ansys lab manual - copy

48
Sl . No Date NAME OF THE EXPERIMENT PAGE No. MARKS STAFF SIGN 1 INTRODUCTION 3 2 Stress analysis of a plate with a circular hole. 7 3 Stress analysis of rectangular L bracket 9 4 Stress analysis of an axi- symmetric component 11 5 a) Stress Analysis On Cantilever Beam Subjected To Point Load 13 b) Stress analysis of simply supported beam. 16 c) Stress analysis of fixed beam. 19 6 Model frequency analysis of 2D component 22 7 a) Mode Frequency Analysis Of Cantilever Beam 24 b) Mode frequency analysis of simply supported beam 26 c) Model frequency analysis of fixed beam 28 8 Harmonic analysis of a 2D component 30 9 Thermal stress analysis of a 2D component 31 10 Conductive heat transfer analysis of a 2D component 34 11 Convective heat transfer analysis of a 2D component 35

Upload: ananthakumar

Post on 19-Feb-2016

75 views

Category:

Documents


3 download

DESCRIPTION

ansys

TRANSCRIPT

Page 1: Ansys Lab Manual - Copy

Sl. No Date NAME OF THE EXPERIMENT PAGE

No. MARKS STAFF SIGN

1 INTRODUCTION 3

2 Stress analysis of a plate with a circular hole. 7

3 Stress analysis of rectangular L bracket 9

4Stress analysis of an axi-symmetric component 11

5a) Stress Analysis On Cantilever Beam

Subjected To Point Load13

b) Stress analysis of simply supported beam. 16

c) Stress analysis of fixed beam. 19

6 Model frequency analysis of 2D component 22

7a) Mode Frequency Analysis Of Cantilever

Beam24

b) Mode frequency analysis of simply supported beam

26

c) Model frequency analysis of fixed beam 28

8Harmonic analysis of a 2D component 30

9 Thermal stress analysis of a 2D component 31

10 Conductive heat transfer analysis of a 2D component

34

11 Convective heat transfer analysis of a 2D component

35

Page 2: Ansys Lab Manual - Copy

ED7211- ANALYSIS AND SIMULATION LABORATORY

1

Page 3: Ansys Lab Manual - Copy

LAB MANUAL

INTRODUCTION to FEA and ANSYS

What is FEA?

Finite Element analysis is a way to simulate loading conditions on a design and determine the designs response to those conditions.

The design is modeled using discrete building blocks called elements. Each element has exact equations that describe how it responds to a certain load. The “Sum” of the response of all elements in the model gives the total response of

the design. The elements have a finite number of unknowns, hence the name finite elements. The finite element model, which has a finite number of unknowns, can only

approximate the response of the physical system which has infinite unknowns.

How good is the approximation?

Unfortunately, there is no easy answer to this question, it depends entirely on what you are simulating and the tools you use for the simulation.

Why is FEA needed?

To reduce the amount of prototype testing. Computer Simulation allows multiple “what if“scenarios to be tested quickly and

effectively. To simulate designs those are not suitable for prototype testing. E.g. Surgical Implants

such as an artificial knee.

About ANSYS:

ANSYS is a complete FEA software package used by engineers worldwide in virtually all fields of engineering. ANSYS is a virtual Prototyping technique used to iterate various scenarios to optimize the product.

General Procedure of Finite Element Analysis:

1. Creation of geometry or continuum using preprocessor.2. Discretization of geometry or continuum using preprocessor.3. Checking for convergence of elements and nodes using preprocessor.4. Applying loads and boundary conditions using preprocessor.5. Solving or analyzing using solver6. Viewing of Results using postprocessor.

Build Geometry:

Construct a two (or) three dimensional representation of the object to be modeled and tested using the work plane co-ordinate system in Ansys.

Define Material Properties:

Define the necessary material from the library that composes the object model which includes thermal and mechanical properties.

2

Page 4: Ansys Lab Manual - Copy

ED7211- ANALYSIS AND SIMULATION LABORATORY

Generate Mesh:

Now define how the model system should be broken down into finite pieces.

Apply Loads:

The last task in preprocessing is to restrict the system by constraining the displacement and physical loading.

Obtain Solution:

The solution is obtained using solver available in ANSYS. The computer can understand easily if the problem is solved in matrices.

Present the Result:

After the solution has been obtained there are many ways to present Ansys result either in graph or in plot.

Specific Capabilities of ANSYS Structural Analysis:

Structural analysis is probably the most the common application of the finite element method such as piston, machine parts and tools.

Static Analysis:

It is the used to determine displacement, stress etc. under static loading conditions. Ansys can compute linear and non-linear types (e.g. the large strain hyper elasticity and creep problems).

Transient Dynamic Analysis:

It is used to determine the response of a structure to time varying loads.

Buckling Analysis:

It is used to calculate buckling load and to determine the shape of the component after applying the buckling load. Both linear buckling and non – linear buckling analysis are possible.

