analog electronic circuits - leda.elfak.ni.ac.rsleda.elfak.ni.ac.rs/education/analogna...

53
Faculty of Electronic Engineering Faculty of Electronic Engineering Faculty of Electronic Engineering Faculty of Electronic Engineering Faculty of Electronic Engineering Faculty of Electronic Engineering Faculty of Electronic Engineering Faculty of Electronic Engineering University of Nis, Serbia University of Nis, Serbia University of Nis, Serbia University of Nis, Serbia University of Nis, Serbia University of Nis, Serbia University of Nis, Serbia University of Nis, Serbia Analog Electronic Circuits Analog Electronic Circuits Prof. dr Predrag Petković E-mail: [email protected] phone: 529207 Dr Srdjan Djordjević E-mail: [email protected] phone: 529336

Upload: others

Post on 20-Mar-2020

50 views

Category:

Documents


7 download

TRANSCRIPT

  • Faculty of Electronic EngineeringFaculty of Electronic EngineeringFaculty of Electronic EngineeringFaculty of Electronic EngineeringFaculty of Electronic EngineeringFaculty of Electronic EngineeringFaculty of Electronic EngineeringFaculty of Electronic Engineering

    University of Nis, SerbiaUniversity of Nis, SerbiaUniversity of Nis, SerbiaUniversity of Nis, SerbiaUniversity of Nis, SerbiaUniversity of Nis, SerbiaUniversity of Nis, SerbiaUniversity of Nis, Serbia

    Analog Electronic CircuitsAnalog Electronic Circuits

    Prof. dr Predrag Petković

    E-mail: [email protected] phone: 529207

    Dr Srdjan Djordjević

    E-mail: [email protected] phone: 529336

  • Faculty of Electronic EngineeringFaculty of Electronic EngineeringFaculty of Electronic EngineeringFaculty of Electronic EngineeringFaculty of Electronic EngineeringFaculty of Electronic EngineeringFaculty of Electronic EngineeringFaculty of Electronic Engineering

    University of Nis, SerbiaUniversity of Nis, SerbiaUniversity of Nis, SerbiaUniversity of Nis, SerbiaUniversity of Nis, SerbiaUniversity of Nis, SerbiaUniversity of Nis, SerbiaUniversity of Nis, Serbia

    Day 1Day 1

    Introduction

  • �The aim of this course is to provide the student with

    a broad knowledge of the main types of integrated

    circuits involved in analog signal and mixed signal

    acquisition and processing.

    Aims of the cours

    3

    �By the end of the course you should be able to:

    –Analyse the operation of analog systems

    –Design basic analog systems to meet a

    specification

    –Design analog system through the use of

    ORCAD

  • �This course follows on from the second year Basic

    electronic course and Analog electronics course.

    Prior skills

    4

    �The course assumes basic concepts of:

    • amplification,

    • analog circuit analysis and transistor modeling,

    • circuit simulation environments such as

    Cadence or Spice.

  • Lecture plan

    � OP-AMP

    • Basic Op-Amp circuits

    • Static Op Amp Limitations

    • Dynamic Op-Amp Limitations

    5

    � SPECIAL-PURPOSE AMPLIFIERS

    • Instrumentation amplifiers

    • Isolation amplifiers

    • Operational Transconductance amplifiers (OTAs)

    • Current-feedback amplifiers (CFAs)

  • Lecture plan

    � DATA CONVERSION CIRCUITS

    � Sample-and-Hold Amplifiers

    � Digital-to-Analog Conversion

    � Analog-to-Digital Conversion

    � Voltage-to-Frequency Converters

    6

    � Voltage-to-Frequency Converters

    � Frequency-to-Voltage Converters

    � MEASUREMENT AND CONTROL CIRCUITS

    � RMS-to-DC Converters

    � Strain-, Pressure-, Temperature-Measuring circuits

    � Auto-Zero Amplifiers

    � Chopper Amplifiers

    � Lock-in Amplifiers

  • Lecture plan

    � COMUNICATIONS CIRCUITS

    � The Phase-Locked Loop (PLL)

    � The applications of the PLL

    7

    � NOISE

    � Noise properties

    � Sources of Noise

    � BJT and MOSFET Noise

  • �Teaching materials are available on the course

    webpage:

    http://leda.elfak.ni.ac.rs/?page=education/Analogna

    %20elektronska%20kola/

    Teaching materials

    8

    %20elektronska%20kola/

    • I will be updating the notes, the laboratory

    instructions and tutorial problem sheets each week

    after the lectures.

