application of qmc methods to pdes with random coefficients workshop/uqaw2016-talks... · frances...

40
Frances Kuo @ UNSW Australia p.1 Application of QMC methods to PDEs with random coefficients a survey of analysis and implementation Frances Kuo [email protected] University of New South Wales, Sydney, Australia joint work with Ivan Graham and Rob Scheichl (Bath), Dirk Nuyens (KU Leuven), Christoph Schwab (ETH Zurich), Elizabeth Ullmann (Hamburg), Josef Dick, Thong Le Gia, James Nichols, and Ian Sloan (UNSW) Based on a survey of the same title, written jointly with Dirk Nuyens

Upload: lamthuy

Post on 26-Sep-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Frances Kuo @ UNSW Australia p.1

Application of QMC methods toPDEs with random coefficients− a survey of analysis and implementation

Frances Kuo

[email protected]

University of New South Wales, Sydney, Australia

joint work withIvan Graham and Rob Scheichl (Bath), Dirk Nuyens (KU Leuven),

Christoph Schwab (ETH Zurich), Elizabeth Ullmann (Hamburg),Josef Dick, Thong Le Gia, James Nichols, and Ian Sloan (UNSW)

∼ Based on a survey of the same title, written jointly with Dirk Nuyens ∼

Frances Kuo @ UNSW Australia p.2

Outline

Motivating example – a flow through a porous medium

Quasi-Monte Carlo (QMC) methods

Component-by-component (CBC) construction

Application of QMC theory to PDEs with random coefficients

estimate the norm

choose the “weights”

Software

http://people.cs.kuleuven.be/~dirk.nuyens/qmc4pde

Concluding remarks

Frances Kuo @ UNSW Australia p.3

Motivating exampleUncertainty in groundwater flow

eg. risk analysis of radwaste disposal or CO2 sequestration

Darcy’s law q + a ~∇p = f

mass conservation law ∇ · q = 0in D ⊂ R

d, d = 1, 2, 3

together with boundary conditions

[Cliffe, et. al. (2000)]

Uncertainty in a(xxx, ω) leads to uncertainty in q(xxx, ω) and p(xxx, ω)

Frances Kuo @ UNSW Australia p.4

Expected values of quantities of interestTo compute the expected value of some quantity of interest:

1. Generate a number of realizations of the random field(Some approximation may be required)

2. For each realization, solve the PDE using e.g. FEM / FVM / mFEM

3. Take the average of all solutions from different realizations

This describes Monte Carlo simulation.

Example : particle dispersion

p = 1 p = 0

∂p∂~n

= 0

∂p∂~n

= 0

◦release point →•

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Frances Kuo @ UNSW Australia p.4

Expected values of quantities of interestTo compute the expected value of some quantity of interest:

1. Generate a number of realizations of the random field(Some approximation may be required)

2. For each realization, solve the PDE using e.g. FEM / FVM / mFEM

3. Take the average of all solutions from different realizations

This describes Monte Carlo simulation.

NOTE: expected value = (high dimensional) integral

s = stochastic dimension

→ use quasi-Monte Carlo methods

103

104

105

106

10−5

10−4

10−3

10−2

10−1

error

n

n−1/2

n−1

or better QMC

MC

Frances Kuo @ UNSW Australia p.5

MC v.s. QMC in the unit cube∫

[0,1]sF (yyy) dyyy ≈ 1

n

n∑

i=1

F (ttti)

Monte Carlo method Quasi-Monte Carlo methodsttti random uniform ttti deterministic

n−1/2 convergence close to n−1 convergence or better

0 1

1

64 random points

••

••

•••

••

••

• •

••

••

••

••

0 1

1

First 64 points of a2D Sobol′ sequence

0 1

1

A lattice rule with 64 points

more effective for earlier variables and lower-order projectionsorder of variables irrelevant order of variables very important

use randomized QMC methods for error estimation

Frances Kuo @ UNSW Australia p.6

QMCTwo main families of QMC methods:

