applying 13c stable isotope probing and the pufm … · gene to investigate anoxygenic phototrophs...

23
Applying 13 C Stable Isotope Probing and the pufM Gene to Investigate Anoxygenic Phototrophs in the Pink Layer of a Salt Marsh Microbial Mat or, pufM adventures: SIPping from the garden hose and other delights Thea Whitman Cornell University Microbial Diversity, MBL, 2012 Abstract: Anoxygenic phototrophs are key C‐fixing members of the Great Sippewissett salt marsh microbial mats. The diversity and presence of these microbes in mats, C fixation, and the diversity of the pufM gene in purple sulfur and non‐sulfur bacteria were investigated using 454 sequencing, 13 C stable isotope probing (SIP), and pufM clone libraries. Nearby mats are relatively similar at the class level, and anoxygenic phototroph communities differ between young and old mats, although anoxygenic phototrophs in the pink layer of the mat may only represent a few percent of the population. Anoxygenic phototrophs are likely fixing C in the pink layer of the mat, although SIP results are somewhat equivocal and pufM sequences resemble sequences from diverse known taxa. Future investigations could include development of the pink layer communities over time and deeper investigation of C cycling dynamics in these layers and the role of anoxygenic phototrophs therein. (A number of notes specifically regarding what was successful and what steps might be changed are included in this report for future students considering a similar project.)

Upload: lytram

Post on 21-Aug-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Applying13CStableIsotopeProbingandthepufMGenetoInvestigateAnoxygenicPhototrophsinthePinkLayerofaSaltMarshMicrobialMator,pufMadventures:SIPpingfromthegardenhoseandotherdelightsTheaWhitmanCornellUniversityMicrobialDiversity,MBL,2012Abstract:AnoxygenicphototrophsarekeyC‐fixingmembersoftheGreatSippewissettsaltmarshmicrobialmats.Thediversityandpresenceofthesemicrobesinmats,Cfixation,andthediversityofthepufMgeneinpurplesulfurandnon‐sulfurbacteriawereinvestigatedusing454sequencing,13Cstableisotopeprobing(SIP),andpufMclonelibraries.Nearbymatsarerelativelysimilarattheclasslevel,andanoxygenicphototrophcommunitiesdifferbetweenyoungandoldmats,althoughanoxygenicphototrophsinthepinklayerofthematmayonlyrepresentafewpercentofthepopulation.AnoxygenicphototrophsarelikelyfixingCinthepinklayerofthemat,althoughSIPresultsaresomewhatequivocalandpufMsequencesresemblesequencesfromdiverseknowntaxa.FutureinvestigationscouldincludedevelopmentofthepinklayercommunitiesovertimeanddeeperinvestigationofCcyclingdynamicsintheselayersandtheroleofanoxygenicphototrophstherein.(Anumberofnotesspecificallyregardingwhatwassuccessfulandwhatstepsmightbechangedareincludedinthisreportforfuturestudentsconsideringasimilarproject.)

2

1.Introduction:Anoxygenicphototrophsareafascinatinganddiversegroupoforganisms,includingpurple(Alpha‐Beta‐andGamma‐proteobacteria)andgreensulfur(Chlorobi)andnon‐sulfur(Chlrorflexi)bacteria.Usingbacteriochlorophyllsa,b,c,d,e,oreveng(inheliobacteria),theyfixcarbon(C)withouttheproductionofO2,instead,oxidisingelectrondonorsotherthanwater,suchasH2S(Achenbachetal.,2001).Withdiversepigments,theyarecapableofcapturingenergyfromwavelengthsoflightthatareinaccessibletootherphotosyntheticorganisms(Hubasetal.,2011).Bacterialphotosyntheticreactioncentres(RCs)areclassifiedbroadlyintotwogroups‐RCI‐typeandRCII‐type.RCIsproduceweakoxidantsandstrongreductants,usingaterminal,electron‐acceptingFe‐Scluster,whileRCIIsproducestrongoxidantsandweakreductants(FryantandFrigaard,2006).RCIIincludestrans‐membraneproteinsLandM,whichareconsidereddiagnosticofthoseanoxygenicphotosyntheticmicrobeswiththisreactioncentretype,includingthepurplebacteria.TheMsubunitiscodedbythepufMgene,whichhasbeensequencedinarangeofbacteria.Becausemostanoxygenicphototrophsrequiretheproductsofoxygenicphototrophy(e.g.,S2‐)toproceed,theirCfixationmaynotbeconsidered“true”primaryproduction,sinceitisindirectlyfuelledbyotherorganisms(exceptinthecasessuchaswherethereisgeologically‐derivedS2‐available,suchashotsprings).AlthoughanoxygenicphototrophsarethusperhapslessimportanttoglobalCfixationthancyanobacteriaandothertrueprimaryproducers,theycertainlyplayanimportantroleintheC,N,andSbiogeochemistryofsomeecosystems.AprimeexampleofanecosystemwhereanoxygenicphotorophsplayakeyroleisthemicrobialmatsofLittleandGreatSippewissettsaltmarshesinWoodsHole,MA.Thesematsareafascinatingconsortiumoflaminatedmicrobialcommunities,wherecyanobacteriaareoftenthepioneers,co‐dominatingthetoplayerwithdiatoms,followedbypurpleandgreenbacteria,alongwithsulfate‐reducingbacteria(Nicholsonetal.,1987).TheycanalsoincludewhitelayersorpatchesofS2‐‐oxidisingbacteria,suchasBeggiatoa,aswellassulfate‐reducingbacteria,whichcausetheprecipitationofdarkironsulfidesinthelowerlayers.Becauseoftheirimportancetothebiogeochemistryofthisecosystem,thefascinatinglydiverserangeofmetabolismsystemstheyarecapableof(particularlythepurplenon‐sulfurbacteria),andtheirmicrocharisma,IchosetoinvestigatethediversityofandevidenceofC‐fixingactivityinpurpleanoxygenicphototrophsinthepinklayerofamicrobialmatfromGreatSippewissettsaltmarshusingpufMasamarkergene.Keyquestionsinclude:(1)Howsimilararethecommunitiesoftwoadjacentmatsandayoungmat?(2)Whatistherelativeimportanceofanoxygenicphototrophsinthepinklayerofthemat?(3)AreanoxygenicphototrophsfixingCinthepinklayerofthemat?and(4)HowarethesequencesofpufMinthepinklayerrelatedtoknownpufMsequences?