Thermal Analysis:

The steady state analysis of any solid under thermal boundary conditions calculates the effect of steady thermal load on a system (or) component that includes the following.

a)Convection.b)Radiation.c)Heat flow rates.

3

Page 5: Ansys Lab Manual - Copy

LAB MANUAL

d)Heat fluxes.e)Heat generation rates.f) Constant temperature boundaries.

Fluid Flow: The ANSYS CFD offers comprehensive tools for analysis of two-dimensional and

three dimensional fluid flow fields.

Magnetic: Magnetic analysis is done using Ansys / Electromagnetic program. It can calculate the

magnetic field in device such as power generators, electric motor etc. Interest in magnetic analysis is finding magnetic flux, magnetic density, power loss and magnetic forces.

Acoustic / Vibrations:

Ansys is the capable of modeling and analyzing vibration system. Acoustic is the study of the generation, absorption and reflection of pressure waves in a fluid application.

Few examples of acoustic applications are a) Design of concert house, where an even distribution of sound pressure is

possible.b) Noise cancellation in automobile. c) Underground water acoustics.d) Noise minimization in machine shop.e) Geophysical exploration.

Coupled Fields:

A coupled field analysis is an analysis that takes into account the interation between two (or) more fields of engineering analysis. Pressure vessels, Induction heating and Micro electro mechanical systems are few examples.

Result: Thus the basics of FEA and ANSYS are studied.

4

Page 6: Ansys Lab Manual - Copy

ED7211- ANALYSIS AND SIMULATION LABORATORY

5

Page 7: Ansys Lab Manual - Copy

LAB MANUAL

Ex.No:1 STRESS ANALYSIS OF A PLATE WITH A CIRCULAR HOLEAim

To perform stress analysis of a plate with a circular hole.

Procedure1. Utility Menu > Change Job Name > Enter Job Name. Utility Menu > File > Change Title > Enter New Title.

2. Preference > Structural > OK.

3. Preprocessor > Element Type > Add/Edit/Delete > Solid Quad 4Node 42 > Select > Options > Plane Stress/Thickness.

4. Preprocessor > Material Properties > Material Model > Structural > Linear > Elastic > Isotropic > EX = 2E5, PRXY = 0.3.

5. Preprocessor > Real Constant > Add/Edit/Delete > plane 42> thickness = 10

6. Preprocessor > Modeling > Create > Areas > Rectangular by Dimension > X1, X2 = 0, 50 Y1, Y2 = 0, 50.

7. Preprocessor > Modeling > Create > Areas > Circle > Solid circle > WP X = 0, WP Y = 50 & Radius = 10 > OK.

8. Preprocessor > Modeling > Create > Subtract > Areas > Select rectangle >Apply > Select Circle > Ok.

9. Preprocessor > Meshing > Element Edge Length = 2 > Mesh > Areas > Free.

10. Solution > Analysis Type > New Analysis > Static > OK.

11. Solution > Define Load > Apply > Structural > Displacement > On lines > Select Bottom Line > UY > Displacement value = 0 > OK.

10. Solution > Define Load > On Lines > Select left line > Ok > UX > Displacement value = 0 > OK. 11. Solution > Pressure > On Line > Select Right line > Ok > Value [100] > Ok.

12. Solution > Solve > Current LS > Ok.

13. Utility menu > Plot control > Style > Symmetry Expansion > Periodic > Reflect about XY.

14. Plot control > Animate > deformed shape > Ok.

13. General Postprocessor > Plot Result > Deformed shape > Ok.

6

Page 8: Ansys Lab Manual - Copy

ED7211- ANALYSIS AND SIMULATION LABORATORY

14. Plot Result > Plot Result > Contour Plot > Nodal Solution > Stress > Von Mises > Ok.

Result:Thus the stress analysis of a plate with a circular hole is performed.

7

Page 9: Ansys Lab Manual - Copy

LAB MANUAL

EX.NO:2 STRESS ANALYSIS OF RECTANGULAR L - BRACKET

Aim To perform stress analysis of rectangular L- bracket and to determine the maximum stress

and maximum deflection.

Procedure1. Utility Menu > Change Job Name > Enter Job Name. Utility Menu > File > Change Title > Enter New Title.

2. Preference > Structural > OK.

3. Preprocessor > Element Type > Add/Edit/Delete > Solid Quad 8Node 42 > Select > Options > Plane Stress/Thickness.

4. Preprocessor > Material Properties > Material Model > Structural > Linear > Elastic > Isotropic > EX = 2E5, PRXY = 0.3.

5. Preprocessor > Real Constant > Add/Edit/Delete > plane 42> thickness = 12.

6. Preprocessor > modeling > create > Area > rectangle > centre & corner

WP X = 25WP Y = 0Width = 150Height = 50Apply

WP X = 125WP Y = -75Width = 50Height = 100Ok

7. Preprocessor > modeling > create > Areas > circle > solid circle >

WP X = 0WP Y = 0Radius = 25Apply

WP X = 125WP Y = -75, Radius = 25 > Ok

8. Preprocessor > modeling > operate > Booleans > Add > Areas > pick all9. Preprocessor > modeling > create > line > line fillet > select 2 lines > fillet radius = 10 > Ok.