(t,m,s)-nets and (t,s)-sequenceslattice rules

0 1

1

First 64 points of a2D Sobol′ sequence

0 1

1

A lattice rule with 64 points

(0,6,2)-netHaving the right number ofpoints in various sub-cubes

A group under addition modulo Z

and includes the integer points

••

••

• •

••

• ••

Niederreiter book (1992)

Sloan and Joe book (1994)

Important developments:component-by-component (CBC ) construction , “fast” CBChigher order digital nets

Dick and Pillichshammer book (2010)

Dick, Kuo, Sloan Acta Numerica (2013)

Nuyens and Cools (2006)Dick (2008)

Frances Kuo @ UNSW Australia p.7

Application of QMC to PDEs with random coefficients

[0] Graham, K., Nuyens, Scheichl, Sloan (J. Comput. Physics, 2011)

[1] K., Schwab, Sloan (SIAM J. Numer. Anal., 2012)

[2] K., Schwab, Sloan (J. FoCM, 2015)

[3] Graham, K., Nichols, Scheichl, Schwab, Sloan (Numer. Math., 2015)

[4] K., Scheichl, Schwab, Sloan, Ullmann (in review)

[5] Dick, K., Le Gia, Nuyens, Schwab (SIAM J. Numer. Anal., 2014)

[6] Dick, K., Le Gia, Schwab (in review)

[7] Graham, K., Nuyens, Scheichl, Sloan (in progress)

AlsoSchwab (Proceedings of MCQMC 2012)

Le Gia (Proceedings of MCQMC 2012)

Dick, Le Gia, Schwab (in review)

Harbrecht, Peters, Siebenmorgen (Math. Comp., 2015)

Gantner, Schwab (Proceedings of MCQMC 2014)

Robbe, Nuyens, Vandewalle (Master thesis of Robbe, 2015)

Ganesh, Hawkings (SIAM J. Sci. Comput., 2015)

Frances Kuo @ UNSW Australia p.9

Application of QMC to PDEs with random coefficients

Three different QMC theoretical settings:

[1,2] Weighted Sobolev space over [0, 1]s and “randomly shifted lattice

rules”

[3,4] Weighted space setting in Rs and “randomly shifted lattice rules”

[5,6] Weighted space of smooth functions over [0, 1]s and (deterministic)

“interlaced polynomial lattice rules”

Uniform Lognormal LognormalKL expansion KL expansion Circulant embedding

Experiments only [0]*First order, single-level [1] [3]* [7]*First order, multi-level [2] [4]*Higher order, single-level [5]Higher order, multi-level [6]*

The * indicates there are accompanying numerical results

AIM OF THIS TALK: to survey [1,2] , [3,4] , [5,6] in a unified view

Frances Kuo @ UNSW Australia p.10

5-minute QMC primer

Common features among all three QMC theoretical settings:

Separation in error bound

(rms) QMC error ≤ (rms) worst case error γγγ × norm of integrand γγγ(rms) QMC error ≤ (rms) worst case error γγγ × norm of integrand γγγ

Weighted spaces

Pairing of QMC rule with function space

Optimal rate of convergence

Rate and constant independent of dimension

Fast component-by-component (CBC) construction

Extensible or embedded rules

Application of QMC theory

Estimate the norm (critical step)

Choose the weights

Weights as input to the CBC construction

Frances Kuo @ UNSW Australia p.11

Application of QMC to PDEs with random coefficients

Three different QMC theoretical settings:

[1,2] Weighted Sobolev space over [0, 1]s and “randomly shifted lattice

rules”

[3,4] Weighted space setting in Rs and “randomly shifted lattice rules”

[5,6] Weighted space of smooth functions over [0, 1]s and (deterministic)

“interlaced polynomial lattice rules”

Uniform Lognormal LognormalKL expansion KL expansion Circulant embedding

Experiments only [0]*First order, single-level [1] [3]* [7]*First order, multi-level [2] [4]*Higher order, single-level [5]Higher order, multi-level [6]*

The * indicates there are accompanying numerical results

Frances Kuo @ UNSW Australia p.12

Lattice rulesRank-1 lattice rules have points

ttti = frac

(i

nzzz

)

