applications of thermal-wave physics to … · l'imagerie et aux mesures quantitatives...

17
HAL Id: jpa-00223230 https://hal.archives-ouvertes.fr/jpa-00223230 Submitted on 1 Jan 1983 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. APPLICATIONS OF THERMAL-WAVE PHYSICS TO SEMICONDUCTOR MATERIALS ANALYSIS A. Rosencwaig To cite this version: A. Rosencwaig. APPLICATIONS OF THERMAL-WAVE PHYSICS TO SEMICONDUCTOR MATERIALS ANALYSIS. Journal de Physique Colloques, 1983, 44 (C6), pp.C6-437-C6-452. <10.1051/jphyscol:1983671>. <jpa-00223230>

Upload: trankiet

Post on 01-Nov-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: APPLICATIONS OF THERMAL-WAVE PHYSICS TO … · l'imagerie et aux mesures quantitatives d'4paisseur de films minces ... chip-outs at the edge of the device, ... of an Al-Zn alloy

HAL Id: jpa-00223230https://hal.archives-ouvertes.fr/jpa-00223230

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinée au dépôt et à la diffusion de documentsscientifiques de niveau recherche, publiés ou non,émanant des établissements d’enseignement et derecherche français ou étrangers, des laboratoirespublics ou privés.

APPLICATIONS OF THERMAL-WAVE PHYSICS TOSEMICONDUCTOR MATERIALS ANALYSIS

A. Rosencwaig

To cite this version:A. Rosencwaig. APPLICATIONS OF THERMAL-WAVE PHYSICS TO SEMICONDUCTORMATERIALS ANALYSIS. Journal de Physique Colloques, 1983, 44 (C6), pp.C6-437-C6-452.<10.1051/jphyscol:1983671>. <jpa-00223230>

Page 2: APPLICATIONS OF THERMAL-WAVE PHYSICS TO … · l'imagerie et aux mesures quantitatives d'4paisseur de films minces ... chip-outs at the edge of the device, ... of an Al-Zn alloy

J O U R N A L DE P H Y S I Q U E

Co l loque C6, supplement a u nO1O, T o m e 44, o c t o b r e 1983 page C6- 437

A P P L I C A T I O N S OF THERMAL-WAVE P H Y S I C S TO SEMICONDUCTOR M A T E R I A L S

ANALYS I S

A. Rosencwaig

Therma-Wave, Inc., Fremont, CA 94539, U.S.A.

RGsum6 - On d 4 c r i t l e s a p p l i c a t i o n s d e s ondes thermiques 2 l ' i m a g e r i e e t aux mesures q u a n t i t a t i v e s d ' 4pa i s seu r de f i l m s minces pa r d e s mat4riaux semiconducteurs e t d e s composants.

Abs t r ac t - Nonspectroscopic a p p l i c a t i o n s of thermal-wave phys i c s , i n p a r t i c u l a r t h o s e i nvo lv ing m a t e r i a l s a n a l y s i s through t h e r - mal-wave imaging, and q u a n t i t a t i v e t h i n - f i l m th ickness measure- ments, a r e desc r ibed f o r t h e s tudy of semiconductor m a t e r i a l s and dev ices .

I - INTRODUCTION

Thermal-wave phys i c s i s p l ay ing an eve r - inc reas ing r o l e i n t h e s tudy

of m a t e r i a l parameters . I t has been employed i n o p t i c a l i n v e s t i g a -

t i o n s of s o l i d s , l i q u i d s and gases w i th photoacoust ic1 and thermal-

l e n s 2 spectroscopy. Thermal waves have a l s o been used t o s tudy the

thermal and thermodynamic p rope r t i e s1 f3 o f m a t e r i a l s , and f o r imaging

thermal and m a t e r i a l f e a t u r e s w i t h i n a s o l i d sample. 4

Thermal waves a r e p r e s e n t whenever t h e r e i s p e r i o d i c hea t gene ra t ion

and hea t flow i n a medium. There a r e , t h e r e f o r e , a mul t i tude of

mechanisms by which t h e s e waves can be produced, wi th t he two most

common invo lv ing t h e abso rp t ion by t h e sample o f energy from e i t h e r

an in tens i ty-modula ted o p t i c a l beam,' o r from an intensi ty-modulated

e l e c t r o n S e v e r a l mechanisms a r e a l s o a v a i l a b l e f o r d e t e c t i n g ,

d i r e c t l y , o r i n d i r e c t l y , t h e r e s u l t i n g thermal waves. These inc lude ;

gas-microphone pho toacous t i c d e t e c t i o n of h e a t flow from t h e sample