8

Page 10: Ansys Lab Manual - Copy

ED7211- ANALYSIS AND SIMULATION LABORATORY

10. Preprocessor > modeling > create > Areas > Arbitrary > By lines > select the three lines.

11. Preprocessor > modeling > create > Area > circle > solid circle > WP X = 0WP Y = 0Radius = 10Apply

WP X = 125WP Y = -75 Radius = 10 Ok.

12. Preprocessor > modeling > operate > Booleans > Subtract > Areas > Select the rectangle > Apply > select two circles > Ok.

13. Preprocessor > meshing > mesh tool > size control > Areas > Element edge length = 2 mm > Ok > mesh > Areas > free> pick all.

14. Solution > define loads > apply > Structural > displacement > online > select the left hole (Inside) > apply > All DOF > Displacement value = 0 > ok.

15. Solution > pressure > on line > pick all (Select bottom left of the circle> apply.Load value = 50; optional value = 25 > apply

16. Solution > pressure > on line > pick all (Select bottom right of the circle> apply.Load value = 25; optional value = 50 > apply

17. Solution > solve current LS > ok

18. General post processor > plot result > Deformed shaped > Deformed + Undeformed > Ok.

18. General post processor > plot result > contour plot > nodal solution > stress > von mises > Ok.

19. List result > reaction solution > Ok

Result:Thus the stress analysis of rectangular L-bracket with circular hole is obtained.(i) Maximum stress = 851.518 N/mm2 (ii) Maximum deflection = 1.359 mm.

9

Page 11: Ansys Lab Manual - Copy

LAB MANUAL

EX.NO:3 STRESS ANALYSIS OF AN AXI – SYMMETRIC COMPONENT

AimTo obtain the stress distribution of an axisymmetric component. The model will be that of a

closed tube made from steel. Point loads will be applied at the centre of the top and bottom plate.

Procedure1. Utility Menu > Change Job Name > Enter Job Name. Utility Menu > File > Change Title > Enter New Title.

2. Preference > Structural > OK.

3. Preprocessor > Element type > Add/Edit/ delete > solid 8node 183 > options> axisymmetric.

4. Preprocessor > Material Properties > Material Model > Structural > Linear > Elastic > Isotropic > EX = 2E5, PRXY = 0.3.

5. Preprocessor>Modeling>create>Areas>Rectangle> By dimensions

Rectangle X1 X2 Y1 Y2 1 0 20 0 5 2 15 20 0 100 3 0 20 95 100

6. Preprocessor > Modeling > operate > Booleans > Add > Areas > pick all > Ok.

7. Preprocessor > meshing > mesh tool > size control > Areas > Element edge length = 2 mm > Ok > mesh > Areas > free> pick all.

8. Solution > Analysis Type>New Analysis>Static

9. Solution > Define loads > Apply .Structural > displacement > symmetry B.C > on lines. (Pick the two edger on the left at X = 0)

10. Utility menu > select > Entities > select all

11. Utility menu > select > Entities > by location > Y = 50 >ok.

(Select nodes and by location in the scroll down menus. Click Y coordinates and type 50 in to the input box.)

12. Solution > Define loads > Apply > Structural > Force/Moment > on key points > FY > 100 > Pick the top left corner of the area > Ok.

13. Solution > Define Loads > apply > Structural > Force/moment > on key points > FY > -100 > Pick the bottom left corner of the area > ok.

14. Solution > Solve > Current LS

10

Page 12: Ansys Lab Manual - Copy

ED7211- ANALYSIS AND SIMULATION LABORATORY

15. Utility Menu > select > Entities

16. Select nodes > by location > Y coordinates and type 45, 55 in the min., max. box, as shown below and click ok.

17. General postprocessor > List results > Nodal solution > stress > components SCOMP.

18. Utility menu > plot controls > style > Symmetry expansion > 2D Axisymmetric > ¾ expansion

Result:Thus the stress distribution of the axisymmetric component is studied.

11

Page 13: Ansys Lab Manual - Copy

LAB MANUAL

Ex. No: 4 (a) STRESS ANALYSIS ON CANTILEVER BEAM SUBJECTED TO POINT LOAD

Aim:

To obtain stress analysis of cantilever beam subjected to point load and to determine max. stress and max. deflection.

Procedure:

1. Utility Menu > Change Job Name > Enter Job Name. Utility Menu > File > Change Title > Enter New Title.

2. Preference > Structural > OK.

3. Preprocessor > Element type > Add/Edit/ delete > beam > 2D elastic 3 > close.

4. Preprocessor > Real Constant > Add/Edit/Delete > Area = 100, Izz = 833.33 & Height = 10 > Ok

5. Preprocessor > Material Properties > Material Model > Structural > Linear > Elastic > Isotropic > EX = 2E5, PRXY = 0.3.