, i = 1, 2, . . . , n

zzz ∈ Zs – the generating vector, with all components coprime to n

frac(·) – means to take the fractional part of all components

0 1

1

A lattice rule with 64 points

Frances Kuo @ UNSW Australia p.12

Lattice rulesRank-1 lattice rules have points

ttti = frac

(i

nzzz

)

, i = 1, 2, . . . , n

zzz ∈ Zs – the generating vector, with all components coprime to n

frac(·) – means to take the fractional part of all components

0 1

1

A lattice rule with 64 points

64

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

∼ quality determined by the choice of zzz ∼

n = 64 zzz = (1, 19) ttti = frac

(

i

64(1, 19)

)

Frances Kuo @ UNSW Australia p.13

Randomly shifted lattice rulesShifted rank-1 lattice rules have points

ttti = frac

(i

nzzz +∆∆∆

)

, i = 1, 2, . . . , n

∆∆∆ ∈ [0, 1)s – the shift

shifted by

∆∆∆ = (0.1, 0.3)

0 1

1

A lattice rule with 64 points

0 1

1

A shifted lattice rule with 64 points

∼ use a number of random shifts for error estimation ∼

Frances Kuo @ UNSW Australia p.14

Component-by-component construction

Want to find zzz with (shift-averaged) “worst case error ” as small possible.∼ Exhaustive search is practically impossible - too many choices! ∼

CBC algorithm [Sloan, K., Joe (2002);. . . ]

1. Set z1 = 1.2. With z1 fixed, choose z2 to minimize the worst case error in 2D.3. With z1, z2 fixed, choose z3 to minimize the worst case error in 3D.4. etc.

Cost of algorithm is only O(n logn s) using FFTs. [Nuyens, Cools (2006)]

Optimal rate of convergence O(n−1+δ) in “weighted Sobolev space”,

with the implied constant independent of s under an appropriatecondition on the weights. [K. (2003); Dick (2004)]

∼ Averaging argument: there is always one choice as good as average! ∼

Extensible/embedded variants. [Cools, K., Nuyens (2006);Dick, Pillichshammer, Waterhouse (2007)]

http://people.cs.kuleuven.be/~dirk.nuyens/fast-cbc/http://people.cs.kuleuven.be/~dirk.nuyens/qmc-generators/

Frances Kuo @ UNSW Australia p.15

Fast CBC construction [Nuyens, Cools (2006)]

Images by Dirk Nuyens, KU Leuven

n = 53

1

53

Natural ordering of the indices Generator ordering of the indices

Matrix-vector multiplication with a circulant matrix can be done using FFT

Frances Kuo @ UNSW Australia p.16

Fast CBC construction [Nuyens, Cools (2006)]

Images by Dirk Nuyens, KU Leuven

n = 128 = 27

1 2 4 8

16

32

64

128 1 2 4 8

16

32

64

128

① Natural ordering of the indices

② Grouping on divisors ③ Generator ordering of the indices

④ Symmetric reduction after application

of B2 kernel function

Frances Kuo @ UNSW Australia p.17

Standard QMC theory todayWorst case error bound

∣∣∣∣∣

[0,1]sF (yyy) dyyy − 1

n

n∑

i=1

F (ttti)

∣∣∣∣∣≤ ewor(ttt1, . . . , tttn) ‖F‖

Weighted Sobolev space [Sloan, Wozniakowski (1998)]

∣∣∣∣∣

[0,1]sF (yyy) dyyy − 1

n

n∑

i=1

F (ttti)

∣∣∣∣∣≤ ewor

γγγ (ttt1, . . . , tttn) ‖F‖γγγ

‖F‖2γγγ =

u⊆{1:s}

1

γu

[0,1]|u|

∣∣∣∣∣

∂|u|F

∂yyyu

(yyyu; 0)

∣∣∣∣∣

2

dyyyu

2s subsets “anchor” at 0 (also “unanchored”)“weights” Mixed first derivatives are square integrable