t o t h e surrounding gas i n which p re s su re changes a r e mon i to red ; l r5 photothermal measurements of i n f r a r e d r a d i a t i o n emi t ted from t h e heat-

ed sample su r f ace ; 6-80p t i ca l beam d e f l e c t i o n of a l a s e r beam t r a v e r s i n g

t h e p e r i o d i c a l l y hea t ed gaseous o r l i q u i d l a y e r j u s t above t h e sample

s u r f ace ; 9-11 . l n t e r f e r o m e t r i c d e t e c t i o n of t h e t he rmoe la s t i c d i sp l ace -

ments of t h e s u r f a c e ; 12'13 o p t i c a l d e t e c t i o n of t h e t he rmoe la s t i c

deformations of t h e s u r f a c e ; 13-16 and p i e z o e l e c t r i c d e t e c t i o n of

thermoacoust ic s i g n a l s genera ted i n t h e sample. 1 ,17,18

To d a t e , on ly t h i s l a s t t echnique invo lv ing thermoacoust ic d e t e c t i o n

has been used r o u t i n e l y f o r d e t e c t i n g high-frequency ( i . e . MHz regime)

thermal waves. The thermoacous t ic d e t e c t i o n methodology has. t he re -

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983671

Page 3: APPLICATIONS OF THERMAL-WAVE PHYSICS TO … · l'imagerie et aux mesures quantitatives d'4paisseur de films minces ... chip-outs at the edge of the device, ... of an Al-Zn alloy

C6-438 JOURNAL DE PHYSIQUE

14,19,20 at f o r e found important a p p l i c a t i o n s i n thermal-wave imaging

high s p a t i a l r e s o l u t i o n where micron-sized thermal waves a r e needed,

a s i n t h e s tudy of semiconductor m a t e r i a l s and devices .

I s h a l l he re d i s c u s s some nonspectroscopic app l i ca t i ons of high f r e -

quency thermal waves f o r imaging and th in- f i lm th ickness measurements

i n semiconductor m a t e r i a l s ana lys i s .

11. THERMAL-WAVE IMAGING

Thermal-wave imaging i s a new technique whereby microscopic thermal

f e a t u r e s on o r beneath t h e sur face of a sample can be de t ec t ed and

imaged. Thermal f e a t u r e s a r e those reg ions of an otherwise homogen-

eous m a t e r i a l t h a t e x h i b i t v a r i a t i o n s , r e l a t i v e t o t h e i r surroundings,

i n e i t h e r t h e d e n s i t y t h e s p e c i f i c hea t , o r , most impor tan t ly , t h e

thermal conduct iv i ty of t h e sample. Va r i a t i ons i n t he se thermal para-

meters can a r i s e from changes i n b a s i c m a t e r i a l composition, from the

presence of mechanical d e f e c t s such a s microcracks, vo ids and delam-

i n a t i o n ~ , from changes i n c r y s t a l l i n e o rde r o r s t r u c t u r e , and evenfrom

t h e presence of smal l concent ra t ions of fo re ign ions o r l a t t i c e d e f e c t s

i n an otherwise p e r f e c t c r y s t a l .

In thermal-wave microscopy a l a s e r 2 1 o r e l e c t r o n beam 22123 i s i n t e n s i -

ty-modulated i n t h e 100 kHz-10 MHz range, focused, and scanned over

t h e su r f ace of a sample. The p e r i o d i c su r f ace hea t ing t h a t r e s u l t s

from the absorp t ion of t h e i n c i d e n t beam genera tes thermal waves t h a t

propagate from t h e i n i t i a l l y heated reg ions . These d i f f u s i v e thermal

waves a r e c r i t i c a l l y damped and propagate only one t o two wavelengths

before t h e i r i n t e n s i t y becomes n e g l i g i b l y small . Nevertheless , w i th in

t h e i r propagat ion range, t h e thermal waves w i l l s c a t t e r and r e f l e c t

from thermal f e a t u r e s much l i k e conventional propagat ing waves do from

o p t i c a l o r a c o u s t i c f ea tu re s . Imaging of t h e thermal f e a t u r e s t hus r e -

q u i r e s d e t e c t i o n of t h e s c a t t e r e d and r e f l e c t e d thermal-waves. A