  • • Grading

    - Answer test of the lectures 30

    - Partial examination through the laboratory

    Grading

    9

    exercies and classes 20

    - Two project works 2X25

  • Summary:

    Analog integrated circuits - Introduction

    • Brief review of op-amp topologies and limitations

    • The op-amp as a control loop - Stability criteria

    10

    • The op-amp as a control loop - Stability criteria

    • Error Budget analysis S

    • Specialist amplification techniques

  • Content

    Operational amplifiers (OpAmp)

    a. Ideal OpAmp

    b. Biasing

    c. Model

    d. Applications

    11

    d. Applications

    e. Real OpAmps

  • Ideal OpAmp behaves similarly to ideal voltage amplifier:

    Voltage: Vi Vo

    IdealIi IoRo

    ; [V/V] ∞=

    = iRoVA

    Operational Amplifiers

    12

    Vi VoRi

    0 ; [V/V]

    =

    ∞==

    o

    i

    R

    R

    iV

    oVA

  • 0 =iVVi

    Ii

    Vo

    Io

    Ri

    Ro

    0 ;

    =

    ∞=∞→=

    o

    i

    R

    R

    iV

    oVA

    Operational Amplifiers

    13

    ∞→oV

    0 =iV

    A ⇒∞→=iV

    oVInfinite gain !!!

  • Transfer characteristic

    Vi [V]Vi [V]

    Operational Amplifiers

    14

    Vi [V]

    Vu [mV]

    Vi [V]

    Vu [mV]

  • Ideal transfer characteristics

    Vo [V]

    Operational Amplifiers

    15

    Vi [mV] t[ms]

  • Operational Amplifiers

    Vi

    Ii

    Vo

    Io

    Ri

    Ro

    0 ;

    =

    ∞=∞→=

    o

    i

    R

    R

    iV

    oVA

    16

    Amplifiers with infinite input resistance

    A0 =iI ⇒∞→iRdoes not attenuate input signal: Ri/(Rs+Ri)=1

    Does not load previous stage!!!

    oiV

  • Vi

    Ii

    Vo

    Io

    Ri

    Ro

    Output of voltage amplifiers with zero

    output resistance does not depend on

    load

    RL0

    [V/V] A

    0 =

    ∞==

    = o

    i

    IR

    R

    iV

    oV

    iVo

    Operational Amplifiers

    17

    iAVRR

    RoV

    Lo

    L

    += 0 ⇒=oR

    A ∞→i

    )( LfoV R≠

    Vo

    0

    iAV=

  • Output

    Two input ports

    Symbol

    Noninverting input

    Inverting input

    Operational Amplifiers

    18

    Two input ports

    noninverting “+”

    and inverting “–” input

    One output port

    What does OpAmp amplifies when it has two inputs?

  • Inverting

    input

    Output

    IT should amplify

    voltage difference

    between

    noninverting “+” and

    Operational Amplifiers

    19

    Noninverting input

    noninverting “+” and

    inverting “–” portCommon

    ground

    12 vvdviv −==

    ∞→−

    =12 vv

    ovA 012

    =− vv 12vv =

  • Should NOT amplify

    common mode input signal

    )(1

    vvv += Meaning:

    Operational Amplifiers

    20

    )12(2

    1vvicmv += If v2 and v1 have DC

    component + sinewave signal

    with the same frequency and

    opposite phases:

    )sin(2

    );sin(1 00

    tVVvtVVv uu ωω +=−=

    )sin(212 tVvvidv u ωωωω=−= ;)12(21

    0Vvvicmv =+=

  • ,0

    )12(2

    1=

    +===

    vv

    ov

    icmv

    ov

    cmAA

    Meaning:

    Output should not have DC component

    Operational Amplifiers

    21

    122

    ∞⇒−

    ===12 vv

    ov

    dv

    ov

    dAA

    and difference should be amplified

    Common Mode Rejection Ratio: CMRR

    012

    =− vv 12 vv =

    ∞⇒=cmA

    dACMRR

  • Characteristics of IDEAL OpAmp

    0 [V/V]

    0

    0=

    =

    ∞==

    =

    cm

    o

    i

    Ii

    A

    R

    R

    iV

    oVA

    Operational Amplifiers

    22

    Zero output resistance

    Infinite gain of differential signal

    Infinite input resistance

    Vi=0; V+=V-

    Vo≠ f(RL)

    Does tot amplifies common mode Acm=0

    Infinite bandwidth ideal f charact.

