application of continuous unitary transformations...

37
Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL S.A. Jafari 1 M. Hafez 2 , M.R. Abolhassani 2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ. 2008 S.A. Jafari 1 M. Hafez 2 , M.R. Abolhassani 2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ. APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Upload: others

Post on 25-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

APPLICATION OF CONTINUOUS UNITARYTRANSFORMATIONS TO IONIC HUBBARD

MODEL

S.A. Jafari1

M. Hafez2, M.R. Abolhassani2

1 Isfahan Univ. of Tech.,2 Tarbiat Modares Univ.

2008

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 2: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

Outline

Introduction to CUT Method

Ionic Hubbard Model

Flow Equations for IHM

Summary and Conclusions

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 3: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

Introduction to CUT MethodI Eigenvalues, eigenvectors and correlation functions of

a quantum systemI Diagonalization using continuous unitary

transformationH = Hd + H r

I Transformed Hamiltonian

H (`) = U (`) HU† (`)

I Flow equations: Define a Generator η(`)

dH (`)

dl= [η (`) , H (`)] , U(`) = eη(`)

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 4: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

The generator governs the flow, and hence determines in whichsector the Hamiltonian renormalizes itself

I Wegner Generator: Quantum fluctuations driven flow

H (`) = Hd (`) + H r (`)

η (`) = [H (`) , H r (`)] ,

I Wegner Generator ⇒ Block Diagonalization

` →∞ : hab (∞) (haa (∞)− hbb (∞)) = 0

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 5: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

Band Matrices

A matrix is called band matrix, iff

Hnm = 0; for |n −m| > M

MKU (Mielke, Knetter, Uhrig) generator

ηij(`) = sgn(qi(`)− qj(`))Hij(`)

where Q is an operator counting number of some kind ofexcitations, allows for "particle number conserving" flow.

I ηMKU preservs band nature

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 6: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

PROOF

dhnm

d`= −sgn(n −m)(hnn − hmm)hnm +∑

k 6=n,m[sgn(n − k) + sgn(m − k)]hnkhkm

I First term ∝ h ⇒ Band matrixI For |n −m| > M either of knk or hkm is zeroI For m ≤ k ≤ n,

∑k over sgn’s with different sing ⇒ zero

I For k /∈ [m, n], sgn’s add up to ±2

+2∑

m−M<k<m

hnkhkm − 2∑

n<k<M

hnkhkm

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 7: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

Example: Two-level Hamiltonian

H = E1− ω

2σz +

e2

σx

Using Q = (1− σz)/2 one takes Hd = E1− ω2 σz , to obtain

η11 = η22 = 0, η12 = sgn(0− 1)e/2, η21 = sgn(1− 0)e/2,which can be summarized as η = −ie/2σy . Hence:

∂`H = − ie2 [σy , E1− ω

2 σz + e2σx ] = ieω

2 iσx + ie2

2 iσz ⇒

∂`

(E − ω/2 e/2

e/2 E + ω/2

)= −e

2

(e ωω −e

)⇒

∂`E = 0, ∂`ω = e2, ∂`e = −ωe ⇒E (∞) = E , ω(∞) =

√ω2 + e2, e(∞) = 0

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 8: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

Exercise

Repeat the previous procedure with the bosonic oscillator

H = E1 + ωa†a +d2

(a†2 + a2

)Hint: Take Q = a†a to obtain η = d

2 (a†2 − a2)

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 9: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

Outline

Introduction to CUT Method

Ionic Hubbard Model

Flow Equations for IHM

Summary and Conclusions

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 10: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

Ionic Hubbard ModelI Motivation:

I Neutral-ionic transition in organic compoundsI Ferroelectric transition in perovskite materials.

I Ionic Hubbard Hamiltonian:

H = −t∑〈j,l〉

∑σ

(c†jσclσ + c†lσcjσ

)+U

∑j

nj↑nj↓+∆

2

∑i,σ

(−1)i c†iσciσ

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 11: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

Ionic Hubbard Model

I Definition of the problem:

What is the state of the system between Mott and bandinsulators?

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 12: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

I Ionic Hubbard model in the limit U = 0:

H =∑kσ

εkc†kσckσ+∑k ,σ

εk+π c†k+πσck+πσ+∆

2

∑kσ

(c†kσck+πσ + h.c.)

Where εk = −2t cos k . Using Bogolubov transformations:

H =∑kσ

Ek

(γ†kσγkσ − γ†k+πσγk+πσ

)Where:

Ek =

√4t2 cos2 k + (

2)2

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 13: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

Ionic Hubbard Model

Therefore in half-filling conditions IHM is band insulator Withenergy gap ∆.

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 14: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

I Ionic Hubbard model in the limit U � t :Reduces to t-J model which at half-filling describes a Mottinsulator

I Frozen charge fluctuations at half-fillingI Low-energy spin-exciations

H = J∑〈i,j〉

~Si .~Si+1, J =4t2

U(0)

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 15: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

Another solvable limit: Classic LimitI Atomic limit (t = 0):

H = U∑

j

nj↑nj↓ +∆

2

∑i,σ

(−1)i ni,σ (0)

In this limit IHM is classical and line U = ∆ separates bandinsulator from Mott insulator.