3

2.Methods:2.1MatSelection,Collection,DNAExtraction,andPreliminaryAnalysesMatswerecollectedfromGreatSippewissettSaltMarshatlowtideonJuly6,2012.Theywereselectedbasedontheirrelativelywell‐developedpinklayer.Theywerecollectedbypressingasterile8.5cmdiameterx1.3cmPetriplateintothesand,removingtheshortcore,andtruncatingitsbottomwithaknife,closingthePetridishandsealingwithParafilmforthereturntriptothelab.Twopairsofmatswereselected(AandB),alongwithayounger,less‐developed,nearbymat(<2maway)forcomparison.Twoadjacentwatersampleswerecollectedinsterile15mLFalcontubesforchemicalanalyses.Inthelab,eachmatwascutinhalfwithasterilerazorblade,anda~3mmstripwascutalongthecutedge.Fromthisstrip,thepinklayerwasremoved.DNAwasextractedfromthepinklayerusingtheMoBioPowerBiofilmextractionkit.(Note:Theoptionalinitialde‐wateringstepintheprotocolwasnotnecessaryforthesemats.Inaddition,agreatermasswasusedfortheextraction(0.44g)thantheprotocolrecommended,duetothefactthatsandmadeupmuchofthe“biofilm’s”mass.)ThisDNAwasusedfortheinitial(t0)clonelibraryandthe454sequencing.ThewatersampleswereanalyzedforCO3‐andSO4‐concentrationsontheionchromatograph.ItwaschallengingtoobtainaclearpeakfortheCO3‐concentrations,duetointerferencefromtheSO4‐peak,but[CO3]wasestimatedtobewithintherangeof2mM,whichisstandardforseawater.TheSO4‐wasmeasuredtobe27mM,whichisalsowithinnormalseawaterrange.ThepHwasmeasuredas8.06,usingapHmeter.2.2454sequencingandanalysisTheDNAextractionyieldedbetween68‐128ng/µLDNA(asmeasuredontheNanoDropmachine)foreachmatsample.ThisDNAwasamplifiedfor454sequencingusing4µLoftemplateDNAina25µLreactionwithPhusionpolymerasemastermixand907Randbarcoded515Fprimers.Ultimately,1/10or1/100xdilutionswerenecessarytogetamplificationfromtheoldermatsamples.ExtractedDNAwasquantifiedusingimagingsoftwareandthentheamplifiedPCRproductwassubmittedforprocessingandanalysis.454datawerede‐multiplexedbymakingamastermapperfile,whichwasusedwiththesplit_libraries.pycommandinQIIMEtopulloutbar‐codedsequencesbetween400and450bp,withmaxbarcodeerrorsof0allowed.ThesesequenceswerethengroupedintoOTUsusingthepick_otus.pycommand(at97%ID,usinguclust),andarepresentativefromeachgroupofOTUswaschosenusingpick_rep_set.py,whichwasassignedtaxonomyusingtheassign_taxonomy.pycommandandalarge,diversetrainingsetofreferencesequencesfromtheSilvareferencedatabase,whichhadbeentrimmedtotheregionbetweenthe454primersused(Werneretal.,2012).TheOTUtablewasbuiltusingthemake_otu_table.pycommand,andrarefactioncurveswerebuiltusingmultiple_rarefactions.pywithasamplesizeof500,3resamplingtimes,andanintervalsizeof1.

