asac introduction

Upload: wiji-astuti

Post on 06-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 ASAC Introduction

    1/47

    MIT X-ray Laser ProjectA true x-ray laser will have enormous impact

    No x-ray source is coherentNo laser has much power for l < 30 nm

    Murnane and Kapteyne produced l=31nm

    light pulses with a nano-Joule per pulse

    The number of photons per quantum state,

    the photon degeneracy is less than 0.1

  • 8/3/2019 ASAC Introduction

    2/47

    X-ray Lasers: Promise to be a comprehensive probe of all spatial and

    temporal scales and resolutions relevant to condensed matter

    Spatial Scales Temporal Scales

  • 8/3/2019 ASAC Introduction

    3/47

    MIT X-ray Laser Project

    Unique opportunity to integrate:

    Accelerator technology

    (MIT/Bates Lab)

    Fast laser technology

    (MIT Ultrafast Group)

  • 8/3/2019 ASAC Introduction

    4/47

    Self-Amplified Spontaneous Emission (SASE)

    SASE Radiation has full Transverse Coherence

  • 8/3/2019 ASAC Introduction

    5/47

  • 8/3/2019 ASAC Introduction

    6/47

  • 8/3/2019 ASAC Introduction

    7/47

    APS DemonstratesSelf-Amplified Spontaneous Emission (SASE)

  • 8/3/2019 ASAC Introduction

    8/47

  • 8/3/2019 ASAC Introduction

    9/47

  • 8/3/2019 ASAC Introduction

    10/47

    SASE Radiation is not Transform Limited

    310/ =cle

    NN

    310/ el NNc

    A SASE FEL is an amplifier of electron density modulations

  • 8/3/2019 ASAC Introduction

    11/47

    SASE Radiation is Powerful, But Noisy

    t (fs) Dw/w (%)

  • 8/3/2019 ASAC Introduction

    12/47

    Seeding to Limit Fluctuations

  • 8/3/2019 ASAC Introduction

    13/47

  • 8/3/2019 ASAC Introduction

    14/47

    Data from BNL DUV-FEL experiment

  • 8/3/2019 ASAC Introduction

    15/47

    Seeded beam SASE beam

    Output

    wavelength

    FEL param

    rFEL

    Dtmin (fs) at

    max BW

    DEmin (meV) at

    1 ps FWHM

    SASE Dtmin

    (fs)

    SASE DEmin

    (meV)100 nm 9.e-3 20 2 100 110

    10 nm 4.e-3 5 2 100 500

    1 nm 1.5e-3 1 2 100 1900

    0.1 nm 0.2e-3 0.8 2 100 2500

    Bandwidth and Pulse Length

    1

    2f tD D

    FELf fr

    D=

    Seeded beams limited only by

    uncertainty principle and seed

    properties.

    SASE properties determinedby ebeam.

  • 8/3/2019 ASAC Introduction

    16/47

    MIT X-ray Laser Project

    Provide full transverse and longitudinal coherence get rid of the SASE noise

    Provide wide spectrum coverage: 100 nm > l

  • 8/3/2019 ASAC Introduction

    17/47

    MIT X-ray Laser Project

    How to reach wavelengths below 1 nm?

    Must get the shortest wavelength seeds

    using High Harmonic Generation methods,--30nm available now, possible 10 nm or below

    Then use cascaded High Gain

    Harmonic Generation methods in FEL,--factors of >30 are possible

  • 8/3/2019 ASAC Introduction

    18/47

    -4 -2 0 2 4Time, fs

    x-ray harmonicemission=

    =/

    MIT Ultra-fast GroupHHG seeding methods

    J. Fujimoto, H. Haus, E. Ippen, F. Kaertner

    See current issue of Physics Today

  • 8/3/2019 ASAC Introduction

    19/47

    High-Harmonic Generation

    Noble Gas Jet (He, Ne, Ar, Kr)

    100 mJ - 1 mJ@ 800 nm

    XUV @ 3 30 nm

    h = 10-8 - 10-5

    Recombination

    Propagation

    -Wb

    wXUV

    Energy

    t

    x

    tb

    0

    Laser electric field

    Ionization

  • 8/3/2019 ASAC Introduction

    20/47

    High Gain Harmonic Generation

    Modulator is tuned tow0.