Small weight γu means that F depends weakly on the variables yyyu

Choose weights to minimize the error bound [K., Schwab, Sloan (2012)](

2

n

u⊆{1:s}

γλuau

)1/(2λ)

︸ ︷︷ ︸

bound on worst case error (CBC)

(∑

u⊆{1:s}

bu

γu

)1/2

︸ ︷︷ ︸

bound on norm

⇒ γu =

(bu

au

)1/(1+λ)

Construct points (CBC) to minimize the worst case error

“POD weights”

Frances Kuo @ UNSW Australia p.18

Application of QMC to PDEs with random coefficients

Three different QMC theoretical settings:

[1,2] Weighted Sobolev space over [0, 1]s and “randomly shifted lattice

rules”

[3,4] Weighted space setting in Rs and “randomly shifted lattice rules”

[5,6] Weighted space of smooth functions over [0, 1]s and (deterministic)

“interlaced polynomial lattice rules”

Uniform Lognormal LognormalKL expansion KL expansion Circulant embedding

Experiments only [0]*First order, single-level [1] [3]* [7]*First order, multi-level [2] [4]*Higher order, single-level [5]Higher order, multi-level [6]*

The * indicates there are accompanying numerical results

Frances Kuo @ UNSW Australia p.19

QMC theory for integration over Rs

Change of variables∫

Rs

F (yyy)s∏

j=1

φ(yj) dyyy =

[0,1]sF (Φ−1(www)) dwww

Norm with weight function [Nichols & K. (2014)]

‖F‖2γγγ =

u⊆{1:s}

1

γu

R|u|

∣∣∣∣∣

∂|u|F

∂yyyu

(yyyu; 0)

∣∣∣∣∣

2∏

j∈u

ϕ2j (yj) dyyyu

weight function

Also unanchored variantRandomly shifted lattice rules CBC error bound for general weights γuConvergence rate depends on the relationship between φ and ϕj

Fast CBC for POD weights

Frances Kuo @ UNSW Australia p.20

Application of QMC to PDEs with random coefficients

Three different QMC theoretical settings:

[1,2] Weighted Sobolev space over [0, 1]s and “randomly shifted lattice

rules”

[3,4] Weighted space setting in Rs and “randomly shifted lattice rules”

[5,6] Weighted space of smooth functions over [0, 1]s and (deterministic)

“interlaced polynomial lattice rules”

Uniform Lognormal LognormalKL expansion KL expansion Circulant embedding

Experiments only [0]*First order, single-level [1] [3]* [7]*First order, multi-level [2] [4]*Higher order, single-level [5]Higher order, multi-level [6]*

The * indicates there are accompanying numerical results

Frances Kuo @ UNSW Australia p.21

Higher order digital nets [Dick (2008)]

Classical polynomial lattice rule [Niederreiter (1992)]

n = bm points with prime b

An irreducible polynomial with degree m

A generating vector of s polynomials with degree < m

Interlaced polynomial lattice rule [Goda, Dick (2012)]

Interlacing factor α

An irreducible polynomial with degree m

A generating vector of αs polynomials with degree < m

Digit interlacing function Dα : [0, 1)α → [0, 1)

(0.x11x12x13 · · · )b, (0.x21x22x23 · · · )b, . . . , (0.xα1xα2xα3 · · · )b

becomes (0.x11x21 · · ·xα1x12x22 · · ·xα2x13x23 · · ·xα3

· · · )b

Weighted spaces with norm involving higher order mixed derivatives

Variants of fast CBC construction available[Dick, K., Le Gia, Nuyens, Schwab (2014)] “SPOD weights”

Frances Kuo @ UNSW Australia p.22

Properties of higher order digital nets

16 points obtained from a 4D Sobol′ sequence with interlacing factor 2:

Each rectangle contains exactly 2 points.

Frances Kuo @ UNSW Australia p.22

Properties of higher order digital nets

16 points obtained from a 4D Sobol′ sequence with interlacing factor 2:

Each rectangle contains exactly 2 points.