4

PleaseseeAppendixTableA.1for454metadata.2.3PrimerselectionforpufMPrimersforthepufMgenewereorderedinlab‐readyformbasedonthosedescribedinAchenbachetal(2001),knownaspufM.557FandpufM.750R.Theseprimersaredesignedtoamplifya229bpsegmentofthepufMgeneinanoxygenicphototrophs,particularlytargetingpurplesulfurandnon‐sulfurbacteria,aswellasgreennon‐sulfurbacteria.Inaddition,degeneratepufMprimersdescribedbyYutinetal(2005),knownaspufM_uniFandpufM_uniR,wereordered,butalthoughsomeproductcouldbeamplified,aPCRprogramwasnotsuccessfullyoptimizedfortheiruse,andtheywerenotusedfurtherinthisstudy.APCRprogramwithPromegaMasterMixwasdevelopedforoptimalamplificationusingtheAchenbachetal.(2001)primers,whichwas95°Cfor2min.,then30x[95°Cfor30s,63°Cfor30s,72°Cfor45s],followedby72°Cfor5min.Primerswereusedataconcentrationof0.25µMinthePCR.Sharp,cleanproductswereobtainedusingthisreactionwithDNAextractedfromthepinklayersofthemat.2.3StableIsotopeProbingofMatMicrocosmsAsinglemicrocosmwasconstructedforeachtreatment,withhalfofeachmatAandBaddedtoeach,asanattempttonormalizeformatheterogeneity.Themathalvesweregentlyplacedinthebottomof~500mLBormioliRoccoFidoItalianglasspreservejars,withrubbergasketsandmetalclampstosealthem.Thematswerejustbarelycoveredwith60mLsterileseawatersaltsolution,with27mMSO42‐andadjustedtopH8(thewaterlevelwasloweredslightlyafteronedayofincubationtoleaveabout1/3ofthematabovewaterlevel).NaHCO3wasaddedasaconcentratedsolutiontothewatertobringitto2mMHCO3‐,andanequivalentamountofNaHCO3wasinjectedintothematsat40evenly‐spacedsitespermicrocosmwithasyringe.TheonlydifferencebetweenthetwomicrocosmswasthattheNaHCO3addedtothelabelledtreatmentwaslabelledwith>99%13C,whiletheNaHCO3fortheunlabelledtreatmentwasstandardlab‐grade.(Anoteforfuturestudents‐thelabelledNaHCO3seemedmuch“fluffier”thantheunlabelled,perhapsduetoadifferentproductionprocess.)Themicrocosmswereincubatedat30°Cina24hlightincubatorfor3.5days.ThejarswereopenedbrieflyonceadaytorepeattheNaHCO3additions,foratotalof3additionsoverthecourseoftheexperiment.Attheendoftheincubation,themicrocosmswereopened,andthematsweretakenaparttocollectthepinklayerforDNAextraction.Foreachtreatment,twotubesof0.44gpinklayerhadDNAextractedforeachmatusingthePowerBiofilmDNAextractionkit,followingthepreviousprocedure.TheextractedDNAwasthencombinedintoonetube,concentratedonthevacuumcentrifuge,thengel‐purified.OnlythefragmentsofDNAestimatedtobegreaterthan4kbinlengthwereselected,inordertodecreasethetimeneededforallDNAfragmentstosettleattheirultimatedensityintheCsClgradienttube(Buckleyetal.,2007).ThegelfragmentwaspurifiedusingtheE.Z.N.A.Omegagelextractionkit,witha30µLfinalelution.Thefinalelutionstepwasrepeatedwiththesameflow‐throughsolution,toattemptto

5

getthemostDNAoffthefilter,inaconcentratedform.(Thismightnotberecommended,becausesubsequentapplicationsofthisprocedureforotherexperimentsdecreasedthequalityofthesample,perhapsbyelutingmoresalts.[Forthisapplication,saltsshouldnothavebeenanissue.])TheresultingDNAwasquantifiedontheNanoDropmachine.Gradienttubesweresetupusingagradientbuffersolutionof15mMTris‐HCL,pH8.0,15mMEDTA,and15mMKCl.ItwasmixedwithCsClsolutioninordertoobtainadensityofexactly1.762gmL‐1,usingadigitalrefractometertomeasureitsdensity.BeckmanbelltoptubeswerefilledalmosttothetopwiththeCsClbuffersolution,andthenpurifiedDNAwasaddedaftercalculatingtheamountneededtoensuretheadditionofequalamountsofDNAandTEbuffertobalancefromeachtreatment(3.9µgeach).TubeswerebalancedtopreciselythesamemassbyaddingCsCl‐buffersolution,andthencappedandinvertedseveraltimestomixthoroughly.Tubeswereplacedintherotor,withstemadaptorsaddedtopreventneckcollapse,andwerespunonanOptimaMAX‐XPBeckmanCoulterultracentrifugeat55,000rpmonaTLA110rotor(164,000xg)at20°Cfor65hoursundervacuum.Aftercentrifugation,tubeswerecarefullyremoved,twoatatime,leavingtheremainingtubesre‐balancedandspinningduringfractionation.Fractionationwasachievedbypiercingthebottomofeachtubewitha20Gneedlewiththeneckcutofftoallowdropstofallmorefreely.ThetopofthetubewasthenpiercedwithaneedleconnectedbystifftubingtoaHarvardApparatussyringepumpprogrammedtodeliver0.100mLwatermin‐1,thuspushingthedensesolutionoutoftheneedleinsertedatthebottomofthetube,into1.5mLmicrocentrifugetubes.Refractiveindexwasmeasuredandrecordedimmediatelyaftereachfractionwascollected,afterwhichtubeswerecapped.Thepumpcontinuedtoreleaseadroportwoofsolutionafterstoppingthepump,whichwascollected,butthetimeallowedforalldropstofallwassomewhatsubjective,likelyintroducingsomeerrorintotheprocedure.(Notetofutureusers‐measuringthevolumeofeachfractionatthispointishighlyrecommended,despitethefactthatitmayseemtobeasomewhatunappealingactivityat3AM.)36fractionswerecollectedforeachtube,ranginginrefractiveindexfrom1.4129to1.3921.Afterfractionation,alltubeswerede‐saltedandcleanedusingthefollowingprocedure:300µLDNAse‐freewaterwith240µLisopropanol[30minat15,000gonmicrocentrifuge;discardsupernatant];1mL70%EtOHinDNAse‐freewater[15minonmicrocentrifugeat15,000g;discardsupernatant;repeatedonce];letdryontissuesforseveralhours(ittookalmost8hoursforsamplestofinallydry‐possibleduetoresidualwater);finalelutioninsterile,DNAse‐freeTEbuffer.FortheEtOHprecipitationsteps,microcentrifugeswerekeptinthe4°CroominordertopromoteEtOHprecipitationofDNA.(ThiswouldberecommendedforallDNAcleanupstepsinfutureexperiments.)Afterfractionation,CsClremoval,andDNAcleanup,toquicklyevaluatethedistributionofpufMacrossfractions,asub‐samplefromevery3fractionswaspooledandpufMwasamplifiedusingthePCRprogramdescribedabove(givingatotalof12pooledsamplespertreatment).Uponrunningtheseproductsonagel,the

