analysis of transient processes in the context of...

22
Institut für Technische Thermodynamik Analysis of Transient Processes in the Context of REDIM Viatcheslav Bykov, Alexander Neagos, Ulrich Maas Institut für Technische Thermodynamik Karlsruher Institut für Technologie (KIT)

Upload: others

Post on 20-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Institut für Technische Thermodynamik

    Analysis of Transient Processes in the Context of REDIM

    Viatcheslav Bykov, Alexander Neagos, Ulrich Maas

    Institut für Technische Thermodynamik Karlsruher Institut für Technologie (KIT)

  • Institut für Technische Thermodynamik

    Overview

    !   Reaction/Diffusion Manifolds

    !   Analysis of the local time scales

    !   Examples

    !   Conclusions

  • Institut für Technische Thermodynamik

    !   Starting point: equation for the scalar field

    !   Idea: use correlations introduced by the fast chemical kinetics (or by molecular transport)

    !   Identify low-dimensional manifolds

    !   Project governing equations onto LDM

    Manifold Methods

    0,000

    0,002

    0,004

    0,006

    0,008

    0,010

    0,1 0,2 0,3 0,4 0,5

    wH2O

    wCO2

    fast

    slow

    convection chemistry transport

    ∂ψ∂t

    = F ψ( ) +v ⋅gradψ + 1ρdivD gradψ = F ψ( ) +Ξ ψ ,∇ψ ,∇2ψ( )

    ψ = h,p,w1,w2,…,wns( )

    T

    ψ =ψ θ( ), θ = θ1,…,θm( )

    ∂θ∂ t

    = S θ( ) + v gradθ + 1ρ

    P div D∗gradθ⎛ ⎝

    ⎞ ⎠

  • Institut für Technische Thermodynamik

    Decomposition of Motions

    Decomposition into “very slow, intermediate and fast subspaces”

    Problem: difficult to solve, dimensions change locally

    Fψ = Zc Zs Zf( ) ⋅Nc

    NsNf

    ⎜ ⎜ ⎜

    ⎟ ⎟ ⎟ ⋅

    ˜ Z c˜ Z s˜ Z f

    ⎜ ⎜ ⎜ ⎜

    ⎟ ⎟ ⎟ ⎟

    convection chemistry transport

    ∂ψ∂t

    = F ψ( ) +v ⋅gradψ + 1ρdivD gradψ = F ψ( ) +Ξ ψ ,∇ψ ,∇2ψ( )

    λi Nc( ) < τcλireal Nf( ) < τs < λireal Ns( )

    Zc∂ψ∂t

    = ZcF ψ( ) − Zcv ⋅ gradψ + Zc1ρdivD gradψ

    Zs∂ψ∂t

    = ZsF ψ( ) − Zsv ⋅ gradψ + Zs1ρdivD gradψ

    Zf∂ψ∂t

    = ZfF ψ( ) − Zfv ⋅ gradψ + Zf1ρdivD gradψ

    diffusion-convection equation for “quasi conserved” variables evolution along the LDM

    ILDM-equations

  • Institut für Technische Thermodynamik KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

    Evolution of a manifold according to reaction and diffusion

    ∂ψ∂t

    = F ψ( ) −v ⋅gradψ + 1ρdivD gradψ

    Reaction-Diffusion-Manifolds (REDIM)

    (Bykov & Maas 2007)

    ∂ψ θ( )∂τ

    = I −ψθψθ+( ) ⋅ F ψ θ( )( ) + 1ρD θ( )ψθσ +1ρξ D θ( )ψθ( )θ ξ

    ⎧⎨⎩

    ⎫⎬⎭

    ξ=gradθ σ=div gradθ

  • Institut für Technische Thermodynamik KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

    !   Basic Procedure:

    formulate initial guess specify boundary conditions estimate the gradient solve the evolution equation (PDE)

    Stationary solution yields the REDIM

    Numerical implementation

  • Institut für Technische Thermodynamik

    Tabulation strategy (REDIM)

    ψ ,gradψ

  • Institut für Technische Thermodynamik

    !   1st limiting case: no diffusion slow invariant manifolds !   2nd limiting case: no reaction minimal surfaces !   special case: 1D, gradients from flames flamelet equation

    !   Previous work: !   Application to premixed and non-premixed systems !   Implementation in laminar and turbulent flame calculations !   Extension to detailed transport models !   On the fly improvement of the gradient estimates

    !   This Work: Analysis of the description of transient processes within the ILDM concept.

    !   How do transient processes influence the REDIM? !   Do they only change the dynamics within the REDIM or do they

    change the REDIM itself?

