antiviral drugs - sbs.utexas.edu€¦ · dehydrogenase for de novo synthesis of purines whereas...

8
Antiviral Drugs One key strategy to block viral infection is to target steps of replication of the viral genome. Another is to target the integration of viral DNA into the host genome. A third strategy is to target steps involved in the maturation of the virus, assembly of the viral capsid or packaging of the viral genome into the capsid. The following Table lists several drugs that are effective against different kinds of viruses. All except one affect the replication of the viral genome, either the duplication of RNA or the reverse transcription of RNA into a DNA. The last one blocks the activity of a protease required to cleave a polyprotein into individual viral proteins Drug: Viruses: Chemical Type: Target: Vidarabine Herpesviruses Nucleoside analogue Virus polymerase Acyclovir Herpes simplex (HSV) Nucleoside analogue Virus polymerase Gancyclovir and Valcyte (valganciclovir) Cytomegalovirus (CMV) Nucleoside analogue Virus polymerase (needs virus UL98 kinase for activation) Nucleoside-analog reverse transcriptase inhibitors (NRTI): AZT (Zidovudine), ddI (Didanosine), ddC (Zalcitabine), d4T (Stavudine), 3TC (Lamivudine) Retroviruses (HIV) Nucleoside analogue Reverse transcriptase Non-nucleoside reverse transcriptase inhibitors (NNRTI): Nevirapine, Delavirdine Retroviruses (HIV) Nucleoside analogue Reverse transcriptase Protease Inhibitors: Saquinavir, Ritonavir, Indinavir, Nelfinavir HIV Peptide analogue HIV protease Historically, the discovery of antiviral drugs has been largely fortuitous. Spurred on by success with antibiotics, drug companies launched huge blind-screening programs - with relatively little success. Lead compounds were modified by chemists in an attempt to improve bioactivity. Solubility, stability, availability and activity are all important in the overall effectiveness of any given antiviral agent.

Upload: others

Post on 25-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Antiviral Drugs - sbs.utexas.edu€¦ · dehydrogenase for de novo synthesis of purines whereas other cell types can also use what is called a salvage pathway. In the salvage pathway,

Antiviral Drugs

One key strategy to block viral infection is to target steps of replication of the viral genome.

Another is to target the integration of viral DNA into the host genome.

A third strategy is to target steps involved in the maturation of the virus, assembly of the viral capsid or packaging of the viral genome into the capsid.

The following Table lists several drugs that are effective against different kinds of viruses. All except one affect the replication of the viral genome, either the duplication of RNA or the reverse transcription of RNA into a DNA. The last one blocks the activity of a protease required to cleave a polyprotein into individual viral proteins

Drug: Viruses: Chemical Type: Target:

Vidarabine Herpesviruses Nucleoside analogue Virus polymerase

Acyclovir Herpes simplex (HSV)

Nucleoside analogue Virus polymerase

Gancyclovir and Valcyte ™ (valganciclovir)

Cytomegalovirus (CMV)

Nucleoside analogue

Virus polymerase (needs virus UL98 kinase for activation)

Nucleoside-analog reverse transcriptase inhibitors (NRTI): AZT (Zidovudine), ddI (Didanosine), ddC (Zalcitabine), d4T (Stavudine), 3TC (Lamivudine)

Retroviruses (HIV)

Nucleoside analogue

Reverse transcriptase

Non-nucleoside reverse transcriptase inhibitors (NNRTI): Nevirapine, Delavirdine

Retroviruses (HIV)

Nucleoside analogue

Reverse transcriptase

Protease Inhibitors: Saquinavir, Ritonavir, Indinavir, Nelfinavir HIV Peptide

analogue HIV protease

Historically, the discovery of antiviral drugs has been largely fortuitous. Spurred on by success with antibiotics, drug companies launched huge blind-screening programs - with relatively little success. Lead compounds were modified by chemists in an attempt to improve bioactivity. Solubility, stability, availability and activity are all important in the overall effectiveness of any given antiviral agent.

Page 2: Antiviral Drugs - sbs.utexas.edu€¦ · dehydrogenase for de novo synthesis of purines whereas other cell types can also use what is called a salvage pathway. In the salvage pathway,

The most  effective  agents  for blocking  replication  are nucleoside or  nucleotide analogs.  They  are  useful  against  viruses with  RNA  genomes,  DNA  genomes  or retroviruses  (viruses  that  have  an  RNA  genome  that must  be  converted  into  a DNA  intermediate  for  viral  replication).  These  analogs  can  compete  with  the normal ribonuclelotides that bind to the catalytic pocket of RNA dependent RNA polymerase  enzyme,  or  they  can  compete  with  the  deoxynucleotide  binding pocket of  reverse  transcriptase, or  they  can  compete with  the deoxynucleotide binding pocket of a DNA dependent DNA polymerse. 