6

fractionswherethetwotreatmentsdivergedwereidentified,andthenamplifiedindividuallyforgreaterresolution.2.4CloneLibrariesandAnalysisThreeclonelibrarieswereconstructedfrompufMampliconsfromDNAextractedfrom(1)thecombinedintialmatsamplesAandB,(2)thefinallabelledmicrocosm,and(3)thefinalunlabelledmicrocosm.Forthemicrocosmsamples,DNAwasusedfromthepufMproductinthefourheaviestlaneswithvisibleproductsfromthehigh‐resolutionPCRreaction(4visiblelanesforthelabelled,1visiblelanefortheunlabelled).Fortheinitialmatsample,allpufMDNAwasused.Foralltreatments,theproductswerecutoutofthegelandpurifiedusingtheMilliporeDNAGelExtractionkit.CloningwasperformedfollowingtheTopoTAIsomeraseInvitrogenkitwithcompetentE.colicells.Theligationstepwasincreasedto2hoursinordertomaximizeligationofthepufMamplicon.Theplasmidwaselectroporatedintothecells,whichwerethenshakenfor1hourandplatedonampicillin‐treatedplatesat100and10µL.Clonesappearedinalltreatmentsafter12hours,andwerepickedtofill96‐wellplatesofampicillin‐treatedgrowthmedia.Ultimately,onlyhalfoftheinitialsample,20clonesfromtheunlabelled,and72clonesfromthelabelledtreatmentsweresequenced.Forclonelibrarydataanalysis,plasmidsequenceswereremovedfromthesequenceddatausingthecross_matchcommandinPhrap.SequencesweretranslatedtoproteinsusingExPASyTranslator,andthenBLASTedagainsttheNCBIproteindatabasetoensurethecorrectorientationandreadingframewasselected.InitialandfinalclonelibrarysequenceswerepooledwiththeGenBankreferenceproteinsequencesfromthepufMtreedevelopedbyAsaoetal.(2011).(AfewadditionalsequenceswereaddedaftertreeconstructiontoattempttofillinbrancheswithlowcoveragebyknownsequencesbyBLASTingsequencesfromthosebranchesagainsttheNCBIdatabase.)OrganismsandtheiraccessionnumbersarenotedintheAppendixTableA3.SequenceswerealignedusingMuscle,andthenonlytheportionsofthegenethatallclonesandreferencesequencescontainedwerewereselectedusingJalview.AlignedandtrimmedsequenceswereimportedintoArb,andaneighbour‐joiningtreewasconstructed,usingthePAMcorrectionfactorforproteins.Sequencesfromanybranchesthatwere“backwards”weredeleted,andthetreere‐drawn.ThetreewasdesignedinFigTree.Anadditionaltreewasconstructedusingonlytheclonelibrarysequences,usingthesamemethods.GCcontentwascalculatedforeachsequenceusingExcel,andthenmappedontotheclonelibrarytreeusingiTOL.Inaddition,16SandpufMsequenceswereobtainedfromDNAextractedfromtwoisolatesfrompurplenon‐sulfurbacterialenrichmentscreatedduringthefirsthalfofthecourse.These16SsequenceswereBLASTedagainsttheNCBIdatabaseandthepufMsequencespositionedinthepufMcloneandreferencesequencetree.PleaseseeAppendixTableA.2forclonelibrarymetadata.

7

2.5QuantitativePCR(qPCR)andDataProcessingThe16SandpufMcopynumbersfromtheSIPfractionswerequantifiedusingqPCR.AQuiagenQuantiFastSYBRGreenPCRkitwasusedforDNAamplificationof16S,using907Rand515FprimersandpufM,usingthesameprimersusedelsewhereinthisreport.1µLoftemplateDNAwasaddedforeachreaction.Aplasmid‐based16Sampliconfromourinitialgroupprojectclonelibraryplatewasusedasthetemplateforthe16Sstandardcurve,whileaplasmidfromtheinitialmatpinklayerpufMclonelibrarywasusedforthepufMstandardcurve.TheseplasmidswereselectedbasedontheirstrongamplificationinatestPCRrunandhighDNAconcentrationintheplate.Thereactionswere25µL,andwereamplifiedonaStepOnePlusreal‐timePCRsystemfromAppliedBiosystems.AnysamplesthatwereamplifiedwithCTvalues(wherethefluorescencecrossesthediagnosticthreshold)aboveorbelowthestandardcurvewereexcludedfromthedataanalysis.3.ResultsandDiscussion:3.1454SequencingofMats’PinkLayersThe454sequencesonthemats’pinklayersyieldedthousandsofhitsFigures1‐3).ClassificationusingtherepresentativesetdatabasedesignedbyKellyGravuerandChuckPepe‐RamseysuggestedthatCyanobacteria,Gamma‐,Delta‐,andAlphaproteobacteriadominatethemat.Thisisnotsurprising,asCyanobacteriaarevisiblypresent.

Figure1.Dominanttaxa(classlevel)ofoldermatA’spinklayer,asdeterminedby454sequencing(n=14570).

CyanobacteriaSubsectioniii

Gammaproteobacteria

Deltaproteobacteria

Notclassiuied

Alphaproteobacteria

Chloroplasts

Flavobacteria

Spirochaetes

Holophagae

CyanobacteriSubsectioni

8

Figure2.Dominanttaxa(classlevel)ofoldermatB’spinklayer,asdeterminedby454sequencing(n=12106).

Figure3.Dominanttaxa(classlevel)ofyoungermat’spinklayer,asdeterminedby454sequencing(n=9493).