The line U = ∆ is metallic transition point.S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 16: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

Outline

Introduction to CUT Method

Ionic Hubbard Model

Flow Equations for IHM

Summary and Conclusions

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 17: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

Warm up exercise

I Flow equations for IHM in the limit U = 0:

Split H0 (`) as:

H0 (`) =∑kσ

εk (`) c†kσckσ

+∑kσ

εk+π (`) c†k+πσck+πσ

+∑

k ,σ∆k (`)

2 (c†kσck+πσ + h.c.)

Wegner generator becomes:η0 (`) =

∑k ,σ

∆k (`)2 (εk (`)− εk+π (`))

(c†kσck+πσ − h.c.

)

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 18: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

Flow Equation

[η0 (`) , H0 (`)] =

−∑k ,σ

∆k (`)2 (εk (`)− εk+π (`))2

(c†kσck+πσ + h.c.

)+∑k ,σ

∆2k (`)2 (εk (`)− εk+π (`))

(c†k ,σck ,σ − c†k+πσck+πσ

)Which gives the following flow equations:

dεk (`)d` = ∆2

k (`) εk (`)

d∆k (`)d` = −4∆k (`) ε2

k (`)

εk (`) = −εk+π (`)

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 19: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

Solution of flow equations

In the limit ` →∞∆k (∞) = 0

εk (∞) = ±

√(∆

2

)2

+ 4 t2 cos2 k

{+ k ∈ (−π

2 , 0]

- k ∈ (−π, π2 ]

I Result is identical to Bogolubov transformation.

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 20: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

Flow Equations for IHM

I Effective Hamiltonian For IHM

H (`) is considered as:

H (`) = −t (`)∑iσ

(c†i,σci+1σ + h.c.

)+ ∆(`)

2∑iσ

(−1)i c†iσciσ

+U(`)2∑iσσ′

c†iσc†iσ′ciσ′ciσ + V (`)∑iσσ′

c†iσc†i+1σ′ci+1σ′ciσ

With initial conditions t (0) = 1, ∆ (0) = ∆, U (0) = U, andV (0) = 0

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 21: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

Wegner generator for IHM

η (`) = t (`) ∆ (`)∑i,σ

(−1)i(

c†i+1,σci,σ − h.c.)

−t (`) U (`)∑

i,σσ′

(c†i,σc†i,σ′ci,σ′ci+1,σ − c†i−1,σc†i,σ′ci,σ′ci,σ − h.c.

)−t (`) V (`)

∑i,σσ′

(c†i,σc†i+1,σ′ci+1,σ′ci+1,σ + c†i,σc†i+1,σ′ci+2,σ′ci,σ

− c†i,σc†i,σ′ci+1,σ′ci,σ − c†i−1,σc†i+1,σ′ci+1,σ′ci,σ − h.c.)

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 22: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

Some Algebra

With definitions: η (`) ≡ η1 (`) + η2 (`) + η3 (`)H (`) = H1 (`) + H2 (`) + H3 (`) + H4 (`)Various commutators can be calculated:[η (`) , H1 (`) + H2 (`)] =

2t2 (`) ∆ (`)∑i,σ

(−1)i(

c†i,σci,σ + c†i,σci+2,σ + h.c.)

+t (`) ∆2 (`)∑i,σ

(c†i+1,σci,σ + h.c.

)[η2 (`) , H1 (`)] = 2t2 (`) U (`)

∑i,σσ′

(c†i,σc†i,σ′ci,σ′ci,σ

−c†i+1,σc†i,σ′ci,σ′ci+1,σ + h.c.)

+ irrelevant terms

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 23: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

Some More Algebra

[η3 (`) , H1 (`)] = 2t2 (`) V (`)∑

i,σσ′

(2c†i,σc†i+1,σ′ci+1,σ′ci,σ

−c†i,σc†i,σ′ci,σ′ci,σ + h.c.)

+ irrelevant terms

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 24: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

Differential Equations

dt(`)d` = −t (`) ∆2 (`)

d∆(`)d` = 8t2 (`) ∆ (`)

dU(`)d` = 8t2 (`) (U (`)− V (`))

dV (`)d` = 4t2 (`) (2V (`)− U (`))

I Hopping term flows to zero!I Quantum fluctuations are being renormalized to zeroI Attractive longer reange Coulomb interaction induced

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 25: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

Solutions at ` →∞:

t (∞) = 0

∆ (∞) =(8 + ∆2) 1

2

U (∞) = U2

(8+∆2)12

(8+∆2)

√2

4 +(8+∆2)−√

24 ∆

√2

!∆

1+

√2

2

V (∞) =√

2U4

(8+∆2)12

−(8+∆2)