6. Preprocessor > Modeling > create > nodes > Inactive CSNode 1X=0Y=0

Node 2X= 20Y=0

Node 3X= 40Y=0

Node 4X= 60Y=0

Node 5X= 80Y=0

Node 6X= 100Y=0

7. List > nodes > coordinate only > ok

8. Preprocessor > modeling > create > elements > Auto numbered thru’ nodes > select Node 1 & 2

12

Page 14: Ansys Lab Manual - Copy

ED7211- ANALYSIS AND SIMULATION LABORATORY

Node 2 & 3Node 3 & 4Node 4 & 5Node 5 & 6 > ok.

9. Solution > define loads > apply > structural > displacement > on nodes > select node 1 >

apply > all DOF > displacement = 0 > ok.

10. Solution > Force/moment > on nodes > node 6 > apply > FY > -100 > ok.

11. Solution > solve > current L.S > ok.

12. General post processor > plot result > deform shape > Deformed + Undeformed > ok.

13. General post processor > element table > define table > add > user table for item

Smax I > by sequence num > NMISC 1 > apply

Smax J > by sequence num > NMISC 3 > apply

Smin I > by sequence num > NMISC 2 > apply

Smin J > by sequence num > NMISC 4 > Ok.

14. Plot result > line element result > Smax I > Smax J > first result >Evaluate table data > Smax I, Smax J, Smin I, Smin J > Ok.

15. General postprocessor > list result > nodal solution > DOF solution > UY > displacement result ( Table 2)

16. General postprocessor > contour plot > line element res. > Ok.

13

Page 15: Ansys Lab Manual - Copy

LAB MANUAL

Table 1: Element Stresses

S.No. SMAXIN/mm2

SMAXJN/mm2

SMININ/mm2

SMININ/mm2

1 600 480 -600 -4802 480 360 -480 -3603 360 240 -360 -2404 240 120 -240 -1205 120 0.1746e-11 -120 0.1746e +11

Table 2: Displacement – Deflection

Nodes UY1 02 -1.0667 e-013 -0.39619 e-014 -0.82286 e-015 -0.134106 -0.19048

Result:Thus the stress analysis on cantilever beam subjected point load is performed.

14

Page 16: Ansys Lab Manual - Copy

ED7211- ANALYSIS AND SIMULATION LABORATORY

Ex. No: 4(b) STRESS ANALYSIS OF SIMPLY SUPPORTED BEAM.

Aim:To perform Stress analysis of simply supported beam.

Procedure:

1. Utility Menu > Change Job Name > Enter Job Name. Utility Menu > File > Change Title > Enter New Title.

2. Preference > Structural > OK.

3. Preprocessor > Element type > Add/Edit/ delete > beam > 2D elastic 3> close.

4. Preprocessor > Real Constant > Add/Edit/Delete > Area = 100, Izz = 833.33 & Height = 10 > Ok

5. Preprocessor > Material Properties > Material Model > Structural > Linear > Elastic > Isotropic > EX = 2E5, PRXY = 0.3.

6. Preprocessor > Modeling > create > nodes > Inactive CSNode 1X=0Y=0

Node 2X= 25Y=0

Node 3X= 50Y=0

Node 4X= 75Y=0

Node 5X= 100Y=0

17. List > nodes > coordinate only > ok

18. Preprocessor > modeling > create > elements > Auto numbered thru’ nodes > select Node 1 & 2Node 2 & 3Node 3 & 4Node 4 & 5Node 5 & 6 > ok.

15

Page 17: Ansys Lab Manual - Copy

LAB MANUAL

Solution > define loads > apply > structural > displacement > on nodes > select node 1 & node 5 > apply > UY > displacement = 0 > ok.

19. Solution > Force/moment > on nodes > node 3 > apply > FY > -100 > ok.

20. Solution > solve > current L.S > ok.

21. General post processor > plot result > deform shape > Deformed + Undeformed > ok.

22. General post processor > element table > define table > add > user table for item

Smax I > by sequence num > NMISC 1 > Apply

Smax J > by sequence num > NMISC 3 > Apply

Smin I > by sequence num > NMISC 2 > apply

Smin J > by sequence num > NMISC 4 > Ok.

23. Plot result > line element result > Smax I > Smax J > first result >Evaluate table data > Smax I, Smax J, Smin I, Smin J > Ok.

24. General postprocessor > list result > nodal solution > DOF solution > UY > displacement result ( Table 2)

25. General postprocessor > contour plot > line element res. > Ok.

Table 1: Element Stresses

S.No. SMAXIN/mm2

SMAXJN/mm2

SMININ/mm2

SMININ/mm2

1 0.5457 e-14 7.5 - 0.5457 e-14 -7.52 7.5 15 -7.5 -153 15 7.5 -15 -7.54 15 7.5 -15 -7.55 7.5 0 -7.5 0

Table 2: Displacement – Deflection

Nodes UY1 02 -0.81846 e-23 -0.11905 e-14 -0.81846 e-2

Result:Thus the stress analysis of simply supported beam is obtained.