CyanobacteriaSubsectioniii

Gammaproteobacteria

Deltaproteobacteria

Notclassiuied

Alphaproteobacteria

Chloroplasts

Flavobacteria

Spirochaetes

Holophagae

CyanobacteriSubsectioni

CyanobacteriaSubsectioniii

Gammaproteobacteria

Deltaproteobacteria

Notclassiuied

Alphaproteobacteria

Chloroplasts

Flavobacteria

Spirochaetes

Holophagae

9

DifferencesbetweenthetwoadjacentmatsAandB(Figures1and2)attheclasslevelwerenotstriking,andeventheyoungermatbroadlyresembledtheoldermats,withtheexceptionofagreaterdominanceofgammaproteobacteriaovercyanobacteriaintheyoungermat.Thisindicatesthat,althoughcertainlyheterogeneousatbothmacro‐andsub‐micronscales,directlyadjacentmatsamplescanberelativelysimilar,atleastataphylogeneticlevel‐functionalheterogeneitywasnotinvestigatedhere.ThesimilaritybetweentheadjacentoldermatsAandBpersistedwhenconsideringonlythetaxathatwereexpectedtobecapableofanoxygenicphototrophy,althoughdifferencesbetweenthedominanceofThiorhodococcusandThirhodovibrio(bothpurplesulfurbacteria)werenotable(Figures4and5).Theyoungermatwaslesssimilartotheoldermatswithregardstotheanoxygenicphototrophs,withThiorhodovibriobeingdominant,alongwithRoseospira(purplenon‐sulfurbacteria)andThiorhodococcus.Thetaxaidentifiedasanoxygenicphototrophsmadeup3%ofthetotal16S454hitsintheoldermats,butrepresented10%ofthehitsintheyoungermat,possiblyindicatingagreaterrelativeabundanceofthesetaxa.

Figure4.Dominantanoxygenicphototrophictaxa(genuslevel,exceptforCongregibacterandErythrobacter‐phylumlevel)ofoldermatA’spinklayer,asdeterminedby454sequencing(n=462).

ThiorhodococcusThiorhodovibrioCongregibacterRoseospiraMarinicellaChlorobiThiocapsaErythrobacterDeuluviicoccusRhodospirillaceaRhodocyclaceae

10

Figure5.Dominantanoxygenicphototrophictaxa(genuslevel,exceptforCongregibacterandErythrobacter‐phylumlevel)ofoldermatB’spinklayerasdeterminedby454sequencing(n=334).

Figure6.Dominantanoxygenicphototrophictaxa(genuslevel)ofyoungermat’spinklayer,asdeterminedby454sequencing(n=1018).

ThiorhodococcusThiorhodovibrioCongregibacterRoseospiraMarinicellaChlorobiThiocapsaErythrobacterDeuluviicoccusRhodospirillaceaRhodocyclaceaeChloroulexi

ThiorhodococcusThiorhodovibrioCongregibacterRoseospiraMarinicellaChlorobi

11

Therarefactioncurveforthethreesamples(Figure7)indicatesthatsubstantialdiversitywascapturedforallthree,althoughthecurvesarestillonlyapproachingaplateau.Itappearsthattheyoungermatmaybeclosertoplateauing,indicatingapotentiallylessdiversecommunity.

Figure7.RarefactioncurveofobservedspecieswithsequencessamplesforoldermatA(blue,topcurve),oldermatB(red,middlecurve),andtheyoungermat(orange,bottomcurve).4.2SIPPCRandqPCRThepufMPCRofpooledSIPtubefractionsindicatedsuccessfulseparationoflabelledfromunlabelledpufMDNA(Figure8).PCRproductswerevisibleinwellscorrespondingtotubesfromtheheavierfractionsforthelabelledtreatment,whilethefirstwellswithvisibleproductsintheunlabelledtreatmentshoweduponlyinthelighterfractions.Inaddition,thebrightestwellswereshiftedtoheavierfractionsinthelabelledtreatment,andlighterfractionsintheunlabelledtreatment.

12

Figure8.Electrophoresisgelimageof12pooled(n=3)fractionsofPCR‐amplifiedpufMDNAfragmentsfromSIPtubesforthelabelledtreatment(bottom)andtheunlabelledtreatment(top).Fractionsincreaseindensityfromlefttoright,withapositivecontrolshowninthefirstwellwithvisibleproductonthebottomleft,andanegativecontrolinthecorrespondingtopwell.WhenDNAfromthetubesassociatedwiththefourwellsfromtheheaviestfractionsthathadvisibleproductsinthelabelledtreatmentwereamplifiedagain,individuallythistime,foreachtreatment,thetrendpersisted(Figure9).Despitethefactthatthefractionnumber(e.g.,the6thfractiontoberemovedfromeachtube)didnothavetheexactsameCsClconcentrationforeachtreatment,theyweresufficientlyclosewithintherangeexaminedherethatdiscrepanciesinCsClconcentrationforagivenfractionnumberdonotexplaintheobservedtrends(Table1).Forexample,thebrightestbandintheunlabelledtreatmentappearsinfraction21,where[CsCl]=1.698gmL‐1,whilethebrightestbandinthelabelledtreatmentappearsinfraction19,where[CsCl]=1.705gmL‐1.Usingthisroughestimate,itcouldbeestimatedthattheactivepufM‐containingorganismsshiftedindensityby0.007g/mL,whichisarelativelysmallshift.