Therma-Wave , 1nc. 2 4 thermal-wave microscope uses t h e e l e c t r o n beam i n a

scanning e l e c t r o n mircoscope t o genera te t he thermal waves and d e t e c t s

t h e s c a t t e r e d and r e f l e c t e d thermal waves through t h e i r e f f e c t on t h e

thermoacoustic s i g n a l s generated i n t h e bulk of t h e sample. The thermo-

acous t i c s i g n a l s a r e de t ec t ed i n t u r n wi th a s u i t a b l e p i e z o e l e c t r i c

t ransducer i n a c o u s t i c con tac t wi th t h e sample. The magnitude and phase

of , the thermoacoustic s i g n a l s a r e d i r e c t l y a f f e c t e d by t h e presence of

sca ' t tered and r e f l e c t e d thermal waves. 25 Thus by measuring t h e magnitude

and/or phase of t h e thermoacoustic s i g n a l a s a func t ion of e l e c t r o n beam

p o s i t i o n on t h e su r f ace of t h e sample, an image i s genera ted t h a t d e p i c t s

t h e va r ious thermal-wave s c a t t e r i n g and r e f l e c t i o n events t h a t occur a t

each p o i n t on t h e sample.

Page 4: APPLICATIONS OF THERMAL-WAVE PHYSICS TO … · l'imagerie et aux mesures quantitatives d'4paisseur de films minces ... chip-outs at the edge of the device, ... of an Al-Zn alloy

SUBSURFACE DEFECTS

Subsurface mechanical de fec t s such a s voids , c racks and delaminations

r ep re sen t s u b s t a n t i a l thermal f e a t u r e s and t h u s a r e r e a d i l y de tec ted

wi th a thermal-wave microscope. 4 ' 2 0 One i l l u s t r a t i o n of t h i s appl ica-

t i o n is shown i n Figure 1. Figure l a i s t h e e l e c t r o n image of a GaAs

device , where t he only v i s i b l e d e f e c t s a r e two seemingly i n s i g n i f i c a n t

chip-outs a t t h e edge of the device , one along the right-hand edge,

and t h e o t h e r along t h e bottom. The thermal-wave image i n Figure l b

shows, however, t h a t t h e small chip-out along t h e right-hand s i d e is

a much l a r g e r subsurface delaminat ion which extends i n t o t he lower

g a t e of t h e device where it r e s u l t s i n a " loop-l ike" subsurface flaw.

The small chip-out along t h e bottom i s a l s o seen t o be t h e o r i g i n of

a long subsurface c rack . Therefore, where o p t i c a l and e l e c t r o n images

show only two i n s i g n i f i c a n t d e f e c t s , t h e thermal-wave image shows t h e

presence of s e r i o u s subsurface de fec t s .

Fig. 1 - Examples of subsurface d e f e c t s i n a GaAs device. The e l ec - t r o n micrograph ( a ) shows only 2 small edge chip-outs , one along the r ight-hand s i d e , t h e o t h e r a t t h e bottom. The thermal-wave image (b) shows more s e r ious d e f e c t s - t he chip-out along t h e r ight-hand s i d e is seen a s a s u b s t a n t i a l delaminat ion extending i n t o t h e lower ga t e re - g ion where a " loop-l ike" d e f e c t i s v i s i b l e ; t h e chip-out a t t h e bottom i s t h e o r i g i n of a long subsurface microcrack running up i n t o t he device. (Magnigication 220x)

Page 5: APPLICATIONS OF THERMAL-WAVE PHYSICS TO … · l'imagerie et aux mesures quantitatives d'4paisseur de films minces ... chip-outs at the edge of the device, ... of an Al-Zn alloy

C6-440 JOURNAL DE PHYSIQUE

CRYSTALLINE VARIATIONS

When a c r y s t a l l a t t i c e i s h ighly ordered , minor changes i n l a t t i c e s t r u c t u r e can produce measurable changes i n t h e l o c a l thermal conduc- t i v i t y of t e m a t e r i a l and thus can be imaged wi th a thermal-wave microscope. This c a p a b i l i t y i s i l l u s t r a t e d i n Figures 2 and 3 which show GaAs devices . The o p t i c a l and e l e c t r o n micrographs image t h e v i s i b l e f e a t u r e s of t h e ga t e s t r u c t u r e s i n t h e devices . The the r - mal-wave images show, i n add i t i on , t h e Si-doped reg ions of t h e G a A s , s i nce t hese reg ions have a d i f f e r e n t thermal conduct iv i ty t h a t t he un- doped regions. Such images permit a r ap id and nondes t ruc t ive a n a l y s i s of t h e e f f e c t s of l a t e r a l d i f f u s i o n s of dopants i n semiconducting c r y s t a l s .

Fig. 2 - Images of GaAs device. The o p t i c a l ( a ) and e l e c t r o n micro- graphs (b) show t h e v i s i b l e f e a t u r e s . The thermal-wave image ( c ) shows i n add i t i on t h e Si-doped reg ions of t h e GaAs. (Magnif icat ion 4 0 0 x 1 .

