apresentação nfpa sfp

59
Performance-Based Design of Structural Fire Resistance Morgan J. Hurley, P.E. Society of Fire Protection Engineers Brian Y. Lattimer, Ph.D. Hughes Associates, Inc.

Upload: cassiano-da-silva-zago

Post on 29-Dec-2015

14 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Apresentação NFPA SFP

Performance-Based Design of Structural Fire Resistance

Morgan J. Hurley, P.E.Society of Fire Protection Engineers

Brian Y. Lattimer, Ph.D.Hughes Associates, Inc.

Page 2: Apresentação NFPA SFP

Presentation Overview

• Historical perspective• Elements of performance-based design

approach• Calculation of fire boundary conditions

– Enclosure fires– Localized fires

Page 3: Apresentação NFPA SFP

Historical Perspective

• Fire resistance specified based on ASTM E-119 “standard fire”

• ASTM E-119 specifies furnace temperature and thermal endpoint criteria

• Codes specify required “ratings”

Page 4: Apresentação NFPA SFP

ASTM E-119 Endpoint Criteria

• Must maintain applied load or• Average of measured temperatures must not

exceed specified limits

Page 5: Apresentação NFPA SFP

Basis for Code Requirements

Page 6: Apresentação NFPA SFP

Application

• Select an assembly that has been tested• Use engineering calculations, e.g.,

ASCE/SFPE 29-99

Page 7: Apresentação NFPA SFP

Limitations• “Standard” fire does not consider all of the factors

that would influence fire severity• Single elements tested in isolation, without

considering structural performance• Air temperature in furnace measured

– Radiation from walls dominant mode of heat transfer

• Ratings based on mass per unit area in typical occupancies– Mass not necessarily indicative of severity

Page 8: Apresentação NFPA SFP

Limitations

• Convection

• Radiation

( )sg TThq −=′′&

( )44sTTq −=′′ σ&

Page 9: Apresentação NFPA SFP

Performance-Based Design Approach

• Estimate fire exposures• Perform heat transfer analysis to determine

thermal response• Perform structural analysis

Page 10: Apresentação NFPA SFP

Why Performance-Based Design?

• Better knowledge of fire safety provided by a design

• Apply best available science• Tailor safety to building use and

characteristics

Page 11: Apresentação NFPA SFP

Scenarios Considered

Page 12: Apresentação NFPA SFP

Heat Transfer

• Generally use finite element or finite difference approach

• Conservatively assume ε = 1 (ε expected to vary between 0.65 for small enclosures to 0.95 for realistic fires.)

• hc ≈ 10 – 30 W/m2K• For insulated members – assume surface

temperature = fire temperature

Page 13: Apresentação NFPA SFP

Compartment Fires

Time

Tem

pera

ture

Dev

elop

men

t

Flas

hove

r

Fully Developed

Cooling Phase

Significant effect on structure

Time

Tem

pera

ture

Dev

elop

men

t

Flas

hove

r

Fully Developed

Cooling Phase

Significant effect on structure

Page 14: Apresentação NFPA SFP

Compartment Fires

Ao

C.V.

T

fm&

δ k, ρ, c

Ho

m&

om&

ρ0, T0

Page 15: Apresentação NFPA SFP

Factors

• Fuel Load (mf)• Ventilation (Ao, Ho)• Enclosure thermal properties (k, ρ, C, A)

Page 16: Apresentação NFPA SFP

Compartment Fire Modeling

• Several predictive methods available – most are algebraic correlations

• Assumptions– Fuel distributed uniformly over floor– Vents in walls– Natural ventilation only– Large fires– Uniform conditions throughout enclosure

Page 17: Apresentação NFPA SFP

Compartment Fire Models

• Most models based on wood cribs, which may be conservative for enclosure fires

• Long, narrow, ventilation controlled enclosures – assumption of uniform conditions breaks down

• FDS holds some promise – CFD modeling + heat transfer and combustion

Page 18: Apresentação NFPA SFP

Eurocode Parametric Method

( )*** 197.12.0 472.0204.0324.011325 ttt eeeT −−− −−−=

Page 19: Apresentação NFPA SFP

Lie’s Parametric Method

5.0

1236.0/1.0 600)]1(4)1()1(3[)10(250

23.0

⎟⎟⎠

⎞⎜⎜⎝

⎛+−+−−−= −−−⎟

⎟⎠

⎞⎜⎜⎝

⎛−⎟

⎟⎠

⎞⎜⎜⎝

oo

tttt

AHA

AHA

oo

HAACeeee

AHA

Toooo

Page 20: Apresentação NFPA SFP

Tanaka

31

0000

32

0000

6.1

∞∞

∞⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛ −=

∆HAcg

AhHATcg

QT

TTT

T k

ρρ

&

Page 21: Apresentação NFPA SFP

Magnusson and ThelanderssonCurves

Page 22: Apresentação NFPA SFP

Harmathy

( ) ( ) ( ) ( )⎥⎦⎤

⎢⎣⎡ −−−+−∆+∆= 4

04

0 368.0932.01 TT

ATTcmmHHm

Aq o

focvfE σζβ &&&

41

42

1

0 2⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎦

⎢⎢⎣

⎡⎟⎠⎞

⎜⎝⎛++≈

πκτ

ση kq

Tq

T EE

Page 23: Apresentação NFPA SFP

Babrauskas

54321 *****)1452( θθθθθoo TTT −+=

• θ1 - Stoiciometry• θ2 – Steady-state heat loss to walls• θ3 – Transient wall losses• θ4 – Radiation loss through vent• θ5 – Combustion efficiency