13

Figure9.Electrophoresisgelimageof12unpooled(n=1)fractionsofPCR‐amplifiedpufMDNAfragmentsfromSIPtubesforthelabelledtreatment(bottom)andtheunlabelledtreatment(top).Wellsrepresent,fromlefttoright,the24th‐13thfractionsextractedfromthetubes.Fractionsincreaseindensityfromlefttoright,withapositivecontrolshowninthefirstvisiblewellonthebottomleft,andanegativecontrolinthecorrespondingtopwell.Table1.CsClconcentrationforsecondPCR­selectedSIPfractionnumbers.Shadedcellsindicatethosefractionspickedforclonelibraries. CsCl(g/mL)Fraction# Labelled Unlabelled

13 1.727 1.73114 1.722 1.73115 1.721 1.72216 1.715 1.71917 1.713 1.71818 1.708 1.71219 1.705 1.70720 1.701 1.70321 1.696 1.69822 1.691 1.69523 1.688 1.69324 1.686 1.689

14

qPCRamplificationandquantificationofpufMand16Sgenecopiesforthelabelledandunlabelledtreatmentsdidnotfacilitateinterpretationoftheexperiment.WhilethestandardcurveforthepufMgeneyieldedanexcellentcorrelationcoefficient(0.995),the16Sstandardcurvewasnotideal,withanR2of0.81,andtherewasnottimetooptimizethereaction.Still,curveswerebroadlyasexpected,showingbell‐shapeddistributionsalongthedensitygradient(Figures10and11).

Figure10.16ScopynumberasdeterminedbyqPCRalongthedensitygradientfor13Clabelledandunlabelledtreatmentsofthemats’pinklayers.ThepufMgenedistributioniscentredaroundaslightlyhigherdensityforboththeunlabelledandthelabelledtreatments,indicatingahigherGCcontentascomparedthe16Sgenesinthesesamples.Ifthelabellingistobedetected,points,orasub‐setofpointsinthelabelledtreatmentshouldberight‐shiftedtowarddenserfractionsascomparedtotheunlabelledtreatment.Althoughanoptimisticstudentcanperceivethisshiftinthesefigureswithouttoomucheye‐crossing,theyarenotparticularlyconclusiveorconvincingtothecasualobserver.NormalizingthepufMgenecopynumberby16Scopynumbershowssimilarpatterns(Figure12).

15

Figure11.pufMcopynumberasdeterminedbyqPCRalongthedensitygradientfor13Clabelledandunlabelledtreatmentsofthemats’pinklayers.ThereareanumberofexplanationsforwhytheqPCRdatadoesnotclearlysupportthegeldatafromsimplePCRs.Oneissueisthatwhenthefractionswereextracted,thepumpdoesnotdeliverexactly0.100mLeachtime.Dripscontinuetofallforuptoaminuteafterstoppingthepump,andthenhoverontheneedletiporfallfreelyforanygiventube,thusvaryingthevolumeineachtubebyanestimated±10%.Ifthisvolumewerequantified,thenthisdifferencecouldbecorrectedfor,butitwasnot.Thus,whentheDNAisde‐salted,cleaned,andthenresuspendedinequalvolumesofbufferforeachtube,artificialincreasesordecreasesinconcentrationmaybeintroduced,causingnoiseinthesensitiveqPCRassay.Thisisperhapsthemostimportantcontributortothenoiseseenintheplotsabove,andthebiggestrecommendationforfutureexperimenterstofollow(measuringextractedfractionsbeforecleanup).AnotherpossibleexplanationisissueswiththeqPCRreaction‐thePCRreactionforpufMwasoptimizedata63°Cannealingtemperature,whichwouldresultinmorespecificbindingthanthe60°CannealingtemperatureusedfortheqPCR.Decreasedspecificitymightresultinothernoiseinthedataasnon‐targetDNAisamplified.AnadditionalsourceoferrorcouldbethatthetotalDNAconcentrationislowerinthe

16

unlabelledthaninthelabelledsamples,resultinginnodetectionatlowerhigh‐enddensitiesthaninthelabelledsamples,resultinginanapparent,butincorrect,shifttowardheavyfractioninthelabelledfractions.Thisissomewhatlesslikelyofanexplanation,though,because(1)the16SqPCRdataarerelativelysimilarbetweensamples,withtheunlabelledsampleshavingsimilarlyhighmaximumcopynumbers,and(2)ifthiswerethecase,wewouldexpectthebrightestbandswithineachtreatmenttostilloccuratthesamedensity,whichtheydonot,asdiscussedabove.Themostappealingexplanationfortheapparentdiscrepancyisthattheshiftwasverysubtle,andwasdetectableusingsimplePCR,butwasobscuredintheerrorsintheqPCRdataintroducedbythefactorsdiscussedabove.Indeed,thedifferencein[CsCl]betweenthebrightestpeaksoftheunlabelledandlabelledfractionsisonly0.007g/mL,whichiswithinthenoiseoftheqPCRdata.

Figure12.pufM/16ScopynumberratioasdeterminedbyqPCRalongthedensitygradientfor13Clabelledandunlabelledtreatmentsofthemats’pinklayers.