16

Page 18: Ansys Lab Manual - Copy

ED7211- ANALYSIS AND SIMULATION LABORATORY

Ex. No: 4(c) STRESS ANALYSIS OF FIXED BEAM.

Aim:To perform stress analysis of fixed beam subjected to point load.

Procedure:1. Utility Menu > Change Job Name > Enter Job Name. Utility Menu > File > Change Title > Enter New Title.

2. Preference > Structural > OK.

3. Preprocessor > Element type > Add/Edit/ delete > beam > 2D elastic 3> close.

4. Preprocessor > Real Constant > Add/Edit/Delete > Area = 100, Izz = 833.33 & Height = 10 > Ok

5. Preprocessor > Material Properties > Material Model > Structural > Linear > Elastic > Isotropic > EX = 2E5, PRXY = 0.3.

6. Preprocessor > Modeling > create > nodes > Inactive CSNode 1X=0Y=0

Node 2X= 25Y=0

Node 3X= 50Y=0

Node 4X= 75Y=0

Node 5X= 100Y=0

7. List > nodes > coordinate only > ok

8. Preprocessor > modeling > create > elements > Auto numbered thru’ nodes > select

Node 1 & 2Node 2 & 3Node 3 & 4Node 4 & 5Node 5 & 6 > ok.

17

Page 19: Ansys Lab Manual - Copy

LAB MANUAL

9. Solution > define loads > apply > structural > displacement > on nodes > select

node 1 & node 5 > apply > all DOF > displacement = 0 > ok.

10. Solution > Force/moment > on nodes > node 3 > apply > FY > -100 > ok.

11. Solution > solve > current L.S > ok.

12. General post processor > plot result > deform shape > Deformed + Undeformed > ok.

13. General post processor > element table > define table > add > user table for item

Smax I > by sequence num > NMISC 1 > apply

Smax J > by sequence num > NMISC 3 > apply

Smin I > by sequence num > NMISC 2 > apply

Smin J > by sequence num > NMISC 4 > Ok.

14. Plot result > line element result > Smax I > Smax J > first result >Evaluate table data > Smax I, Smax J, Smin I, Smin J > Ok.

15. General postprocessor > list result > nodal solution > DOF solution > UY > displacement result ( Table 2)

16. General postprocessor > contour plot > line element res. > Ok.

Table 1: Element Stresses

S.No. SMAXIN/mm2

SMAXJN/mm2

SMININ/mm2

SMININ/mm2

1 7.503 0 -7.503 02 0.104 e-14 7.503 -0.104 e-14 -7.5033 7.503 0 -7.503 04 0 7.503 0 -7.503

Table 2: Displacement – DeflectionNodes UY

1 02 -0.14887 e-23 -0.20174 e-24 -0.14887 e-25 0

Result:Thus the stress analysis of fixed beam is obtained.

18

Page 20: Ansys Lab Manual - Copy

ED7211- ANALYSIS AND SIMULATION LABORATORY

Ex. No: 5 MODE FREQUENCY ANALYSIS OF 2D PLATE

Aim:To perform the model frequency analysis on 2D plate.

Procedure:

1. Utility Menu > Change Job Name > Enter Job Name. Utility Menu > File > Change Title > Enter New Title.

2. Preference > Structural > OK.

3. Preprocessor > Element type > Add/Edit/ delete > Solid 8node 82 > options > plane stress with thickness > close.

4. Preprocessor > Real Constant > Add/Edit/Delete > thickness = 1 > Ok

5. Preprocessor > Material Properties > Material Model > Structural > Linear > Elastic > Isotropic > EX = 2.068 E5, PRXY = 0.3 & Density = 7.83E-6.

6. Preprocessor>Modeling>create>Areas>Rectangle> By dimensions0, 2500, 75

7. Preprocessor > meshing > mesh tool > size control > Areas > Element edge length = 15 mm > Ok > mesh > Areas > free> pick all.

8. Solution > Analysis Type > New Analysis > modal > OK.

9. Solution > Analysis option > sub space > Ok.5, 5

10. Solution > define load > apply > structural > displacement > on lines > select left side line > all DOF > Ok.

11. Solve > current L.S > close

12. General postprocessor > result summary.

13. General postprocessor > first set > plot result > deform shape > deformed + undeformed > next set > plot result > deformed + undeformed > Ok.

Table :

Result:Thus the modal frequency analysis on 2D element is performed.

19

S.No. Time/Frequency Load Shape

Sub step Cumulation

1 0.93693 1 1 12 4.4734 1 2 23 5.1535 1 3 34 9.9837 1 4 45 15.345 1 5 5

Page 21: Ansys Lab Manual - Copy

LAB MANUAL

Ex. No: 6(a) MODE FREQUENCY ANALYSIS OF CANTILEVER BEAM Aim:

To obtain the mode frequency analysis on Cantilever beam and to determine its natural frequency.