Frances Kuo @ UNSW Australia p.22

Properties of higher order digital nets

16 points obtained from a 4D Sobol′ sequence with interlacing factor 2:

The shaded area contains exactly 2 points.

Frances Kuo @ UNSW Australia p.22

Properties of higher order digital nets

16 points obtained from a 4D Sobol′ sequence with interlacing factor 2:

The shaded area contains exactly 2 points.

Frances Kuo @ UNSW Australia p.22

Properties of higher order digital nets

16 points obtained from a 4D Sobol′ sequence with interlacing factor 2:

The shaded area contains exactly half of the points.

Frances Kuo @ UNSW Australia p.23

Projections of higher order digital nets

Images by Dirk Nuyens, KU Leuven

Frances Kuo @ UNSW Australia p.24

Outline

Motivating example – a flow through a porous medium

Quasi-Monte Carlo (QMC) methods

Component-by-component (CBC) construction

Application of QMC theory to PDEs with random coefficients

estimate the norm

choose the “weights”

Software

http://people.cs.kuleuven.be/~dirk.nuyens/qmc4pde

Concluding remarks

Frances Kuo @ UNSW Australia p.25

Uniform v.s. lognormal

−∇ · (a(xxx,yyy)∇u(xxx,yyy)) = f(xxx), xxx ∈ D ⊂ Rd, d = 1, 2, 3

u(xxx,yyy) = 0, xxx ∈ ∂D

Uniform

a(xxx,yyy) = a0(xxx) +∑

j≥1

yj ψj(xxx), yj ∼ U [−12, 12]

Goal:∫

(−12,12)NG(u(·, yyy)) dyyy G – bounded linear functional

Key assumption: 0 < amin ≤ a(xxx,yyy) ≤ amax < ∞

Lognormal

a(xxx,yyy) = exp

(

a0(xxx) +∑

j≥1

yj ψj(xxx)

)

, yj ∼ N (0, 1)

Goal:∫

RN

G(u(·, yyy))∏

j≥1

φ(yj) dyyy =

(0,1)NG(u(·,Φ-1(www))) dwww

Key assumption: restrict to yyy such that∑

j≥1|yj|‖ψj‖L∞ < ∞

Frances Kuo @ UNSW Australia p.26

Single-level v.s. multi-level (the uniform case)

I∞ =

(−12,12)NG(u(·, yyy)) dyyy

Single-level algorithm

(1) dimension truncation

(2) FE discretization

(3) QMC quadrature

Deterministic:1

n

n∑

i=1

G(ush(·, ttti−1

21212))

Multi-level algorithm I∞ = (I∞ − IL) +∑L

ℓ=0(Iℓ − Iℓ−1), I−1 := 0

[Heinrich (1998); Giles (2008)]

Deterministic:L∑

ℓ=0

(1

nℓ

nℓ∑

i=1

G((usℓ

hℓ− u

sℓ−1

hℓ−1)(·, tttℓ,i−1

21212))

)

Frances Kuo @ UNSW Australia p.27

Estimate the norm (the uniform case)

Single-level algorithm

‖G(ush)‖γγγ

Multi-level algorithm

‖G(usℓ

hℓ− u

sℓ−1

hℓ−1)‖γγγ

Frances Kuo @ UNSW Australia p.27

Estimate the norm (the uniform case)

Single-level algorithm

‖G(ush)‖γγγ

∣∣∣∣

∂|u|

∂yyyu

G(ush(·, yyy))

∣∣∣∣=

∣∣∣∣G

(∂|u|

∂yyyu

ush(·, yyy)

)∣∣∣∣≤ ‖G‖H-1

∥∥∥∥

∂|u|

∂yyyu

ush(·, yyy)

∥∥∥∥H1

0

linearity and boundedness ofG

‖∂νννu(·, yyy)‖H1

0

= ‖∇∂νννu(·, yyy)‖L2≤ |ννν|!bbbννν ‖f‖H-1

amin

, bj :=‖ψj‖L∞

amin

‖G(ush)‖γγγ ≤ ‖f‖H-1‖G‖H-1

amin

(∑

u⊆{1:s}

(|u|!)2∏j∈ub2j

γu

)1/2

Frances Kuo @ UNSW Australia p.28

Choose the weights (the uniform case)

Single-level algorithm

‖G(ush)‖γγγ bj :=

‖ψj‖L∞

amin

ms-error .