  • Institut für Technische Thermodynamik KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

    Counterflow methane air flame

    Periodical perturbation of the fuel air ratio

    König et al.

    Dynamic Behavior in Physical Space

  • Institut für Technische Thermodynamik KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

    Counterflow methane air flame

    Periodical perturbation of the fuel air ratio

    Black: 20 Hz Red: 250 Hz Blue: 500 Hz Green: 100 Hz

    König et al.

    Dynamic Behavior in Composition Space

  • Institut für Technische Thermodynamik

    Consequences !   The quality of the description of transient processes will depend on the

    dimension of the manifold. !   Chemistry and Transport must be analyzed in a coupled way

  • Institut für Technische Thermodynamik KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

    Counterflow configuration

    Boundary layer approximation

    Spatially 1D simulation

    Detailed solution with INSFLA

    Implementation of the reduced model in INSFLA

    Test Case: Non-Premixed H2-Air Flame

  • Institut für Technische Thermodynamik

    Attracting Properties of the REDIM

    !   2D REDIM (mesh) and convergence of an unsteady flame (cyan lines) towards the REDIM

    !   For simplicity: use visualization to monitor the movement towards the manifold.

  • Institut für Technische Thermodynamik

    Source Term Eigenvalues

    !   The invariance condition postulates that the dynamics of the detailed system will at any time be tangential to the REDIM.

    !   In case of strong perturbations the detailed profile can leave the REDIM and then relax back to the REDIM.

    !   Strong perturbations can lead to extinction.

    !   How accurately can the REDIM capture the part of the dynamics tangential to the REDIM?

    !   An answer can be obtained by investigation the eigenvalues of the Jacobian.

  • Institut für Technische Thermodynamik

    Source Term Eigenvalues

    !   Jacobian of the chemical source term

    !   Eigenvalues of a projected Jacobian

    can be obtained via solving

    Eigenvalues of the projected Jacobian are given by the eigenvalues of

    Note: Degenerate cases can be handled by Schur-decomposition

    Fψ ψ( ) =

    ∂F1∂ψ1

    ∂F1∂ψn

    ∂Fn∂ψ1

    ∂Fn∂ψn

    ⎜⎜⎜⎜⎜⎜

    ⎟⎟⎟⎟⎟⎟

    F̂ψ=ψθ

    +Fψψθ F̂ψ⊥ = ψθ⊥( )+Fψψ θ⊥

    Z Z +FψV =V N

    Z +FψZ X = X N, V = Z X

  • Institut für Technische Thermodynamik

    Eigenvalues of tangential projection of the source term Jacobian

    !   Projected Jacobian of the chemical source term

    !   Plotted:

    F̂ψ=ψθ

    +Fψψθ

    F̂ψX = X N

    λmax N ( )

  • Institut für Technische Thermodynamik

    Eigenvalues of tangential projection of the source term Jacobian

    !   Projected Jacobian of the chemical source term

    !   Plotted:

    F̂ψ=ψθ

    +Fψψθ

    F̂ψX = X N

    λmax N ( )

  • Institut für Technische Thermodynamik

    !   Projected Jacobian of the chemical source term

    !   Plotted:

    Eigenvalues of normal projection of the source term Jacobian

    F̂ψ⊥ = ψθ⊥( )+Fψψ θ⊥

    F̂ψ⊥X = X N⊥

    λmax N⊥( )

  • Institut für Technische Thermodynamik

    Simulation of Flame Quenching !   Simulation quenching

    !   Increase strain rate above the quenching limit

    Reduced (white) and detailed (black) solution

  • Institut für Technische Thermodynamik

    REDIM – Detailed Transport Model and Pressure Dependence

    !   investigation of the dependence of the REDIM on pressure

  • Institut für Technische Thermodynamik

    REDIM – Detailed Transport Model and Pressure Dependence

    !   Simulation of the non-lineare dependence of the quenching limit on pressure

    !   Comparison with detailed simulations

    !   Test case for the ability of the reduction method to cope with changing reaction.

    !   Test case for the ability of the reduction method to cope with detailed transport.

    detailed reduced 1bar 560 1/s 600 1/s 2 bar 720 1/s 760 1/s 4 bar 580 1/s 680 1/s 8 bar 320 1/s 300 1/s

  • Institut für Technische Thermodynamik

    Conclusions

    !   The concept of Reaction-Diffusion Manifolds (REDIM) is an efficient tool for model reduction.

    !   Local time scale analyses reveal the dynamic behavior of movements along and towards the REDIM.

    !   Transient system dynamics can be handled by the concept.

    !   Future work: adaptive dimension hierarchical manifold concept

    !   Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.