√2

4 +(8+∆2)−√

24 ∆

√2

!∆

1+

√2

2

Renormalized "Classical" Hamiltonian:Heff ≡ H (∞) =∆(∞)

2∑iσ

(−1)i niσ + U (∞)∑

ini↑ni↓ + V (∞)

∑iσσ′

niσni+1σ′

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 26: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

IONICITY

nB =1N

∑σ,i∈B

〈niσ〉, nA =1N

∑σ,i∈A

〈niσ〉

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 27: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

Definitions of spin and charge gapsI Phase Transitions

∆s = E0(N

2 + 1, N2 − 1

)− E0

(N2 , N

2

)∆c = 1

2

(E0(N

2 + 1, N2 + 1

)+ E0

(N2 − 1, N

2 − 1)− 2E0

(N2 , N

2

))

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 28: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

Phase Diagram

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 29: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

Outline

Introduction to CUT Method

Ionic Hubbard Model

Flow Equations for IHM

Summary and Conclusions

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 30: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

For a fixed ∆

I At small U, both charge and spin gaps are identicalI In the intermediate region, charge gap vanishes ⇒ Metallic

regionI For large U, charge gap develops once more ⇒ InsulatorI Low energy spin-excitations ⇒ Mott Insulator

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 31: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

IFaculty position @ IUT physicsApplications should be addressed to:Prof. Ahmad Shirani,Head of the physics department,Isfahan University of Technology,Isfahan 84156, Iran.Fax: 0311-391 2376email: [email protected]

I Thank you for your attention

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 32: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 33: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

Example 2: Electron-Phonon Interactions

I Aim: replacement of electron-phonon interaction with anelectron-electron interaction:

I Main Hamiltonian:

H =∑

q

ωq : a†qaq : +∑

k

εk : c†kck :

+∑k ,q

Mq

(a†−q + aq

)c†k+qck + E ≡ H0 + He−p(1)

I Review on Fröhlich methods:

HF = e−SHeS = H + [H, S] +12

[[H, S] , S] + · · ·

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 34: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

Flow Equations for Electron-Phonon Interactions

HF =∑

k ,k ′,q

V Fk ,k ′,q : c†k+qc†k ′−qck ′ck :

+∑

k

(εF

k − 2∑

q

nk+qVk ,k+q,q

): c†kck :

+∑

q

ωFq : a†qaq : +EF + irrelevant terms (2)

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 35: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

Flow Equations for Electron-Phonon InteractionsI Flow equations approach:

H (`) is approximated as:

H (`) = E (`) +∑

q

ωq (`) : a†qaq :

+∑

k

(εk (`)− 2

∑q

nk+qVk ,k+q,q (`)

): c†kck :

+∑

k ,k ′,q

Vk ,k ′,q (`) : c†k+qc†k ′−qck ′ck :

+∑k ,q

(Mk ,q (`) a†−q + M∗

k+q,−q (`) aq

)c†k+qck (3)

Last term is off-diagonal and other terms are diagonal.S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 36: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

Flow Equations for Electron-Phonon InteractionsFlow equations are obtained as:

dMk ,q (`)

d`= −α2

k ,q (`) Mk ,q (`)

dVk ,k ′,q (`)

d`= Mk ,q (`) M∗

k ′−q,q (`) βk ′,−q (`)

−Mk ′,−q (`) M∗k+q,−q (`) αk ′,−q (`) (4)

dεk (`)

d`= −2

∑q

((nq + 1)

∣∣Mk ,q (`)∣∣2 αk ,q (`) + nq

∣∣Mk+q,−q (`)∣∣2 βk ,q (`)

)dωq (`)

d`= 2

∑k

∣∣Mk+q,−q (`)∣∣2βk ,q (`)

(nk+q − nk

)S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL

Page 37: APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS …physics.ipm.ac.ir/conferences/RPCM08/notes/jafari.pdf · Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM

Introduction to CUT Method Ionic Hubbard Model Flow Equations for IHM Summary and Conclusions

Flow Equations for Electron-Phonon Interactions

dE (`)

d`=∑

k

nkdεk (`)

d`−∑k ,q

nknk+qdVk ,k+q,q (`)

d`

Where αk ,q (`) = εk+q (`)− εk (`) + ωq (`) andβk ,q (`) = εk+q (`)− εk (`)− ωq (`) are defined.Solutions in infinity:εk (∞) = εF

k , E (∞) = EF , ωq (∞) = ωFq and

Vk ,k ′,q (∞) = |Mq|2(

βk ′,−q

α2k , q + β2

k ′,−q−

αk ′,−q

α2k ′,−q + β2

k , q

)

V Fk ,k ′,q = V F

k ,−k ,q = |Mq|2ωq(

εk+q − εk)2 − ω2

q

S.A. Jafari1 M. Hafez2, M.R. Abolhassani2 1 Isfahan Univ. of Tech., 2 Tarbiat Modares Univ.

APPLICATION OF CONTINUOUS UNITARY TRANSFORMATIONS TO IONIC HUBBARD MODEL