(

2

n

u⊆{1:s}

γuλ [ρ(λ)]|u|

)1/λ(∑

u⊆{1:s}

(|u|!)2∏j∈ub2j

γu

)

for all λ ∈ (12, 1]

Minimize the bound ⇒ POD weights γu =

(

|u|!∏

j∈u

bj√

ρ(λ)

)2/(1+λ)

If∑

j≥1 bpj < ∞, take λ =

1

2 − 2δfor δ ∈ (0, 1

2) when p ∈ (0, 2

3],

p

2 − pwhen p ∈ (2

3, 1).

The convergence rate is n−min(1−δ, 1p− 1

2).

The implied constant is independent of s.

Frances Kuo @ UNSW Australia p.29

Estimate the norm (the uniform case)

Single-level algorithm

‖G(ush)‖γγγ bj :=

‖ψj‖L∞

amin

Lemma 1

‖∇∂νννu(·, yyy)‖L2≤ |ννν|!bbbννν ‖f‖H-1

amin

Multi-level algorithm

‖G(usℓ

hℓ− u

sℓ−1

hℓ−1)‖γγγ

Lemma 2

‖∆∂νννu(·, yyy)‖L2. (|ννν| + 1)!bbb

ννν‖f‖L2

Lemma 3

‖∇∂ννν(u− uh)(·, yyy)‖L2. h(|ννν| + 2)!bbb

ννν‖f‖L2

Lemma 4

|∂νννG((u− uh)(·, yyy))|. h2(|ννν| + 5)!bbbννν‖f‖L2

‖G‖L2

bj :=max(‖ψj‖L∞ , ‖∇ψj‖L∞)

amin

‖∆∂νννu(·, yyy)‖L2. (|ννν| + 1)!bbb

ννν‖f‖L2

‖∇∂ννν(u− uh)(·, yyy)‖L2. h(|ννν| + 2)!bbb

ννν‖f‖L2

Important: FE projection depends on yyy

|∂νννG((u− uh)(·, yyy))| . h2(|ννν| + 5)!bbbννν‖f‖L2

‖G‖L2duality argument

Frances Kuo @ UNSW Australia p.30

Estimate the norm (the lognormal case)

Single-level algorithm

‖G(ush)‖γγγ

Lemma 5

‖∇∂νννu(·, yyy)‖L2≤ |ννν|!

(βββ

ln 2

)ννν ‖f‖H-1

amin(yyy)

Multi-level algorithm

‖G(usℓ

hℓ− u

sℓ−1

hℓ−1)‖γγγ

Lemma 6‖∆∂νννu(·, yyy)‖L2

. T (yyy)(|ννν| + 1)!(2βββ)ννν‖f‖L2

Lemma 7‖a1/2(·, yyy)∇∂ννν(u−uh)(·, yyy)‖L2

.hT (yyy)a1/2max(yyy)(|ννν|+2)!(2βββ)ννν‖f‖L2

Lemma 8|∂νννG((u− uh)(·, yyy))|. h2T 2(yyy)amax(yyy)(|ννν|+5)!(2βββ)ννν‖f‖L2

‖G‖L2

induction on ‖a1/2(·, yyy)∇∂νννu(·, yyy)‖L2

induction on ‖a−1/2(·, yyy)∇ · (a(·, yyy)∇∂νννu(·, yyy))‖L2

βj := ‖ψj‖L∞ =√µj ‖ξj‖L∞

‖∇∂νννu(·, yyy)‖L2≤ |ννν|!