    Electron beamdevelops energy

    modulation at w0.

    3rd harmonicbunching isoptimized inchicane.

    Energy modulation is

    converted to spatial

    bunching in chicane

    magnets.

    Input seed at w0

    overlaps electron

    beam in energy

    modulator undulator.

    Electron beam radiates

    coherently at w3 in long

    radiator undulator.

    Radiator is tuned to w3.

    Method to reach short wavelength FEL output from longer

    wavelength input seed laser.

  • 8/3/2019 ASAC Introduction

    21/47

    Cascaded HGHG

    Input

    seed w01st stage 2nd stage 3rd stage

    Output at 3w0

    seeds 2nd stage

    Output at 9w0

    seeds 3rd stage

    Final output

    at 27w0

    Number of stages and harmonic of each to be optimized during study.

    Factor of 10 30 in wavelength is reasonable without additional

    acceleration between stages.

    Seed longer wavelength (100 10 nm) beamlines with ~200 nm harmonic

    from synchronized Ti:Sapp laser.

    Seed shorter wavelength (10 0.3 nm) beamlines with HHG pulses.

  • 8/3/2019 ASAC Introduction

    22/47

    Laser System & SynchronizationHigh Harmonic

    Generation

    1 nJ 10 nJ

    100 as 10 ps

    1-20 kHz

    @ 1 - 30 nm

    Photo-Injector:

    1-10 ps Pulses

    1-10 mJ

    1-20 kHz

    @ 266 nm(conv. NLO)

    Fiberlink + Synchronization

    LINAC FELE-beam

    ~200 m

    10 fsTiming Jitter

    Output: Three highly synchronized pulse streamsE-beam, EUV 1 - 30 nm and @ 800 nm driver pulse

  • 8/3/2019 ASAC Introduction

    23/47

    0.3 nm 0.1 nm

    UV Hall X-ray Hall

    Nanometer Hall

    SC Linac

    4 GeV2 GeV1 GeV

    1 nm

    0.3 nm

    100 nm

    30 nm

    10 nm

    10 nm

    3 nm

    1 nm

    Main oscillator

    Pump

    laserPump

    laser

    Seed

    laser

    Seed

    laser

    Seed

    laser

    Pump

    laser

    Fiber link synchronization

    Injector

    laser

    Undulators

    Undulators

    Undulators

    Upgrade: 0.1 nm

    at 8 GeV

    SC Linac

    MIT X-ray Laser Concept

  • 8/3/2019 ASAC Introduction

    24/47

    to master oscillator for timing sync

    Pump

    lasersTi:Sapp + BBO = 200 nm seed

    Ti:Sapp + HHG = 10-30 nm seed

    Tune by OPA or harmonic number

    10 nm

    3 nm

    1 nm

    Direct seeded or cascaded

    HGHG undulators

    Nanometer Hall

    Seed

    lasers

    Ti:Sapp + HHG = 10-30 nm seed

    Tune by OPA or harmonic number

    Cascaded HGHG undulators

    Cascaded HGHG undulators

    ~20 m length

    10 GW peak

    ~30 m length

    4 GW peak

  • 8/3/2019 ASAC Introduction

    25/47

    Pulse Structure (Quasi-CW)

    SC Linac Pulse @1Hz 10% Duty Factor

    0 500 1000 1500 2000 2500

    Time (ms)

    ~90 Warm RF Gun Pulses 1 ms spacing

    0 100

    Time (ms)

    RF Gun Pulse

    -10 0 10 20Time (us)

    0.1% Duty Factor

    8 Pulses

    8 Beamlines

    ~500 pC / Pulse

    1 us spacing

  • 8/3/2019 ASAC Introduction

    26/47

    Seeding for short pulse

    0.2995 0.3 0.3005 0.3010

    200

    400

    600

    800

    1000

    Wavelength (nm)

    Power(kW/bin)

    0.2995 0.3 0.3005 0.3010

    200

    400

    600

    800

    1000

    Wavelength (nm)

    Power(kW/bin)

    Output time profile Time profile (log plot) Spectrum

    0 10 20 30 40 5010

    0

    102

    104

    106

    108

    1010

    Time (fs)

    Power(W)

    0 10 20 30 40 5010

    0

    102

    104

    106

    108

    1010

    Time (fs)

    Power(W)

    Seed laser parameters

    FWHM 0.5 fs

    Power 10.0 MW

    Pulse energy 5 nJ

    FEL output parameters

    Saturation FWHM 0.75 fs

    Saturation power ~2.0 GW

    Saturation energy 1.5 mJ

    FWHM linewidth 6.0E-4

    Undulator length 20 m

    GINGER simulation of

    seeded FEL at 0.3 nm.