17

ThereasonthisshiftwassubtleislikelyduetotherelativestocksandfluxesofHCO3‐inthemats.Whileseawatermaycontainaround2mMHCO3‐atanygiventime,itonlymakesupafractionofthetotalCinthemat.Forexample,ifthemat’sisonaverage~3%Cbymass(Rothermichetal.,2000),at130g/mat,adding2.88mgHCO3‐‐Conthreeoccasions,resultsinanincreaseintotalmatCofonly0.23%,eventhoughtheHCO3‐concentrationwouldbedoubledtoquadrupled.IfmatCturnoverishigh,throughheterotrophicaswellasphotosyntheticactivity,thentheaddedlabelwouldbequicklydiluted.ThishighlightsaclassicSIPquandary:howtoaddthelabelledsubstrateinachemicallyandbiologicallycomplexsystemwithoutriskingmassiveandenvironmentallyirrelevantoverloadononehandorlabeldilutionontheother.Infutureprojectswithinthescopeofthiscourse,thebestrecommendationmightbetobeheavy‐handedwithsubstrateadditionsinordertoseeclearresults,butifecologicalrelevanceisimportant,otheroptions,ordifferentconceptualframeworksmaybenecessary.4.3SIPCloneLibrariesandPhylogeneticAnalysesThecloningreactionsweresuccessfulfortheinitialandtwofinalmatDNAextractions,yieldingpickablecoloniesonallplates.(Thelonger,2+hourligationstepwaslikelyanimportantfactorinensuringefficientligation,andwouldberecommendedforfuture“functionalgene”clonelibraries.Theplateswithplasmid‐bearingcoloniesfromtheunlabelledtreatmentyieldedonly35coloniesintotal,whichwastobeexpected,sincelessDNAwasadded,inchoosingPCRproductsfromtheheavierfractionsonly.Theclonelibrariesallreturnedbetween85‐87%useablesequences,aftersequencetranslationandalignment.Theneighbour‐joiningtreeconstructedfromthetranslatedandalignedpufMsequencesindicatesdiversegroupsofpufMsequences(Figure13).Becausethelabelledfractionsaredistributedacrossthetreeandarenotclusterednearanysetofinitialsequences,itappearsthatanylabelincorporationintothepufMgenewasnotrestrictedtoasmallgroupofanoxygenicphototrophs.However,inaddition,thefewunlabelledclonesthatweresequencedappearthroughoutthetree.Lookingclosely,itappearsthatthepinkclonesthatdoshowuptendtobethosethatareheavierinGCcontent,whilethelabelledcloneshavebothhighandlowGCcontent.Thiscouldindicatethatthelow‐GCclonesfromthelabelledtreatmentwerepresentintheheavierfractionsonlybecauseoftheirincorporationofthe13Clabel.However,thisargumentissomewhattenuous,because,althoughthesamplestakenforcloningwerefromthesamefractionnumbers,thesefractionscorrespondedtoslightlydifferentCsClconcentrations(Table1).

18

Figure13.Neighbour‐joiningtreeoftranslatedpufMampliconsfromclonelibraryproductsforinitial(inneryellow/orange)andfinallabelled(innerblue)andunlabelled(innerpink)pufMPCRproductsfromtotalmatDNA(initial)andheaviestvisiblefractions(final).OuterringindicatesGCcontentofpufMgene,whichrangesfrom54%(darkblue)to74%(brightpink).ThepufMsequencesresembledthoseavailablefromtheNCBIdatabaserelativelywell,totheextentthatdifferentclonedsequencesgroupedcloselywithdifferentestablishedsequences,ratherthan,forexample,clusteringalltogether(Figure14).However,theredoesappeartoberelevantdiversityacrossthepufMgeneinthesequencesinvestigatedhere.Twoisolatesfrompurplenon‐sulfurbacteriaenrichmentsweresequencedfor16SandpufM.Interestingly,whilethebest16SBLASThitwasRhodovulumforboth,theirpufMgenesdidnotgroupdirectlynexttoeachother.Thiscouldbeduetounoptimalsequencequality,theNCBIdatabasebeinginsufficientfortheseorganisms,orduetohorizontalgenetransfer,where

19

organismsofthesame“genus”couldhavepufMsequencesthataremoresimilartoorganismsofdifferentgenera.Futureworkherecouldincludedevelopingmoreisolatesfromwhichtosequenceboth16SandpufMgenes,andexpandingthisapproach.

Figure14.Neighbour‐joiningtreeoftranslatedpufMsequencesfromclonelibrariesandselectedpufMsequencesfromtheNCBIdatabase.Groupsarecollapsedinordertofacilitatevisualization,butarecolouredtoindicatewhetherclonesfromtheunlabelledlibraryarepresent.Forthosewheretheyarenotpresent,groupsincludeclonesfromthefinallabelledtreatmentand/orfromtheinitialmatsequencesandclonelibrary.5.ConclusionsandFutureDirections:ThepinklayersofmicrobialmatsinGreatSippewissettsaltmarshhavediversecommunitiesofanoxygenicphototrophsthatlikelyshiftoverthecourseoftheirdevelopment,withThiorhodovibriopossiblybeingafirstcolonizerofyoungmats.Theseanoxygenicphototrophslikelymakeuponlyasmallsubsetofthetotalbacterialpopulation(ontheorderof3‐10%ofthe45416Samplicons).However,theyarelikelyimportantdriversofCfixationinthislayer,althoughsupportofthisfindingfromSIPresultsisnotasrobustasitmighthavebeen,anditisnotapparentwhethermostoronlysometaxaareactive.Inaddition,pufMsequencesfromthese