Page 24: Apresentação NFPA SFP

Ma and Mäkeläinen

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Time Ratio (t / tm)

Tem

pera

ture

Rat

io (T

g / T

gm)

δ = 0.5, 1.0

δ = 0.8, 1.6

Page 25: Apresentação NFPA SFP

CIB – Temperature

0

200

400

600

800

1000

1200

0 10 20 30 40 50A/AoHo1/2 (m-1/2)

T (°

C)

CIB Data

CIB Curve

Page 26: Apresentação NFPA SFP

CIB – Burning Rate

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 10 20 30 40 50 60

A/AoHo (m^-1/2)

R/A

oHo(

D/W

)^1/

2 (k

g/s-

m^5

/2)

121

221

211

441

Curve Fit

Page 27: Apresentação NFPA SFP

Law

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

−=

oo

HAA

gm

HAA

eToo

1.0

16000

( )Ψ−−= 05.01 eTT gm

Page 28: Apresentação NFPA SFP

Evaluation

• Use CIB temperature and burning rate data to evaluate methods

Page 29: Apresentação NFPA SFP

Cardington

23 m

Closed end

Cribs distributed on floor

Thermocouple locations

2.7 m

5.5 m

Page 30: Apresentação NFPA SFP

Findings – Law

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50

( ) )(m / -1/2oo HAA

Page 31: Apresentação NFPA SFP

Findings – Law

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60

A/AoHo (m^-1/2)

R/A

oHo(

D/W

)^1/

2 (k

g/s-

m^5

/2)

121

221

211

441

Law X 1.4

Page 32: Apresentação NFPA SFP

Findings – Law

0200400600800

100012001400

0 0.5 1

Time (h)

Tem

pera

ture

(C)

Measured

Law withoutreduction factorLaw

Page 33: Apresentação NFPA SFP

Findings – Law

Cardington Test #1

0200400600800

100012001400

0 1 2

Time (h)

Tem

pera

ture

(C)

MeasuredLaw Adusted

21

18−

= mHA

A

oo

Page 34: Apresentação NFPA SFP

Findings – Magnusson and Thelandersson

0

200

400

600

800

1000

1200

1400

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (h)

Tem

pera

ture

(C)

Measured

Magnusson (Type C)

21

45−

= mHA

A

oo

Page 35: Apresentação NFPA SFP

Findings - Lie

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8

Time (h)

Tem

pera

ture

(C)

Measured

Lie

21

45−

= mHA

A

oo

Page 36: Apresentação NFPA SFP

Are Correlations Based on Burning Wood Cribs OK?

Page 37: Apresentação NFPA SFP

Limitations

• Uncertainty in model inputs, e.g., fire load• Intervention, e.g. sprinklers or fire brigade• Designing for extreme events

Page 38: Apresentação NFPA SFP

Localized Fires

• Heat transfer from fire plume in contact with a structural element

• May be more severe than hot gas layer exposure– Large enclosures– Open parking garages– Bridges and overpasses– Tunnels

Page 39: Apresentação NFPA SFP

Heat Flux Boundary Condition

( ) ( )44∞∞ −−−−′′=′′ TTTThqq ssshfgnet σε

Ts General boundary condition ( ) 44

sssfffsnet TTThTqdxdTk σεσεε −−+=′′=−h(Tf –Ts)

Determined from heat flux gaugeεf εsσTf4

q”net

εsσTs4

Page 40: Apresentação NFPA SFP

Fire Types

• Bounding fires– Items immersed in large fires

• Specific geometries– Fire against vertical walls– Fire in a corner with a ceiling– Fire impinging on unbounded flat ceiling– Fire impinging on I-beam mounted below ceiling– Others in SFPE Handbook of Fire Protection

Engineering, 3rd Edition

Page 41: Apresentação NFPA SFP

Immersed Objects

• Peak in most tests– 150-170 kW/m2

• Highest in tests– 220 kW/m2

– appears exceptional

TEST POOL SIZE FUEL peakq ′′

(kW/m2) AEA Winfrith [1] 1.6 ft x 31 ft Kerosene 150

US DOT [1] Not listed. Kerosene 138 USCG [1] Not listed. Kerosene 110-142

US DOT [1] Not listed. Kerosene 136-159 Sandia [1] Not listed. Kerosene 113-150

HSE Buxton [1] Not listed. Kerosene 130 Shell Research [1] 13 ft x 23 ft Kerosene 94-112 Large cylinder [2] 30 ft x 60 ft JP-4 100-150 Small cylinder [2] 30 ft x 60 ft JP-4 150-220

Ref. [3] 8 ft x 16 ft JP-5 144 1. Cowley (1991). 2. Gregory, Mata, and Keltner (1987). 3. Russel and Canfield (1973).