Procedure:1. Utility Menu > Change Job Name > Enter Job Name. Utility Menu > File > Change Title > Enter New Title.

2. Preference > Structural > OK.

3. Preprocessor > Element type > Add/Edit/ delete > beam > 2D elastic 3> close.

4. Preprocessor > Real Constant > Add/Edit/Delete > Area = 100, Izz = 833.33 & Height = 10 > Ok.

5. Preprocessor > Material Properties > Material Model > Structural > Linear > Elastic > Isotropic > EX = 2.068 E5, PRXY = 0.3 & Density = 7.83E-6.

6. Preprocessor > Modeling > create > key points > inactive CS Key point no.1 = (0, 0) Key point no.2 = (1000, 0)

7. Preprocessor > Modeling > create > lines > straight lines > select 1&2.

8. Meshing > mesh tool > lines > Element edge length > = 100 mm > mesh > pick all

9. Solution > analysis type > new analysis > modal > ok > analysis options > subspace = 5 > ok.

10. Solution > define loads > apply > structural > displacement > on key points > select first point > apply > all DOF > displacement = 0 > Ok.

11. Solve > current L.S > close

12. General postprocessor > result summary.

13. General postprocessor > read result > first set > Ok.

14. General postprocessor > plot result > deform shape > deformed + undeformed > Ok.

15. General postprocessor > plot control > animate > modal shape.

20

Page 22: Ansys Lab Manual - Copy

ED7211- ANALYSIS AND SIMULATION LABORATORY

Table :

Result:Thus the mode frequency analysis of Cantilever beam is obtained.

21

S.No. Time/Frequency Load Shape

Sub step Cumulation

1 8.3 1 1 12 52.011 1 2 23 145.64 1 3 34 285.51 1 4 45 427.54 1 5 5

Page 23: Ansys Lab Manual - Copy

LAB MANUAL

Ex. No: 6(b) MODE FREQUENCY ANALYSIS OF SIMPLY SUPPORTED BEAM

Aim:To perform the model frequency analysis on simply supported beam.

Procedure:1. Utility Menu > Change Job Name > Enter Job Name. Utility Menu > File > Change Title > Enter New Title.

2. Preference > Structural > OK.

3. Preprocessor > Element type > Add/Edit/ delete > beam > 2D elastic 3 > close.

4. Preprocessor > Real Constant > Add/Edit/Delete > Area = 100, Izz = 833.33 & Height = 10 > Ok.

5. Preprocessor > Material Properties > Material Model > Structural > Linear > Elastic > Isotropic > EX = 2.068 E5, PRXY = 0.3 & Density = 7.83E-6.

6. Preprocessor > Modeling > create > key points > inactive CS Key point no.1 = (0, 0) Key point no.2 = (1000, 0)

7. Preprocessor > Modeling > create > lines > straight lines > select 1&2.

8. Meshing > mesh tool > lines > Element edge length > = 100 mm > mesh > pick all

9. Solution > analysis type > new analysis > modal > ok > analysis options > subspace = 5 > ok.

10. Solution > define loads > apply > structural > displacement > on key points > select first point & second point > apply > UY > displacement = 0 > Ok.

11. Solve > current L.S > close

12. General postprocessor > result summary.

13. General postprocessor > read result > first set > Ok.

14. General postprocessor > plot result > deform shape > deformed + undeformed > Ok.

15. General postprocessor > plot control > animate > modal shape.

22

Page 24: Ansys Lab Manual - Copy

ED7211- ANALYSIS AND SIMULATION LABORATORY

Table :

Result:Thus the mode frequency analysis of simply supported beam is obtained.

23

S.No. Time/Frequency Load Shape

Sub step Cumulation

1 0 1 1 12 23.298 1 2 23 93.191 1 3 34 209.73 1 4 45 373.16 1 5 5

Page 25: Ansys Lab Manual - Copy

LAB MANUAL

Ex. No: 6(c) MODEL FREQUENCY ANALYSIS OF FIXED BEAM.

Aim:To perform the model frequency analysis on Fixed beam.

Procedure:

1. Utility Menu > Change Job Name > Enter Job Name. Utility Menu > File > Change Title > Enter New Title.

2. Preference > Structural > OK.

3. Preprocessor > Element type > Add/Edit/ delete > beam > 2D elastic 3> close.

4. Preprocessor > Real Constant > Add/Edit/Delete > Area = 100, Izz = 833.33 & Height = 10 > Ok.

5. Preprocessor > Material Properties > Material Model > Structural > Linear > Elastic > Isotropic > EX = 2.068 E5, PRXY = 0.3 & Density = 7.83E-6.