    Ii=0; Vi≠ f(Rs)

  • Operational Amplifiers

    Biasing of OpAmp

    23

  • How to use a component

    with infinite gain?

    Never alone – always with feedback

    Operational Amplifiers

    24

    Never alone – always with feedback

    (to be seen later)

    Therefore we have talked about OpAmp as

    open loop amplifier and the gain we have talked about is

    Open loop gain = infinite

  • Examples of use

    Always looking for CLOSED LOOP GAIN

    A=Vo/Vs

    Good to know closed loop

    Operational Amplifiers

    25

    Good to know closed loop

    input resistance Ri(cl) and

    output resistance Ro(cl)

  • Inverting amplifier*

    i1

    i2

    ii=0

    v2=0V

    v2 –v1=0V

    v1 =v2=0V

    vg vo

    Operational Amplifiers

    26

    v2=0V

    ii=i1+i2=0A => i1=-i2

    i1=

    1

    1

    R

    vgv −

    i2=

    2

    1

    R

    vov −1R

    gv

    =

    2R

    ov=

    12 R

    gv

    R

    ov −=

    gvR

    R

    ov

    1

    2−=0V

    0V

    1

    2

    R

    R

    gv

    ovA −==

  • Input resistance ig=i1

    i2

    ii=0

    v2 –v1=0V

    i =i

    vg vo

    Ri(cl)

    ?)( ==gi

    gv

    cliR

    Ri(cl)

    Operational Amplifiers

    27

    ig=i1

    i1=1

    1

    R

    vgv −

    1R

    gv

    = 1)(R

    gi

    gv

    cliR ==0V

    If needed big Ri(cl), R1 has to be big!

    High gain (Ad=R2/R1) requires bigger R2

    cont

  • Output resistance

    ig=i1

    i2

    iu=0

    v –v =0V

    ii

    Ro(cl)

    Operational Amplifiers

    28

    v2 –v1=0Vvg vi

    Ω=== 02)( oRRoRcloRRo(cl)

    Less than Ro of the open loop OpAmp!

  • Noninverting amplifier

    i1

    i2

    ii=0

    v =v

    v2 –v1=0V

    v1 =vg

    vgvo

    Operational Amplifiers

    29

    v2=vg

    ii=i1+i2=0A => i1=-i2

    i1=

    1R

    gv−0

    i2=

    2R

    gvov −1R

    gv

    −=

    12 R

    gv

    R

    gvov=

    −gvR

    R

    ov

    +=

    1

    21

    vg

    +==

    1

    2

    R

    R

    gv

    ovA 1

  • Noninverting unit gain amplifier

    Voltage Follower - BUFFER

    gVgVR

    R

    oV

    R

    R=

    +=

    ∞→

    =2 01

    21ii=0

    Operational Amplifiers

    30

    R ∞→1vg

    vi

    vivo1 x vi

    ;)( ∞→cliRii=0

    0)( =cloR

  • Weighted Summer

    vg1

    vov =0V

    vg2

    vgn

    i1

    i2

    in

    i

    i

    ii=0

    +++=+++=

    ===

    n

    gnggn

    n

    gnn

    gg

    R

    v

    R

    v

    R

    viiii

    R

    vi

    R

    vi

    R

    vi

    ... ...

    ... ; ;

    2

    2

    1

    121

    2

    22

    1

    11

    fo iRv −= 0

    Operational Amplifiers

    31

    v2=0Vfo

    +++−= gn

    n

    fg

    fg

    fo v

    R

    Rv

    R

    Rv

    R

    Rv ... 2

    21

    1

  • Find the output voltage

    Exercise 1 of day 1

    32

    44

    33

    22

    11

    vR

    Rv

    R

    Rv

    R

    R

    R

    Rv

    R

    R

    R

    Rv cc

    b

    ca

    b

    cao −−+=

  • The inverting configuration with general impedances in

    the feedback and the feed-in paths

    ViVg

    Operational Amplifiers

    33

    )(1

    )(2

    )(

    )(

    sZ

    sZ

    sgV

    soVA −==

    Vi

  • + vC -

    vg

    i1

    i2

    ii=0

    vg

    A differentiator – f domain

    Operational Amplifiers

    34

    gvsCCj

    gv

    Z

    gvi

    C

    ⋅==−

    =ωωωω/1

    )0(

    1

    R

    ov

    gsCv −= gvCRsiv ⋅⋅⋅−=R

    v

    R

    vi oo −=

    −=

    02

    21 ii =

    o

    sCRs

    gv

    ovsAωωωω

    −=⋅⋅−==)(

  • 20log(Vo/Vg)o

    ssRC

    gv

    ovsAωωωω

    −=−==)(

    RCsA ωωωω=)(

    A differentiator – f domain

    Operational Amplifiers

    35

    ω ω ω ω (log scale)