Shown below are nucleoside analogs that have strong antiviral activity. One  is a pyrimidine analog, the other is purine analog. 

Zidovudine

Didanosine  

Page 3: Antiviral Drugs - sbs.utexas.edu€¦ · dehydrogenase for de novo synthesis of purines whereas other cell types can also use what is called a salvage pathway. In the salvage pathway,

Let us now consider the use of some of the antiviral agents in the context of HIV. HIV has an RNA genome which also serves  the messenger  for  the  translation of viral  proteins.  Following  infection,  the  RNA  genome  can  be  translated  into important viral proteins. One of  these proteins  is  the  reverse  transcriptase  that converts  the  viral  RNA  first  into  single  stranded  DNA  and  then  into  double stranded DNA. The  reverse  transcriptase  is produced as part of a  larger protein which is cleaved at appropriate positions by the viral protease. The viral protease is packaged  into  the  virus particle  and  is delivered  to  the  cell during  infection. Following reverse transcription, the double stranded viral DNA  is  integrated  into the genome with the help of the integrase protein.  

The  integrated  viral  genome  can  be  transcribed  into  RNA which  serves  as  the message  for  the  gag‐pol  polyprotein  and  the  envelope  protein  (see  Figure  1 below)  

 

Figure 1. The translation of the HIV mRNA results in the gag‐pol poly protein and the envelope protein. The viral protease cleaves this protein at multiple points to yield the indicated proteins.  

The proteins p17, p24 and p7 contribute to the structure of the virion, and help in packaging  the viral RNA. As pointed out,  the  functions of  the protease,  reverse transcriptase and  the  integrase are  in processing  the gag‐pol protein, making a 

Page 4: Antiviral Drugs - sbs.utexas.edu€¦ · dehydrogenase for de novo synthesis of purines whereas other cell types can also use what is called a salvage pathway. In the salvage pathway,

cDNA  copy  of  the  viral  RNA  and  integrating  the  DNA  into  the  host  genome, respectively. 

Combating HIV  proliferation: Highly  active  anti‐retroviral  therapy  (HAART)  is  a combination  therapy  that  utilizes  two  reverse  transcriptase  inhibitors  and  a protease  inhibitor. There are two advantages to combination therapy. First, they help  the  efficacy  of  the  treatment  through  synergistic  effects.  Second,  and perhaps more  importantly,  they minimize  the  chances  of  viral mutations  that confer resistance to the drugs. The reverse transcriptase, unlike DNA polymerases responsible for duplicating host genomes, is an error prone enzyme. They lack the sophisticated proof‐reading mechanisms responsible  for the high  fidelity of DNA replication. As a result mutations arise in viruses at a fairly high frequency. Some of these mutations are deleterious and the mutant genomes carrying them will be eliminated  from  the  population.  However,  another  subset  of  mutations  may confer resistance to a certain drug giving the particular mutant an advantage. The resistant  virus  will  proliferate  and  infect  new  T  cells  of  the  host  making  the treatment with  that particular drug  ineffective. By  recombination between viral genomes, mutations can be acquired  in a combinatiorial fashion, thus  increasing the chances of drug resistance. The probability of acquiring mutations that induce viral  resistance  to multiple drugs would be quite  low, close  to  zero. Hence,  the multi‐drug  treatment  regimen  is quite  successful  in keeping HIV  replication and sustained re‐infection of T cells under control. 

A  rather  innovative drug design  is not only  to  target  the replication of  the virus but also that of the cells in which the virus is replicating. The principal target cell for HIV  infection  is  the CD4+ T  lymphocytes. Virus  cannot  replicate  in  resting T cells,  although  it  can  remain  in  a  latent  state. When  T  cells  are  activated  by encountering an antigen, they multiply and carry out their function, for example, fighting bacterial  infection  (see Figure 2). Some of  these cells  revert  to a nearly resting state (memory T cells), and they may maintain a low level of cell division. These  cells maintain  the memory  of  the  original  infection  (or  the  antigen  that stimulated  them),  so  that when  a  re‐infection  occurs,  they  quickly  enter  their proliferative mode.  