6. Preprocessor > Modeling > create > key points > inactive CS Key point no.1 = (0, 0) Key point no.2 = (1000, 0)

7. Preprocessor > Modeling > create > lines > straight lines > select 1&2.

8. Meshing > mesh tool > lines > Element edge length > = 100 mm > mesh > pick all

9. Solution > analysis type > new analysis > modal > ok > analysis options > subspace = 5 > ok.

10. Solution > define loads > apply > structural > displacement > on key points > select first point & second point > apply > all DOF > displacement = 0 > Ok.

11. Solve > current L.S > close

12. General postprocessor > result summary.

13. General postprocessor > read result > first set > Ok.

14. General postprocessor > plot result > deform shape > deformed + undeformed > Ok.

15. General postprocessor > plot control > animate > modal shape.

24

Page 26: Ansys Lab Manual - Copy

ED7211- ANALYSIS AND SIMULATION LABORATORY

Table:

Result:

Thus the mode frequency analysis on fixed beam is performed.

25

S.No. Time/Frequency Load Shape

Sub step Cumulation

1 52.815 1 1 12 145.60 1 2 23 282.58 1 3 34 427.71 1 4 45 708.05 1 5 5

Page 27: Ansys Lab Manual - Copy

LAB MANUAL

Ex. No: 7 HARMONIC ANALYSIS ON 2D PLATE

Aim:To perform the harmonic analysis on 2D plate. We conduct a harmonic forced response test

by applying a cyclic load at the end of the plate. Procedure:

1. Utility Menu > Change Job Name > Enter Job Name. Utility Menu > File > Change Title > Enter New Title.

2. Preference > Structural > OK.

3. Preprocessor > Element type > Add/Edit/ delete > Solid 8node 82 > options > plane stress with thickness > close.

4. Preprocessor > Real Constant > Add/Edit/Delete > thickness = 1 > Ok

5. Preprocessor > Material Properties > Material Model > Structural > Linear > Elastic > Isotropic > EX = 2.068 E5, PRXY = 0.3 & Density = 7.83E-6.

6. Preprocessor>Modeling>create>Areas>Rectangle> By dimensions0, 250 0, 75

7. Preprocessor > meshing > mesh tool > size control > Areas > Element edge length = 15 mm > Ok > mesh > Areas > free> pick all.

8. Solution > Analysis Type > New Analysis > harmonic > OK > analysis options > real + imaginary (full solution method).

9. Solution > define loads > apply > structural > force/moment > on nodes > click right corner > FY real value = 100 & Imaginary value = 0 > Ok.

10. Solve > current L.S > ok.

11. Load step option > time frequency > frequency & sub steps > 0,200 > 200 > stepped > Ok.

12. Time history postprocessor > variable viewer > add > nodal solution > DOF solution > Y-component of displacement > click right corner > ok > graph data > Ok.

13. Utility Menu > plot controls > style > graphs > modify axis ( change the Y-axis scale to logarithmic)

14. Utility menu > plot > replot.Result:

Thus the harmonic analysis on 2D plate is performed.

26

Page 28: Ansys Lab Manual - Copy

ED7211- ANALYSIS AND SIMULATION LABORATORY

Ex. No: 8 THERMAL STRESS ANALYSIS OF A 2D COMPONENT

Aim:To perform the thermal stress analysis of a 2D component.

Procedure:1. Preference > thermal > Ok.

2. Preprocessor > Element type > Add/edit /delete > LINK33 (Thermal Mass Link 3D conduction) > close.

3. Preprocessor > real constant > add > Area = 4e-4

4. Preprocessor > material properties > Material Models > Thermal conductivity > Isotropic > KXX: 60.5

5. Preprocessor > Modeling > Create > Keypoints > In Active CS...

Keypoint Coordinates (x, y)1 (0,0)2 (1,0)

6. Preprocessor > modeling > create > lines > lines > In active coordinate system > select 1

& 2.

7. Preprocessor > Meshing > Mesh tool > Size Controls > Manual Size > element edge length = 0.1 > mesh > Areas > Free > Pick All

8. Preprocessor > Physics > Environment > Write In the window that appears, enter the TITLE Thermal and click OK.

9. Preprocessor > Physics > Environment > Clear > OK

10. Preprocessor > Element Type > Switch Elem Type (Choose Thermal to Structural from the scroll down list.)

11. Preprocessor > Material Properties > Material Models > Structural > Linear > Elastic > Isotropic > EX: 200e9, PRXY: 0.3

12. Preprocessor > Material Props > Material Models > Structural > Thermal Expansion Coefficient > Isotropic > ALPX = 12e-6

13. Preprocessor > Physics > Environment > Write > In the window that appears, enter the TITLE Struct.

14. Solution > Analysis Type > New Analysis > Static

15. Solution > Physics > Environment > Read > Choose thermal and click OK.

27

Page 29: Ansys Lab Manual - Copy

LAB MANUAL

(If the Physics option is not available under Solution, click Unabridged Menu at the bottom of the Solution menu. This should make it visible).

16. Solution > Define Loads > Apply > Thermal > Temperature > On Keypoints > Set the temperature of Keypoint 1, the left-most point, to 348 Kelvin.