20

matsresemblethosefrompublishedsequences,althoughsomediversityiscertainlyapparent,withsomesequencesnotmatchingpublishedsequencesverywell.Infutureresearch,itwouldbeveryinterestingtotakeamorephysiologicalapproachtothesequestions,measuringCcyclingexplicitly,andperhapstakingabroaderapproachtothecommunity,investigatingotherlayersofthemat,andeventransferofCcompoundsbetweenorganismswithinthemat.Inaddition,followingevolutionoftheanoxygenicphototrophicmatcommunitiesovertime,asmatsdevelop,oracrossafalsetimeseriessimilartotheapproachtakenhere,couldbeaninterestinglineofinvestigation.UsingaheavierlabelforSIP,oranotherapproachtoavoiddilutionthroughinherentCcyclinginthematcommunity,couldhelpproducelessequivocalresults.ForinvestigatingpufMdiversityfurther,itwouldbeidealtouseordevelopacuratedpufMdatabasetowhichsequencescouldbecompared,toensurebroadercoverageofexistingsequences.Includingmoreknownisolateswithboth16SandpufMsequenceswouldalsobeinteresting,andusingdegeneratepufMprimers,pufMprimersdesignedtotargetotheranoxygenicphototrophscouldalsohelpexpandfutureresearchquestions.6.Acknowledgements:Iwouldliketothankthecourseinstructors,DanandSteve,forthisamazingexperiencethissummerinWoodsHole.ParticularthanksgotoDanforhishelpwithSIPandSteveforthesweetjamsessionsonthedock.Inaddition,theTAsallprovidedinvaluableresourcesandsupportduringthecourse,especiallyChuck’shelpwithbioinformatics,Mallory’shelpwithqPCRandmyprojectdesign,Verena’shelpwiththeanoxygenicphototrophs,andSuiquan’shelpwiththeionchromatograph.ThanksalsotoAshleyforhertirelesssupportofthecourse.Iwouldalsoliketothankmyclassmatesforbeingsoamazing:Iamsogladtohavegottentoknowyouall,andamalreadyexcitedforthenexttimeourpathscross.Thiswholecoursehasbeensoinspiring,andIamexcitedtoseewhereittakesmenext.IwouldalsoliketothankthePfizerInc.EndowedScholarship,theMiltonL.ShifmanEndowedScholarship,andtheDOEgranttotheMicrobialDiversitycourseforfinancialsupport,aswellastheCornellCropandSoilSciencedepartment’ssummerfundingsupport.7.References:Achenbach,L.A.,Carey,J.,Madigan,M.T.(2001)PhotosyntheticandPhylogeneticPrimersforDetectionofAnoxygenicPhototrophsinNaturalEnvironments.AppliedandEnvironmentalMicrobiology,67:2922‐2926.Asao,M.,Pinkart,H.C.,Madigan,M.T.(2011)DiversityofextremophilicpurplephototrophicbacteriainSoapLake,aCentralWashington(USA)sodalake.EnvironmentalMicrobiology,13:2146‐2157.Bryant,D.A.,Frigaard,N.‐U.(2006)Prokaryoticphotosynthesisandphototrophyilluminated.TrendsinMicrobiology,14:488‐496.

21

Buckley,D.H.,Huangyutitham,V.,Hsu,Shi‐Fang,andNelson,T.A.(2007)Stableisotopeprobingwith15NachievedbydisentanglingtheeffectsofgenomeG+CcontentandisotopeenrichmentonDNAdensity.AppliedandEnvironmentalMicrobiology,73:3189‐3195.Hubas,C.,Jesus,B.,Passarelli,C.,Jenathon,C.(2011)Toolsprovidingnewinsightintocoastalanoxygenicpurplebacterialmats:reviewandperspectives.ResearchinMicrobiology,162:858‐868.Nicholson,J.A.M.,Stolz,J.F.,Pierson,B.K.(1987)StructureofamicrobialmatatGreatSippewissettMarsh,CapeCode,Massachusetts.FEMSMicrobialEcology,45:343‐364.Rothermich,M.M.,Guerrero,R.,Lenz,R.W.,Goodwin,S.(2000)Characterization,seasonaloccurrence,anddielfluctuationofPoly(hydroxyalkanoate)inphotosyntheticmicrobialmats.AppliedandEnvironmentalMicrobiology,66:4279‐4291.Werner,J.J.,Koren,O.,Hugenholtz,P.,DeSantis,T.Z.,Walters,W.A.,Caporaso,J.G.,Angenent,L.T.,Knight,R.,Ley,R.E.(2012)Impactoftrainingsetsonclassificationofhigh‐throughputbacterial16srRNAgenesurveys.TheISMEJournal,6:94:103.

22

AppendixTableA.145416SMetadataSampleID#

Description Furtherdescription

Origin Sitecharacteristics

LinkerPrimer

Thea3P Oldermat,adjacentto4P(<2cmapart)

AACCGTTAA

Thea4P Oldermat,adjacentto3P(<2cmapart)

TTACCGTTA

Thea5P

Toplayerofmatsamplecollectedin8.5cmdiameterx1.3cmdepthPetridish;centrestripcutoutwithrazor;0.44gpinklayerextracted;DNAamplifiedwithMoBioPowerBiofilmkit

Youngermat,nearby3Pand4P(<2maway)

ACCGGTTCC

TheaRB Redblobs0.1‐0.5cmwide,nestledinthemuckatthebaseofgrassbythewaterline

Uponinspection,seemedtohavetinywhiterectangles(bones?)

GreatSippewissettSaltMarsh,collectedatlowtideonJuly6,2012

AdjacentwaterpH=8.06,[SO42‐]=27mM

AACCTACTA

TableA.2CloneLibraryMetadataSampleID/File Description,origin,

sitecharacteristicsPrimersusedforamplification

PlateIDs

TLW_pufM23 FromSIPexperimentdescribedinthisreport‐labelledandunlabelledclones

CellsX1,X2,andA3,B3,C3,andD3allfromSIPexperiment’sunlabelledclones;Remainingcells(E3,F3,G3,H3,andX4‐X12)arefromSIPexperiment’s13C‐labelledclones

TLW_t0 CombinedsamplefromThea3PandThea4P(see454dataabove)

pufM557FandpufM750R

Half‐plate’sworthofinitialsample

23

TableA.3ReferenceorganismsforpufMsequencesandtheiraccessionnumbersOrganism AccessionnumberChloroflexusaurantiacus X07847Ectothiorhodospirahaloalkaliphila FN257156Ectothiorhodospiramobilis FN257158Rhodocyclustenuis D50651Rhodospirillumrubrum J03731Rhodobactercapsulatus Z11165Rhodobactersphaeroides X63405Rhodobacterblasticus D50649Roseobacterdenitrificans X57597Roseobacterlitoralis AB016990Rhodovulumsulfidophilum AB020784Lamprocystispurpurea AY177752Erythrobactersp. X57597.1UnculturedThiohalocapsasp. 357422521Thiocapsaimhoffii 197216373Roseatelesdepolymerans BAB19668.1Rhodospirillummolischianum D50654