Page 6: APPLICATIONS OF THERMAL-WAVE PHYSICS TO … · l'imagerie et aux mesures quantitatives d'4paisseur de films minces ... chip-outs at the edge of the device, ... of an Al-Zn alloy

Fig. 3 - Images of a ga t e region i n a GaAs device. The o p t i c a l ( a ) and e l e c t r o n micrographs (b) show t h e v i s i b l e f e a t u r e s . The thermal- wave image ( c ) shows i n add i t i on t h e l a t e r a l l y d i f f u s e d S i doped region around t h e ga t e s t r u c t u r e . (Magnif icat ion 500x).

Page 7: APPLICATIONS OF THERMAL-WAVE PHYSICS TO … · l'imagerie et aux mesures quantitatives d'4paisseur de films minces ... chip-outs at the edge of the device, ... of an Al-Zn alloy

C6-442 JOURNAL DE PHYSIQUE

Another i n t e r e s t i n g example o f thermal-wave d e t e c t i o n of l a t t i c e per-

t u r b a t i o n s is shown i n F igu re 4 . A sample of GaAs was f i r s t masked i n

a p a t t e r n and then bombarded wi th e n e r g e t i c p ro tons (40KeV) a t a f l u x 15 2

of 10 /cm . These p ro tons produced a c o n t r o l l e d d e f e c t zone of va-

canc i e s and i n t e r s t i t i a l s about 0.5pm benea th t h e s u r f a c e wherever t h e

GaAs was not p ro t ec t ed by t h e mask. The e l e c t r o n micrograph of t h e

GaAs shows, a f t e r removal of t h e mask, no v i s i b l e p a t t e r n s (Fig. 4 a ) .

However, t h e thermal-wave image of t h e same a r e a (F ig . 4b) c l e a r l y shows

t h e masking p a t t e r n (whi te r e g i o n s ) . The image c o n t r a s t a r i s e s from

t h e f a c t t h a t t h e proton-bombarded GaAs (dark r eg ions ) now has a

lower thermal conduc t iv i t y t h a t t h e unper turbed GaAs (whi te r e g i o n s ) .

F ig . 4 - Images of a proton-bombarded GaAs wafer ; (a) e l e c t r o n micro- graph of t h e GaAs sample a f t e r removal o f t h e mask, showing no e v i - dence of t h e masking p a t t e r n : (b) thermal-wave r eg ion of same re- g i o n s showing proton-bombarded (da rk ) r eg ions and unperturbed (wh i t e ) r eg ions . (Magnif icat ion 100x) .

Page 8: APPLICATIONS OF THERMAL-WAVE PHYSICS TO … · l'imagerie et aux mesures quantitatives d'4paisseur de films minces ... chip-outs at the edge of the device, ... of an Al-Zn alloy

The imaging of c r y s t a l l i n e v a r i a t i o n s can a l s o be useful. i n metal lo-

graphy , 4118f27 s ince d i f f e r e n t m e t a l l i c phases o r g r a i n s can be read- i l y imaged wi th no s p e c i a l sample p r e p a r a t i o n . We i l l u s t r a t e t h i s i n

Figure 5 where the columnar g r a i n s and t r a n s i t i o n zone i n a weld r eg ion ,o f an aluninum a l l o y a r e c l e a r l y v i s i b l e i n the thermal-wave

image.

F ig . 5 - Thermal-wave image of a weld region i n an aluminom a l l o y . The columar g r a i n s i n t h i s region a r e c l e a r l y v i s i b l e . (Magnif icat ion 30x).

Page 9: APPLICATIONS OF THERMAL-WAVE PHYSICS TO … · l'imagerie et aux mesures quantitatives d'4paisseur de films minces ... chip-outs at the edge of the device, ... of an Al-Zn alloy

C6-444 JOURNAL DE PHYSIQUE

Another example, Figure 6, shows t h e e l e c t r o n and thermal-wave images

of an Al-Zn a l l o y . The e lec t ron image ( a ) shows only topographical.

f e a t u r e s , while the thermal-wave image (b ) c l e a r l y shows both the q r a i n

s t r u c t u r e and, a t high magnification, t h e presence of Fe or Sn pre-

c i p i t a t e s . Other s t u d i e s with meta ls ind ica te appl ica t ions i n inves t -

i g a t i o n s of mechanical deformation2' and g ra in boundaries. 19

Fig. 6 - Electron ( a ) and thermal-wave (b) micrographs a t 50x of an Al-Zn a l l o y . The thermal-wave micrqgraph shows t h e Al-Zn g r a i n s , and the presence of Fe o r Sn p r e c i p i t a t e s .