17. Solution > Solve > Current LS

18. Main Menu > Finish

The thermal solution has now been obtained. If you plot the steady-state temperature on the link, you will see it is a uniform 348 K, as expected. This information is saved in a file labelled Jobname.rth, were .rth is the thermal results file. Since the jobname wasn't changed at the beginning of the analysis, this data can be found as file.rth. We will use these results in determining the structural effects.

19. Solution > Physics > Environment > Read

Choose struct and click OK.

20. Solution > Define Loads > Apply > Structural > Displacement > On Keypoints > Fix Keypoint 1 for all DOF's and Keypoint 2 in the UX direction.

21. Solution > Define Loads > Apply > Structural > Temperature > From Thermal Analysis

As shown below, enter the file name File.rth. This couple the results from the solution of the thermal environment to the information prescribed in the structural environment and uses it during the analysis.

22. Preprocessor > Loads > Define Loads > Settings > Reference Temp

For this set the reference temperature to 273 degrees Kelvin

23. Solution > Solve > Current LS

24. General Postprocessor > Element Table > Define Table > Add > CompStr > By Sequence Num > LS > LS, 1.

25. General Postprocessor > Element Table > List Elem Table > COMPSTR > Ok.

1. Hand Calculations

28

Page 30: Ansys Lab Manual - Copy

ED7211- ANALYSIS AND SIMULATION LABORATORY

Hand calculations were performed to verify the solution found using ANSYS:

As shown, the stress in the link should be a uniform 180 MPa in compression.

Result:

Thus the thermal stress analysis of 2D component is performed and the stress in each element ranges from -0.180e9 Pa, or 180 MPa in compression.

29

Page 31: Ansys Lab Manual - Copy

LAB MANUAL

Ex. No: 9 CONDUCTIVE HEAT TRANSFER ANALYSIS OF 2D COMPONENT

Aim:This tutorial was created to solve a simple conduction problem. The thermal conductivity (k)

of the material is 10 w/m° C and the block is assumed to be infinitely long.

Procedure:

1. Preference > thermal > Ok.

2. Preprocessor > Element type > Add/edit /delete > Select thermal mass solid, Quad 4 node 55 (Plane 55) > close.

3. Preprocessor > material properties > Material Models > Thermal conductivity > Isotropic > KXX = 10 (thermal Conductivity )

4. Preprocessor > modeling > create > Areas > Rectangle > By 2 Corners > X = 0, Y = 0, width = 1, Height = 1 > Ok.

5. Preprocessor > Meshing > Mesh tool > Size Controls > Manual Size > element edge length = 0.05 > mesh > Areas > Free > Pick All

6. Solution > Analysis type > New analysis > steady – state > Ok.

7. Solution > Define loads > Apply > Thermal > Temperature > On nodes

a. Click the box option and draw a box around the nodes on the top line.b. Fill the window in as shown to constrain the side to a const. temperature of 500.c. Using the same method, constrain the remaining 3 sides to a constant value of

100.

8. Solution > solve > Current LS.

9. General Preprocessor > Plot results > Contour Plot > Nodal Solution > DOF solution > nodal temperature (TEMP) > Ok.

Result:

Thus conductive heat transfer analysis is performed.

30

Page 32: Ansys Lab Manual - Copy

ED7211- ANALYSIS AND SIMULATION LABORATORY

Ex. No: 10 CONVECTIVE HEAT TRANSFER ANALYSIS OF 2D COMPONENT

Aim:To perform the thermal analysis on a given block with convective heat transfer coefficient (h)

of 10 W/m° C and the thermal conductivity (k) of the material is 10 W/m° C.

Procedure:

1. Preference > thermal > Ok.

2. Preprocessor > Element type > Add/edit /delete > Select thermal mass solid, Quad 4 node 55 (Plane 55) > close.

3. Preprocessor > material properties > Material Models > Thermal conductivity > Isotropic > KXX = 10 (thermal Conductivity )

4. Preprocessor > modeling > create > Areas > Rectangle > By 2 Corners > X = 0, Y = 0, width = 1, Height = 1 > Ok.

5. Preprocessor > Meshing > Mesh tool > Size Controls > Manual Size > element edge length = 0.05 > mesh > Areas > Free > Pick All

6. Solution > Analysis type > New analysis > steady state > Ok.

7. Solution > Define loads > Apply > Thermal > Temperature > on lines > click the top of the rectangular box > temperature > 500 > apply > click the left side of the rectangular box > ok > temperature > 100 > Ok.

8. Solution > Define loads > Apply > Thermal > convection > on lines > click the right side of the rectangular box > Ok.

9. Solve > current L.S > Ok.

10. General Preprocessor > Plot results > Contour Plot > Nodal Solution > DOF solution > nodal temperature (TEMP) > Ok.

Result:

Thus convective heat transfer analysis is performed.

31

Page 33: Ansys Lab Manual - Copy

LAB MANUAL

32