    Behaves as HF filter with infinite bandwidth

    RCsA ωωωω=)(

    2/0

    )}(Re{

    )}(Im{

    ππππωωωω

    ϕϕϕϕ

    −=

    −=

    =

    =

    RCarctg

    sA

    sAarctg

  • + vC -

    vg

    i1

    i2

    ii=0

    A differentiator

    time domain

    Operational Amplifiers

    36

    dt

    tdvCti

    dt

    tvdC

    dt

    tdvCti

    g

    gC

    )()(

    )0)(()()(

    1

    1

    =

    −==

    R

    tov

    dt

    tgdvC

    )()(−=

    dt

    tgdvRCtov

    )()( −=

    R

    tvti o

    )(0)(2

    −=

    )()( 21 titi =

  • dt

    gdvRCiv −=

    Determine output waveform of

    Exercise 2 of day 1

    37

    vi(t)

    -10V

    1ms 2mst

    Determine output waveform of

    the differentiator with R=10k i

    C=10nF if excited with triangular

    signal:

  • A integrator (f –domain)

    R

    gv

    R

    gvi =

    −=

    )0(

    1

    vo

    + vC -

    vg

    i1

    i2

    iu=0

    Operational Amplifiers

    38

    RRi ==1

    osCvR

    gv−=

    gvRCsov

    1−=ooo

    C

    o sCvCvjCj

    v

    Z

    vi −=−=−=

    −= ωωωω

    ωωωω/10

    2

    21 ii =

    ssRCgv

    ivsA oωωωω

    −=−==1

    )(

  • 20log(Vo/Vg)

    RCsA

    ωωωω1

    )( =

    ωωωωωωωω

    ωωωωωωωωωωωω ooo jjssRC

    sA =−=−=−=1

    )(

    A integrator (f –domain)

    Operational Amplifiers

    39

    ω ω ω ω (log scale)

    Behaves as LP filter with zero corner frequency

    2/0

    /1

    )}(Re{

    )}(Im{

    ππππωωωω

    ϕϕϕϕ

    =

    =

    =

    =

    RCarctg

    sA

    sAarctg

  • vi

    + vC -

    vg

    i1

    i2

    iu=0

    tgvtgv )(0)(=

    −=

    A integrator (time domain)

    Operational Amplifiers

    40

    dt

    todvCti

    dt

    tovdCdt

    tCdvCti

    )()(

    ))(0()()(

    2

    2

    −=

    −==

    R

    tgv

    R

    tgvti

    )(0)()(1 =

    −=

    dt

    todvCR

    tgv )()(−=

    ∫−= dttgvRCtiv )(

    1)(

    )()( 21 titi =

  • vo

    + vC -

    vg

    ∫−= dtuvRCiv1

    vg(t)

    1V

    -1V

    1ms

    t

    2ms

    vo(t) 1ms 2mst

    A integrator (time domain)

    Operational Amplifiers

    41

    vovg

    R=10k, C=10nF

    ∫∫=

    −=−=

    msT

    dttvdttvRCo

    v2

    0g84g

    )(1010

    1)(

    1

    -10V

    −⋅−= ∫∫

    =

    =

    = msT

    msT

    msT

    dtdtov2

    012/

    12/

    0

    4 V110

  • v

    + vC -

    v

    ∫−= dtgvRCiv1

    vi

    A integrator (time domain)

    Operational Amplifiers

    42

    vivg

    vivg

    vi

  • Characteristics of IDEAL OpAmp

    0 [V/V]

    0

    0=

    =

    ∞==

    =

    cm

    o

    i

    Ii

    A

    R

    R

    iV

    oVA

    Operational Amplifiers To recall

    43

    Zero output resistance

    Infinite gain of differential signal

    Infinite input resistance

    Vo≠ f(RL)

    Does tot amplifies common mode Acm=0

    Infinite bandwidth ideal f charact.