Page 10: APPLICATIONS OF THERMAL-WAVE PHYSICS TO … · l'imagerie et aux mesures quantitatives d'4paisseur de films minces ... chip-outs at the edge of the device, ... of an Al-Zn alloy

BONDING INTEGRITY

Microscopic d e t a i l s i n a thermal-wave image a r e due t o r e f l e c t i o n and

s c a t t e r i n g of thermal waves from su r f ace and subsur face thermal fea-

t u r e s . I n add i t i on , thermal-wave images o f t e n e x h i b i t l a rge b r i q h t

and dark a r e a s which r ep re sen t t h e acous t i c modes o f t h e sample. 19

The inc iden t e l e c t r o n beam i s very e f f e c t i v e i n e x c i t i n g t h e p l a t e

modes of v i b r a t i o n s i n t h i n samples such a s I C ch ips and wafers. Thus,

a t c e r t a i n resonant f requencies , v i b r a t i o n p a t t e r n s a r e s e t up on t h e

sample cha rac t e r i zed by r egu la r ly spaced nodes and ant inodes. When

t h e e l e c t r o n beam i s a t a p l a t e node on t h e sample su r f ace , t h e r e is

no enhancement of t h e thermoacoustic s i g n a l . However, a t t he a n t i -

nodes t h e r e is a cons iderable enhancement, wi th t h e enhancement being 0 180 out-of-phase between a p o s i t i v e and negat ive ant inode. Thus t h e

p l a t e mode v i b r a t i o n i s seen a s a p a t t e r n of b r i g h t and dark reg ions

i n t h e thermal-wave image, corresponding t o t h e p o s i t i v e and negat ive

ant inode reg ions on t h e sample su r f ace . I f t h e sample is a w i r e ,

then the thermal-wave image d i s p l a y s the r a d i a l a c o u s t i c modes i n t he

wire.

Because of t h e i r s h o r t wavelength (gene ra l ly <20pm), high frequency

thermal waves a r e unable t o p e n e t r a t e through an I C d i e t o probe t h e

bonding between the d i e and i t s support s t r u c t u r e . However, I C d i e s

a r e t h i n p l a t e s and thus w i l l e x h i b i t p l a t e mode v i b r a t i o n p a t t e r n s

i n t h e i r thermal-wave images. The i n t e n s i t y of these v i b r a t i o n s is a

s e n s i t i v e func t ion of t h e th ickness of t h e sample, decreas ing a s t he

t h i ckness i nc reases . The same e f f e c t occurs when t h e sample i s

bonded t o a t h i c k e r s u b s t r a t e . The combination of t he two s t r u c t u r e s

now c o n s t i t u t e s a much t h i c k e r sample and the v i b r a t i o n i n t e n s i t i e s

w i l l now decrease. How s t rong t h i s e f f e c t w i l l be is dependent on the

i n t e g r i t y and uniformity of t h e bond between t h e d i e and i t s support-

i ng s t r u c t u r e . The p l a t e mode p a t t e r n s seen i n t he thermal-wave image

can thus be used f o r comparative eva lua t ion of d i e a t t a c h .

Figures 7a and 7b show t h e thermal-wave images of two l a r g e s i l i c o n

I C d i e s mounted i n l a r g e ceramic DIP packages. The d i e i n Figure 7a

is known t o have a "poor" d i e - a t t ach , while t h a t i n Figure 7b is a

"good" d ie -a t tach . I n agreement with t h i s , t h e d i e i n Figure 7a

shows a s t r o n g p l a t e mode p a t t e r n i n d i c a t i v e of a " th in -p l a t e " sample,

t h a t i s , of a d i e t h a t is poorly a t tached . On t h e o t h e r hand, t h e

d i e i n F igure 7b shows l i t t l e evidence of a p l a t e mode p a t t e r n thereby

i n d i c a t i n g a " th ick-p la te" sample, t h a t i s , a d i e f i rmly and uniformly

bonded t o i t s suppor t s t r u c t u r e .

Page 11: APPLICATIONS OF THERMAL-WAVE PHYSICS TO … · l'imagerie et aux mesures quantitatives d'4paisseur de films minces ... chip-outs at the edge of the device, ... of an Al-Zn alloy

C6-446 JOURNAL DE PHYSIQUE

Fig. 7 - Examples o f a bonding i n t e g r i t y s tudy . Thermal,-wave image of l a r g e IC d i e i n D I P package wi th ( a ) poor d i e - a t t a c h and ex- h i b i t i n g s t rong p l a t e mode p a t t e r n ; and (b)bgood d i e - a t t a c h exhi- b i t i n g no p l a t e mode p a t t e r n (Magni f ica t ion '40x1.