    Same ebeam parameters as SASE case.

    0 10 20 30 40 500

    0.5

    1

    1.5

    2

    Time (fs)

    Power(GW)

    0 10 20 30 40 500

    0.5

    1

    1.5

    2

    Time (fs)

    Power(GW)

    24.5 25 25.5 26 26.5 270

    0.5

    1

    1.5

    2

    Time (fs)

    Power(GW)

    24.5 25 25.5 26 26.5 270

    0.5

    1

    1.5

    2

    Time (fs)

    Power(GW)

  • 8/3/2019 ASAC Introduction

    27/47

    Seeding for narrow linewidth

    Output time profile Time profile (log plot) Spectrum

    Seed laser parameters

    FWHM 50 fs

    Power 0.1 MW

    Pulse energy 5 nJ

    FEL output parameters

    Saturation FWHM 30 fs

    Saturation power ~2.0 GW

    Saturation energy 0.1 mJ

    FWHM linewidth 1.0E-5

    Saturation length 28 m

    GINGER simulation of

    seeded FEL at 0.3 nm.

    Same ebeam parameters as SASE case.

    0.2995 0.3 0.3005 0.3010

    100

    200

    300

    400

    500

    Wavelength (nm)

    Power(MW/bin)

    0.2995 0.3 0.3005 0.3010

    100

    200

    300

    400

    500

    Wavelength (nm)

    Power(MW/bin)

    0 10 20 30 40 500

    0.5

    1

    1.5

    2

    Time (fs)

    Power(GW)

    0 10 20 30 40 500

    0.5

    1

    1.5

    2

    Time (fs)

    Power(GW)

    0 10 20 30 40 5010

    0

    102

    104

    106

    108

    1010

    Time (fs)

    Power(W)

    0 10 20 30 40 5010

    0

    102

    104

    106

    108

    1010

    Time (fs)

    Power(W)

  • 8/3/2019 ASAC Introduction

    28/47

    Comparison of SASE and Seeded Sources with APS Undulator A

  • 8/3/2019 ASAC Introduction

    29/47

  • 8/3/2019 ASAC Introduction

    30/47

    Cost Basis

    Fixed Costs 80 M$

    (Gun, X-ray Beamlines, Buildings, Cryoplant, Controls)

    Linac Systems (20 MeV/m, ~0.4M$/m) 20 M$/GeV

    Undulator Systems (0.2 M$/m)

    20M$/100mTotal Undulator Length = 4 x longest saturation length

    Contingency 25%

  • 8/3/2019 ASAC Introduction

    31/47

    Example

    4 GeV Linac

    50 m Saturation Length

    Costs: 80 M$ Fixed

    80 M$ Linac

    40 M$ Undulators

    50 M$ Contingency------------

    250 M$ Total

  • 8/3/2019 ASAC Introduction

    32/47

    1

    10

    100

    1000

    0 5 10 15 20

    Electron Energy (GeV)

    SaturationLength(m)

  • 8/3/2019 ASAC Introduction

    33/47

    1

    10

    100

    1000

    0 5 10 15 20

    Electron Energy (GeV)

    SaturationLength(m)

    100 nm

    Electron Bunch ParametersQ = 0.5 nC E/E = 0.02% T = 250 fs

    = 1.5 m

    Hybrid Undulator ParametersVISA: = 18 mm, K=1.4, B=0.8 T23mm: = 23 mm, K=2.4, B=1.1 T