(βββ

ln 2

)ννν ‖f‖H-1

amin(yyy)

βj := max(‖ψj‖L∞, ‖∇ψj‖L∞

)

‖∆∂νννu(·, yyy)‖L2. T (yyy)(|ννν| + 1)!(2βββ)ννν‖f‖L2

‖a1/2(·, yyy)∇∂ννν(u−uh)(·, yyy)‖L2.hT (yyy)a1/2

max(yyy)(|ννν|+2)!(2βββ)ννν‖f‖L2

|∂νννG((u− uh)(·, yyy))| . h2T 2(yyy)amax(yyy)(|ννν|+5)!(2βββ)ννν‖f‖L2‖G‖L2

Frances Kuo @ UNSW Australia p.31

Generic bound on mixed derivative

Mixed derivative bound For all multi-indices ννν ∈ {0, α}s we have

|∂νννF (yyy)| . ((|ννν| + a1)!)d1

s∏

j=1

(a2Bj)νj exp(a3Bj|yj|)

for integers α ≥ 1, a1 ≥ 0, real numbers a2 > 0, a3 ≥ 0, d1 ≥ 0, Bj > 0.

Particular cases:

F (yyy) =

G(ush) single-level

G(ushℓ

− ushℓ−1

) multi-level

Bj is bj, bj, βj, or βj

a3 = 0 =⇒ uniform case, a3 > 0 =⇒ lognormal case

Specify these parameters as input to the construction scripts:

http://people.cs.kuleuven.be/~dirk.nuyens/qmc4pde

Frances Kuo @ UNSW Australia p.32

MLQMC numerical results (the lognormal case)

D = (0, 1)2, f ≡ 1, homogeneous Dirichlet boundary

G(u(·, yyy)) = 1D∗

D∗ u(xxx,yyy) dxxx, D∗ = (34, 78) × (7

8, 1)

Piecewise linear finite elements, off-the-shelf randomly shifted lattice rule

Matérn kernel: smoothness ν, variance σ2, correlation length scale λC

ǫ

10-4 10-3 10-2

Cos

t (in

sec

)

10-1

100

101

102

103

104

ν = 1.5, σ2 = 1, λ = 0.1

MCMLMCQMCMLQMC

2

3

ǫ

10-4 10-3 10-2

Cos

t (in

sec

)

10-1

100

101

102

103

104

ν = 2.5, σ2 = 0.25, λ = 1

MCMLMCQMCMLQMC

1

2

3

[K., Scheichl, Schwab, Sloan, Ullmann (in review)]

Frances Kuo @ UNSW Australia p.33

Application of QMC to PDEs with random coefficients

[0] Graham, K., Nuyens, Scheichl, Sloan (J. Comput. Physics, 2011)

[1] K., Schwab, Sloan (SIAM J. Numer. Anal., 2012)

[2] K., Schwab, Sloan (J. FoCM, 2015)

[3] Graham, K., Nichols, Scheichl, Schwab, Sloan (Numer. Math., 2015)

[4] K., Scheichl, Schwab, Sloan, Ullmann (in review)

[5] Dick, K., Le Gia, Nuyens, Schwab (SIAM J. Numer. Anal., 2014)

[6] Dick, K., Le Gia, Schwab (in review)

[7] Graham, K., Nuyens, Scheichl, Sloan (in progress)

Uniform Lognormal LognormalKL expansion KL expansion Circulant embedding

Experiments only [0]*First order, single-level [1] [3]* [7]*First order, multi-level [2] [4]*Higher order, single-level [5]Higher order, multi-level [6]*

The * indicates there are accompanying numerical results

Frances Kuo @ UNSW Australia p.34

Concluding remarks

QMC error bound can be independent of dimension

Three weighted space settings, fast CBC construction

Application of QMC theory: estimate the norm, choose the weights

Pairing of method and setting: best rate with minimal assumption

Theory versus practice

Affine parametric operator equations [Schwab (2013)]

Special orthogonality

Cost reduction: single-level versus multi-level n s h−d

Circulant embedding nh−d log(h−d)

Fast QMC matrix-vector multiplication n lognh−d

[Dick, K., Le Gia, Schwab (SIAM J. Sci. Comput., 2015)]

Multi-index methods [Haji-Ali, Nobile, Tempone (Numer. Math., 2015)]