Page 12: APPLICATIONS OF THERMAL-WAVE PHYSICS TO … · l'imagerie et aux mesures quantitatives d'4paisseur de films minces ... chip-outs at the edge of the device, ... of an Al-Zn alloy

Although s t i l l i n i t s formative s t age , thermal-wave imaging has a l -

ready demonstrated severa l i n t e r e s t i n g and use fu l app l i ca t ions f o r a

v a r i e t y of material s t u d i e s .

111. LASER BEAM DEFLECTION

The examples above were obtained with an e lec t ron beam t o generate

the thermal waves. Clear ly the same images could have been obtain-

ed with a l a s e r beam a s However i n both cases the use of a

thermoacoustic probe t o d e t e c t the r e f l e c t i o n and s c a t t e r i n g of the

thermal waves from the thermal f e a t u r e s s u f f e r s from the major draw-

back of requiring acous t i c ~ 0 u p l i n q between the sample and an u l t r a -

sonic transducer. In the ana lys i s of semiconductor ma te r i a l s and

devices, one would l i k e t o opera te i n an open environment, employ

completely contact less methods f o r thermal-wave generation and de-

t e c t i o n , and be able t o make measurements o r obta in images a t high

s p a t i a l resolution. This l a s t requirement n e c e s s i t a t e s the use of a

highly focused beam f o r thermal-wave generation and the c a p a b i l i t y

f o r detect ing high-frequency (>100kHz) thermal waves.

To s a t i s f y a l l of the above condi t ions one needs t o u t i l i z e l a s e r s

f o r both generating and de tec t ing the thermal waves. The genera-,

t i o n i s , of course, s t ra ightforward. The de tec t ion i s performed

e i t h e r by l a s e r in te r fe romet r i c de tec t ipn of the thermoelas t ic d i s -

placements of the sample surf ace , 12114*15 o r by l a s e r de tec t ion of

the l o c a l thermoelast ic deformations of the surf ace. 13-16 Both

techniques a r e analogous t o the o p t i c a l methods used f o r de tec t ing 29 , 30

su r f ace acoust ic waves, although here the surface displacements

and deformations a r e due t o the thermal waves. A l l of the o t h e r

methods f o r thermal-wave de tec t ion s u f f e r from e i t h e r being l imi ted

t o low modulation frequencies o r from requ i r ing contact t o t h e sample.

There have been some i n i t a l s t u d i e s of thermal-wave de tec t ion using

the l a s e r techniques described above. Ameri e t a 1 have performed a

rudimentary imaging experiment with t h e l a s e r in te r fe romet r i c techni-

que,12 while Arner and h i s col leagues have used both the l a s e r def lec-

t i o n (surface deformation de tec t ion) technique and the l a s e r i n t e r -

ferometr ic technique f o r spect roscopic ~ t u d i e s . ' ~ - ~ ~ These i n v e s t i -

ga t ions have a l l been performed a t low t o moderate modulation frequen-

c i e s (<100kHz) only. We have employed t h e l a s e r de f l ec t ion technique i n

a somewhat d i f f e r e n t experimental conf igurat ion a t high thermal-wave

frequencies (up t o 10MHz) f o r q u a n t i t a t i v e measurements of th in-f i lm

th icknesses . 1 6

Page 13: APPLICATIONS OF THERMAL-WAVE PHYSICS TO … · l'imagerie et aux mesures quantitatives d'4paisseur de films minces ... chip-outs at the edge of the device, ... of an Al-Zn alloy

JOURNAL DE PHYSIQUE

I V . DEPTH-PROFILING AND THIN-FILM THICKNESS MEASUREMENTS

Semiconductor dev ices a r e composed o f a complicated three-dimensjonal

a r r a y of t h i n f i l m s . Thermal-wave phys i c s p rov ides an i d e a l t o o l t o

s tudy such systems because o f i t s unique dep th -p ro f i l i ng c a p a b i l i t y . 3 1

We have employed t h e l a s e r d e f l e c t i o n method a t f r equenc ie s a s h igh

a s lOMHz t o measure t h e t h i c k n e s s of opaque and t r a n s p a r e n t f i lms

used i n semiconductor process ing .16 Using an i n c i d e n t hea t ing l a s e r

beam of approximately 30mW a t lMHz, we a r e a b l e t o d e t e c t l o c a l su r -

face deformations t h a t correspond t o s u r f a c e displacements of approx-

imate ly 10-*2/&, a s e n s i t i v i t y t h a t i s cons ide rab ly b e t t e r than t h a t

r epo r t ed p rev ious ly . 12,13-15

To make q u a n t i t a t i v e t h i n f i l m th i ckness measurements wi th t h e l a s e r

