    t e xt b o ok i s wrong13 disp ( ( i i ) L = 21 0 = 2 0 u H )14 disp ( and C eq = 4 05 . 2 84 pF )15 f = ( 1 / ( 2 * % p i * sqrt ( 2 0 * 4 0 5 . 2 8 4 * 1 0 ^ - 1 8 ) ) ) * 1 0 ^ - 6 // i n

    MHz16 disp (f , f ( i n MHz) = 1 / 2p i s q r t ( L C eq ) = )

    Scilab code Exa 4.23 series and parallel resonant freqency and Qfactor

    1 / / E xam ple 4 . 2 3 .2 clc

    3 f = ( 1 / ( 2 * % p i * sqrt ( 0 . 3 3 * 0 . 0 6 5 * 1 0 ^ - 1 2 ) ) ) * 1 0 ^ - 6 // i nMHz

    4 format (6)

    5 disp (f , ( i ) f ( i n MHz) = 1 / 2p i s q r t ( LC) = )6 c e q = 0 . 0 6 5 / 1 . 0 6 5 // i n pF7 disp ( c e q , ( i i ) C e q ( i n pF ) = CC M / C+C M = )8 f p = ( 1 / ( 2 * % p i * sqrt ( 0 . 3 3 * 0 . 0 6 1 * 1 0 ^ - 1 2 ) ) ) * 1 0 ^ - 6 // i n

    MHz

    9 disp ( f p , ( i ) f p ( i n MHz) = 1 / 2p i s q r t ( L C eq ) =)

    10 p i = ( ( 1 . 1 2 1 - 1 . 0 8 7 ) / 1 . 0 8 7 ) * 1 0 0 // i n p e rc e nt a ge11 disp ( p i , ( i i i ) % i n c r e a s e = )12 q = ( 2 * % p i * 1 . 0 8 7 * 0 . 3 3 * 1 0 ^ 6 ) / ( 5 . 5 * 1 0 ^ 3 )

    13 format (8)

    14 disp (q , ( i v ) Q = o meg a x L / R = 2p i f sL / R = )

    Scilab code Exa 4.24 change in frequency and trimmer capacitance

    1 / / E xa ml e 4 . 2 42 clc

    55

  • 8/10/2019 Analog and Digital Electronics_U. a. Bakshi and a. P. Godse

    57/142

    3 disp ( ( i ) Assume one p e r t i c u l a r c o up l i n g d i r e c t i o n

    f o r w hi ch , )4 disp ( L e q = L1 + L2 + 2M = 0 . 2 5 mH )5 format (8)

    6 f = ( 1 / ( 2 * % p i * sqrt ( 0 . 2 5 * 1 0 0 * 1 0 ^ - 1 5 ) ) ) * 1 0 ^ - 6 / / i n MHz7 disp (f , T h e r e fo r e , f ( i n MHz) = 1 / 2p i s q r t ( L e q C

    ) =)8 disp ( Le t t he d i r e c t i o n o f c o u p li n g i s r ev er se d , )9 disp ( L e q = L1 + L2 2M = 0. 15 mH )

    10 f d = ( 1 / ( 2 * % p i * sqrt ( 0 . 1 5 * 1 0 0 * 1 0 ^ - 1 5 ) ) ) * 1 0 ^ - 6 // i nMHz

    11 format (7)

    12 disp ( f d , T h e re fo r e , f ( i n MHz) = 1 / 2p i s q r t (L e q C) = )

    13 p c = ( ( 1 . 2 9 9 4 - 1 . 0 0 6 5 8 ) / 1 . 0 0 6 5 8 ) * 1 0 0 // i n p e rc e nt a ge14 format (6)

    15 disp ( p c , T h e re fo r e , % c h an ge = f f / f 100 = )16 disp ( ( i i ) Le t us assume d i r e c t i o n o f c o u p li n g s uc h

    that , )17 disp ( L e q = L1 + L2 + 2M = 0 . 2 5 mH )18 disp ( C t = Trim c a p ac i t or = 100 pF )19 di