Page 42: Apresentação NFPA SFP

Specific Geometries

• Empirical correlations– Heat flux gauge measurements

• Required input data– Heat release rate– Fuel diameter– Location relative to top of fuel package

Page 43: Apresentação NFPA SFP

General Calculation Approach

• Calculate flame height• Calculate virtual source origin (if required)• Calculate location of element relative to fire

centerline and top surface of fuel• Use correlations to determine heat flux

Page 44: Apresentação NFPA SFP

Vertical Wall

Heat Release Rate [kW]

0 100 200 300 400 500 600

Peak

Hea

t Flu

x, q

" peak

[kW

/m2 ]

0

20

40

60

80

100

120

140

Aspect Ratio ~1Aspect Ratio ~2Aspect Ratio ~3

Page 45: Apresentação NFPA SFP

Vertical Wall

z/Lf

0.01 0.1 1 10

Cen

terli

ne H

eat F

lux,

q" c

l [kW

/m2 ]

1

10

100

1000

Q ≈ 59 kWQ ≈ 121 kWQ ≈ 212 kWQ = 313 kWQ = 523 kWCorrelation for Q=59 kWCorrelation for Q=523 kW

Vertical on Centerline Horizontally off Centerline

Page 46: Apresentação NFPA SFP

Vertical Wall - Limitations

• Wall is vertical• Flames are luminous• No heating from upper-layer of gases • Fire assumed in contact with wall• Data developed for specific size fires

– Heat release rate up to 520 kW– Diameter up to 0.70 m

Page 47: Apresentação NFPA SFP

Corner with Ceiling

Regions for Correlations

Page 48: Apresentação NFPA SFP

Corner with Ceiling

Length of Area Burner Side, D [m]0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Pea

k H

eat F

lux,

q" p

eak

[kW

/m2 ]

0

10

20

30

40

50

60

70

80

90

100

110

120

z/Lf,tip

0.01 0.1 1 10

Max

imum

Hea

t Flu

x in

Cor

ner,

q"m

ax (k

W/m

2 )

1

10

100

1000

Along Height in CornerPeak in Corner

Page 49: Apresentação NFPA SFP

Corner with Ceiling

(x+H) / Lf,tip

0.1 1 10

Max

imum

Hea

t Flu

x, q

" max

[kW

/m2 ]

1

10

100

1000

(r+H)/Lf,tip

0.1 1 10

Hea

t Flu

x to

Cei

ling

[kW

/m2 ]

0.1

1

10

100

1000

Along Top of Walls Along Ceiling

Page 50: Apresentação NFPA SFP

Corner with Ceiling - Limitations

• Walls are vertical and at a 90o angle• Ceiling is horizontal and at a 90o angle with walls• Flames are luminous• No heating from upper-layer of gases• Fire assumed in contact with wall• Data developed for specific size fires

– Heat release rate up to 300 kW– Diameter up to 0.50 m

Page 51: Apresentação NFPA SFP

Unbounded Ceiling

Page 52: Apresentação NFPA SFP

Unbounded Ceiling

At Stagnation Point

Page 53: Apresentação NFPA SFP

Unbounded Ceiling

w = (r+H+z')/(LH+H+z')

0.1 1 10H

eat F

lux,

q" [

kW/m

2 ]1

10

100

1000

Along Ceiling Radially out from Impingment Point

Page 54: Apresentação NFPA SFP

Unbounded Ceiling - Limitations

• Ceiling is flat with no pockets or beams• Flames are luminous• No heating from upper-layer of gases• Data developed for specific size fires

– Heat release rate up to 400 kW– Diameter up to 1.0 m

Page 55: Apresentação NFPA SFP

I-Beam Beneath Ceiling

Page 56: Apresentação NFPA SFP

I-Beam Beneath Ceiling

• Fires <1,000 kW– Within band of

unbounded ceiling data

• Depends on location on I-beam– Highest on lower

flange face

Page 57: Apresentação NFPA SFP

I-Beam Beneath Ceiling

w (- -)

0.1 1 10

Hea

t Flu

x, q

", (k

W/m

2 )

0.1

1

10

100

1000• Fires 500-3,600 kW– Data close to bounding

fit

• Large fires >2,000 kW– All faces of I-beam

exposed to similar heat flux

– Close to bounding fit

Page 58: Apresentação NFPA SFP

I-Beam Beneath Ceiling -Limitations

• Only one I-beam tested– Web

• 150 mm high and 5mm thick– Flanges

• 75 mm wide and 6 mm thick• Fire impinges on I-beam lower flange face• Flames are luminous• No heating from upper-layer of gases• Data developed for specific size fires

– Heat release rate up to 3,600 kW– Diameter up to 1.6 m

Page 59: Apresentação NFPA SFP

Summary

• Performance-based design of structural fire resistance requires three steps– Estimation of thermal boundary conditions– Estimation of heat transfer– Estimation of structural response at elevated

temperatures• SFPE Guide provides information needed to

estimate thermal boundary conditions