probe technique we extended t h e Opsal-Rosencwaig thermal-wave depth-

p r o f i l i n g t o t h r e e dimensions, and inc luded the rmoe la s t i c

su r f ace deformat ions , thermal l e n s e f f e c t s , o p t i c a l e f f e c t s and non-

l i n e a r e f f e c t s a r i s i n g from t h e tempera ture dependence of t h e var ious

m a t e r i a l parameters . When a l l o f t h e s e e f f e c t s a r e proper ly inc luded

i n t h e model, q u a n t i t a t i v e measurements on s i n g l e and mul t i p l e f i lms

a r e t hen p o s s i b l e . This i s i l l u s t r a t e d i n F igu re 8 w h e ~ e we show

t h e o r e t i c a l cu rves and d a t a ob t a ined f o r s i n g l e f i l m s of A 1 on S i

and f o r f i l m s o f A 1 on S i02 on S i . We have used t h e magnitude of

t h e thermal-wave s i g n a l r a t h e r t h a t t h e phase i n t h e s e measure-

ments s i n c e t h e magnitude has a g r e a t e r range and can be measured more

p r e c i s e l y . The d a t a i n F igu re 8 i s an e x c e l l e n t agreement wi th t h e

theory both f o r t h e s i n g l e and t h e double fi.lms. The p r e c i s i o n of

t he readings ob ta ined wi th a 1-sec averaging t ime over t h e t h i ckness

range of 5002 - 15,0008 i s 22% f o r t h e s e A 1 f i lms.

In F igu re 9 , we show t h e t h e o r e t i c a l curves and t h e d a t a f o r a s e r i e s of t r a n s p a r e n t Si02 f i l m s on S i . Although only a s i n g l e f i l m problem, t h e t heo ry i n t h i s ca se must i n c l u d e the rmoe la s t i c deformations a t bo th t h e Si-SiO2 and t h e S i 0 2 - a i r i n t e r f a c e s , thermal l e n s e s i n bo th t h e Si02 and t h e a i r , and o p t i c a l i n t e r - f e r ences e f f e c t s i n t h e Si02 ( s e e Reference 1 6 ) . The f i t be- tween theo ry and experiment i s s t i l l , w i th a l l t h i s complexity, q u i t e good, i n d i c a t i n g t h a t t r a n s p a r e n t a s w e l l as opaque f i l m s can be measured wi th thermal-wave technolosv . The th i ckness -- s e n s i t i v i t y f o r Si02 f i l m s on S i appears t o be 52% over t h e range 500g - 15,OOOg.

Page 14: APPLICATIONS OF THERMAL-WAVE PHYSICS TO … · l'imagerie et aux mesures quantitatives d'4paisseur de films minces ... chip-outs at the edge of the device, ... of an Al-Zn alloy

0 .5 1 .O 1.5 2.0 2.5

THICKNESS (microns)

Fig . 8 - Rela t ive ampli tude a t 1 MHz o f l a s e r beam d e f l e c t i o n s i g n a l a s a func t ion of A 1 f i l m t h i c k n e s s f o r a s e r i e s of Al-on-Si and A l - on-Si02-on S i f i lms . C i r c l e s a r e experimented d a t a and curves a r e from t h e extended Opsal-Rosencwaig model.

Page 15: APPLICATIONS OF THERMAL-WAVE PHYSICS TO … · l'imagerie et aux mesures quantitatives d'4paisseur de films minces ... chip-outs at the edge of the device, ... of an Al-Zn alloy

JOURNAL DE PHYSIQUE

THICKNESS (microns)

Fig. 9 - Relat ive amplitude a t 1 MHz of l a s e r beam def lec t ion s igna l a s a funct ion of Si02 f i lm th ickness f o r a s e r i e s of Si02-on-Si f i lms. C i rc les a r e experimental da ta and curves a r e from the extended Opsal- Rosencwaig model.

Page 16: APPLICATIONS OF THERMAL-WAVE PHYSICS TO … · l'imagerie et aux mesures quantitatives d'4paisseur de films minces ... chip-outs at the edge of the device, ... of an Al-Zn alloy

V. CONCLUSIONS

Thermal-wave p h y s i c s h a s been a p p l i e d , f o r s e v e r a l y e a r s , t o t h e

s t u d y of many m a t e r i a l s i n c l u d i n q semiconductor m a t e r i a l s . U n t i l

r e c e n t l y , t h e s e s t u d i e s have been c o n f i n e d p r i m a r i l y t o s p e c t r o -

s c o p i c i n v e s t i g a t i o n s . The examples p r e s e n t e d above i l l u s t r a t e

t h a t thermal-wave p h y s i c s can a l s o p l a y a major r o l e i n o t h e r i m -

p o r t a n t a p p l i c a t i o n s r e l a t e d t o semiconductor m a t e r i a l s , such a s

imaging and q u a n t i t a t i v e t h i n - f i l m measurements.