Page 5: Antiviral Drugs - sbs.utexas.edu€¦ · dehydrogenase for de novo synthesis of purines whereas other cell types can also use what is called a salvage pathway. In the salvage pathway,

The  proliferating  CD4+  T  lymphocytes  are  excellent  hosts  for  HIV  infection, integration and proliferation (Figure 2). Many of these cells die by the cytopathic effects of  the virus as well as by host  immune  response. This  is why active HIV infection depletes the T cell pool of the victim. Some of the actively infected cells escape  the  viral  cytopathic  effects  or  killing  by  the  host  immune  system.  They become resting cells providing a  long‐term stable reservoir of the virus. Because in the resting state, there is little or no viral gene expression and the lack of viral antigens  keeps  them  protected  from  the  host  immune  response.  These  cells survive by flying under the radar of immunosurveillence. 

Mycophenolic acid has been known to block the proliferative activity of activated lymphocytes.  It  is  an  immunosuppressive  agent,  and has been used  to prevent rejection  in  patients  undergoing  kidney  transplant.  It  acts  by  inhibiting  inosine monophosphate  dehydrogenase,  an  enzyme  required  for  the  de  novo biosynthesis  of  guanosine  nucleotides.  The  action  of  this  enzyme  converts inosone 5’ monophopshate to xanthine 5’ monophosphate, a committed step  in the biosynthesis of guanosine nucleotide. The mechanism of inhibition is by MPA mimicking  the  nicotinamide  portion  of  the  NAD  (nicotinamide  adenine dinucleotide)  cofactor  and  a  water  molecule  required  for  the  activity  of  this enzyme.  Lymphocytes  depend  on  the  activity  of  inosine  monophosphate dehydrogenase for de novo synthesis of purines whereas other cell types can also use what  is  called  a  salvage pathway.  In  the  salvage pathway,  the  free base  is converted to the nucleotide by a phsphoribosyl transferase activity. 

Adenine phosphoribosyltransferase (HGPRT) catalyzes: 

adenine + PRPP <-----> AMP + PPi Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) catalyzes the following reactions:

hypoxanthine + PRPP <------> IMP + PPi

guannine + PRPP <--------> GMP + PPi

PRPP = 5’‐phopshoribisyl pyrophosphate. 

Jayaram
Cross-Out
Jayaram
Typewritten Text
Page 6: Antiviral Drugs - sbs.utexas.edu€¦ · dehydrogenase for de novo synthesis of purines whereas other cell types can also use what is called a salvage pathway. In the salvage pathway,

 

By  inhibiting  guanine  nucleotide  synthesis, MPA  can  potentiate  the  effects  of reverse  transcriptase  inhibitors.  In  patients  undergoing  HAART,  MPA  causes substantial reduction of proliferating CD4+ and CD8+ cells but they do not reduce the overall population  size of T  cells. Thus  it  is useful  for  fighting HIV  infection without impairing the immune system as a whole. 

 

 

Figure 2. Mycophenolic acid (MPA) blocks the proliferation of (a) activated CD4+ T cells, (2) memory CD4+ T cells and (c) post‐integration latent CD4+ T cells as indicated in the diagram. MPA can potentiate the activity of a reverse transcriptase inhibitor (RTI). These drugs can be used in combination with the protease inhibitor, PI. 

HIV integrase inhibitors 

Another potential target protein in anti‐HIV therapeutics is the viral integrase. A number of such inhibitors have been developed in recent years. There are at least three classes of such inhibitors. The first is modified nucleotide inhibitors. They bind to the integrase active site and inhibit its activity. The second class, called thiazolothiazepines were discovered as a result of a large scale screening of drugs 

Page 7: Antiviral Drugs - sbs.utexas.edu€¦ · dehydrogenase for de novo synthesis of purines whereas other cell types can also use what is called a salvage pathway. In the salvage pathway,

sponsored by the National Cancer Institute. They seem to bind to the integrase‐DNA complexes and prevent integration. A third class consists of hydroxylated aromatic compounds. They seem to act by chelating the metal ion in the active site of the integrase. The integrases coordinates a Mg++ or Mn++ ion for its activity through an active site motif D‐‐‐‐D‐‐‐‐E (Asp‐‐‐‐‐Asp‐‐‐‐Glu). 

 

 

Figure 3. Class I inhibitors of HIV integrase. They bind to the integrase active site.

Page 8: Antiviral Drugs - sbs.utexas.edu€¦ · dehydrogenase for de novo synthesis of purines whereas other cell types can also use what is called a salvage pathway. In the salvage pathway,

Figure 4. The thiazolothiazepine class of HIV integrase inhibitors appear to prevent integration by binding to integrase-DNA complexes.

Figure 5. The hydroxylated aromatic compounds are thought to chelate the metal ion present within the active site of integrase.