    Vi=0; V+=V-

    Ii=0; Vi≠ f(Rs)

  • finite output resistance

    finite gain

    finite input resistance Ii ≠ 0, Vi=f(Rs)

    V = f(R )

    Vi=Vo/A

    Characteristics of REAL OpAmp

    Operational Amplifiers

    44

    finite output resistance Vo= f(RL)

    amplifies common mode signal Acm≠0

    finite bandwidth real f charact.

  • i1

    i2

    ii=0

    v2=0V

    v2 –v1=vo/A

    v1 =-vo/A

    vg vo

    Finite gain effects on inverting amplifier

    Operational Amplifiers

    45

    v2=0V

    ii=i1+i2=0A => i1=-i2

    i1=

    1

    1

    R

    vgv −

    i2=

    2

    1

    R

    vov −1

    )/(

    R

    Avgv o−−=

    2

    /

    R

    Aovov −=

    ARR

    RR

    gv

    ovAr/)1/21(1

    1/2

    ++

    −==

  • Consider the inverting amplifier with R1=1k, R2=100k that

    uses OpAmp with open loop gain of A=60dB, A=80dB

    i A=100dB. Find:

    a) Closed loop gain

    b) Drop of gain in percentage relative to the ideal

    Exercise 3 of day 1

    46

    b) Drop of gain in percentage relative to the ideal

    OpAmp.

    Solution:

    a)(90,83; 99,00; 99,90);

    b)(-9,17%;-1,00%; -0,10%);

  • For inverting amplifier with R1=1k and R2=100k find in

    percentages the change of closed loop gain when

    open loop gain change from 100.000 to 50.000.

    (-0,1%!!!)

    Exercise 4 of day 1

    47

    (-0,1%!!!)

  • Finite bandwidth effects

    Real amplitude characteristics of OpAmp 741

    Internal compensation

    (stability*)

    Operational Amplifiers

    48

    (stability*)

    Low 3dB frequency

    Roll-off slope -20dB/dec

    One dominant pole

    Unity gain

    f3dBf

    1

  • dBdB j

    A

    s

    AsA

    33 /1

    0

    /1

    0)(ωωωωωωωωωωωω +

    =+

    =

    dBdB

    j

    AjA 3

    3for 0)( ωωωωωωωω

    ωωωω

    ωωωωωωωω >>≈

    Finite bandwidth effects

    Operational Amplifiers

    49

    dBj

    jA 3for )( ωωωωωωωωωωωωωωωω >>≈

    dBdBA

    jA 33

    for 0)( ωωωωωωωωωωωω

    ωωωωωωωω >>≈

    ( ) dBAjA 301for 0)(log20 ωωωωωωωωωωωω ==

    f1=ωωωω1/2ππππ, Unity-Gain Bandwidth or

    Gain Bandwidth Product (GB)

    f3dBf1

  • )(/)/1(1

    /

    )(

    )()(

    12

    12

    sARR

    RR

    sV

    sVsA

    g

    or ++

    −==

    Finite bandwidth effects on inverter amplifier

    Operational Amplifiers

    50

    )/1/(1

    /

    )/1/()/1(

    11

    /

    )(

    )(

    121

    12

    12112

    0

    12

    RR

    s

    RR

    RR

    sRR

    A

    RR

    sV

    sV

    g

    o

    ++

    −≈

    ++++

    −=

    ωωωωωωωω

    12

    13

    /1 RRdB +

    =ωωωω

    ωωωω

  • • Characteristics of ideal OpAmp

    • The meaning of infinite open loop voltage gain, input

    resistance and zero output resistance.

    • Inverting and noninverting amplifier with OpAmp

    • Integrator

    Summary of day 1

    51

    • Integrator

    • Differentiator

    • Weighted summer

    • Characteristics of real OpAmp (Finite gain and

    bandwidth)

  • What we have learned?

    • Characteristics of ideal OpAmp

    • The meaning of infinite open loop voltage gain,

    input resistance and zero output resistance.

    Questionary (Very important and Important

    priority) for Day 1

    52

    input resistance and zero output resistance.

    • Inverting amplifier with OpAmp (circuitry and

    expression for gain)

    • Nonverting amplifier with OpAmp (circuitry

    and expression for gain)

  • 1. What is CMRR?

    2. How use infinite gain amplifiers?

    3. Weighted sum circuit.

    4. Differentiator.

    Questionary (Advance priority) for Day 1

    53

    5. Integrator.

    6. Effects of OpAmp’s finite gain to (non)inverting amplifier.

    7. Effects of OpAmp’s finite bandwidth to (non)inverting

    amplifier.