References

A. Rosencwaig, Photoacous t ics and P h o t o a c o u s t i c Spectroscopy

Wiley, New York, 1980.

R.L. Swofford, M.E. Long and A.C. A l b r e c h t , J. Chem. Phys. 65, 179 (1979) .

P. Korpiun and R. T i l g n e r , J. Appl. Phys. 51, 6115 (1980) .

A. Rosencwaig, Sc ience 218, 223 (1982) .

Optoacous t ic Spectroscopy and Detec t ion ; (Y .H . Pao, e d ) , Acade-

mic P r e s s , New York, 1977.

M. Luukkala, i n Scanned Image Micrscopy, (E.A. Ash, e d ) p . 273,

Academic P r e s s , London, 1980.

G. Busse, i n i b i d , p . 341.

P.-E.Norda1 and S.O. Kanstad, i n i b i d , p. 331.

D . F o u r n i e r and A.C. Boccara, i n i b i d , p . 347.

W.B. Jackson, N.M. Amer, A.C. Boccara, and D. F o u r n i e r , Appl.

Opt. 1333 (1981) .

J . C . Murphy and L - C Aamodt, Appl. Phys. L e t t . 38, 196 (1981) .

S. Ameri, E.A. Ash, V . Neuman and C.R. P e t t s , E l e c t . L e t t . 11, 337, (1981) .

M.A. Olmstead, S.E. Kohn and N.M. Amer, Bul l . Am. Phys. Soc. z, 227, (1982) .

M.A. Olmstead and N.M. Amer, J. Vac. S c i . Technol. , accep ted f o r

p u b l i c a t i o n .

M.A. Olmstead, N.M. Amer, S. Kohn, D . Fourn ie r and A.C. Boccara,

Appl. Phys. A, a c c e p t e d f o r p u b l i c a t i o n .

A. Rosencwaig, J. Opsal and D.L. FJi l lenborg, 1983 Photoacous t ics

Conference, paper , 1983.

A. Hordvick and H a Sch lossberq , Appl. Opt. 1 6 , 1 0 1 (1977) . - C.K.N. P a t e 1 and A.C. Tam, Rev. Mod. Phys. 53, 517 (1981) .

G.S. C a r g i l l , P h y s i c s Today, 34, 27 (October , 1981) .

A. Rosencwaig, S o l i d S t a t e Technol. 25, 91 (March, 1982) .

G. Busse and A. Rosencwaig, Appl. Phys. L e t t . 36, 815 (1980) .

Page 17: APPLICATIONS OF THERMAL-WAVE PHYSICS TO … · l'imagerie et aux mesures quantitatives d'4paisseur de films minces ... chip-outs at the edge of the device, ... of an Al-Zn alloy

C6-452 JOURNAL DE PHYSIQUE

E . B r a n d i s a n d A. R o s e n c w a i g , i b i d , 37, 9 8 ( 1 9 8 0 ) .

G .S . C a r g i l l , N a t u r e ( L o n d o n ) 286, 6 9 1 ( 1 9 8 0 ) .

Therma-Wave, I n c . , 4 7 7 3 4 W e s t i n g h o u s e D r i v e , F r e m o n t , CA 9 4 5 3 9 .

J. O p s a l a n d A. R o s e n c w a i g , J. A p p l . P h y s . 53, 4 2 4 0 ( 1 9 8 2 ) .

A. R o s e n c w a i g a n d R.M. White, A p p l . P h y s . L e t t . 38, 1 6 5 ( 1 9 8 1 ) .

G.S. C a r g i l l , i n EMSA C o n f e r e n c e P r o c e e d i n g s 1 9 8 1 , 3 9 0 ( 1 9 8 1 ) .

A. R o s e n c w a i g a n d G. B u s s e , A p p l . P h y s . L e t t . 36, 7 2 5 ( 1 9 8 0 ) .

R.M. De l a R u e , R.F. H u m p h r e y s , I .M. M a s o n a n d E.A. A s h ,

P r o c . I E E ( L o n d o n ) 1 1 9 , 1 1 7 ( 1 9 8 2 ) . - R.L. W h i t m a n a n d A. K o r p e l , A p p l . O p t . 8, 1 5 6 7 ( 1 9 6 9 ) .

A. R o s e n c w a i g and A. G e r s h o , J. A p p l . P h y s . 47, 6 4 ( 1 9 7 6 ) .