    LCLS: = 30 mm, K=3.9, B=1.4 T

    10 nm

    1 nm

    0.3 nm

    0.1 nm

    0.15 nm (LCLS)

    u = 18 mmu = 23 mm

    u = 30 mm

    H b id U d l t P t

    Better GunS d ti U d l t

  • 8/3/2019 ASAC Introduction

    34/47

    1

    10

    100

    1000

    0 5 10 15 20

    Electron Energy (GeV)

    SaturationLength(m)

    100 nm

    Electron Bunch ParametersQ = 0.5 nC E/E = 0.02% T = 250 fs

    = 1.5 m

    Hybrid Undulator ParametersVISA: = 18 mm, K=1.4, B=0.8 T23mm: = 23 mm, K=2.4, B=1.1 TLCLS: = 30 mm, K=3.9, B=1.4 T

    10 nm

    1 nm

    0.3 nm

    0.1 nm

    = 0.75 mSuperconducting Undulator = 14 mm K = 1.3

    Superconducting UndulatorMiracle Gun = 0.1 m

  • 8/3/2019 ASAC Introduction

    35/47

    Essential to Improve e-Gun Performance

    In linacs, electron emittances scale inversely with energy

    Electron beam emittance is born at the electron gun

    Electron gun emittances today are ee = 0 .5 nm/E (GeV)

    Photon emittances for full transverse coherence ep = lp/4

    To couple a given electron beam most effectively to a

    coherent photon field, we should have:

    ee = ep

  • 8/3/2019 ASAC Introduction

    36/47

    0.3 nm 0.1 nm

    UV Hall X-ray Hall

    Nanometer Hall

    SC Linac

    4 GeV2 GeV1 GeV

    1 nm

    0.3 nm

    100 nm

    30 nm

    10 nm

    10 nm

    3 nm

    1 nm

    Main oscillator

    Pump

    laserPump

    laser

    Seed

    laser

    Seed

    laser

    Seed

    laser

    Pump

    laser

    Fiber link synchronization

    Injector

    laser

    Undulators

    Undulators

    Undulators

    Upgrade: 0.1 nm

    at 8 GeV

    SC Linac

    MIT X-ray Laser Concept

  • 8/3/2019 ASAC Introduction

    37/47

    The MIT X-ray Laser Project

    A National User Facility: 10-30 beams

    Wavelength range 100-0.1 nm

    Integrated laser seeding for full coherence

    Pulses: Dt=1-1000 fs; Dw=3-0.003eV

    Pulse power of up to 1 mJ

    Pulse rates of 1 kHz or greater

    MIT/ Bates Laboratory

    Science:single molecule imaging,femtochemistry, nanometer lithography

    Technology:superconducting FEL,Ti:Sapp HHG seeding technology

    Education:accelerator science curriculum, synergy with CMSE programs

    Cost/Schedule:$300M; design: FY04-FY06; construct: FY07-FY10

  • 8/3/2019 ASAC Introduction

    38/47

    MIT Commitment

    MIT has embraced the x-ray laser conceptexclusively for the future of Bates Laboratory

    Deans of Science and Engineering and the VP of

    Research provided over $400K in seed support

    President Vest asked a key CEO to chair a

    corporation-level advisory committee to securesupport of business and political leaders in MA

  • 8/3/2019 ASAC Introduction

    39/47

    Charge to

    MIT X-ray Laser

    Accelerator Science Advisory Committee

    September 18-19, 2003

    The proposed MIT x-ray laser facility is at an early stage ofconceptual design. The goals of the design are to produce fully

    coherent x-ray pulses with the stable and reliable operations

    required of a user facility. We seek guidance and constructive

    criticism regarding the technical choices that are being made.

  • 8/3/2019 ASAC Introduction

    40/47

    The ASAC committee should:

    Review laser and accelerator sections of proposal to NSF and

    technical presentations at committee meeting.Evaluate the appropriateness of chosen technologies and suggest

    alternatives.

    Identify the primary technical challenges for each system and for

    the facility as a whole.

    Respond to NSF reviewer comments.

    Evaluate the potential for a facility based on the Bates linac to

    demonstrate laser seeding and cascaded HGHG, and selectedscientific applications

  • 8/3/2019 ASAC Introduction

    41/47

    MIT X-ray Laser Design Proposal

    Contact: David E. Moncton, Director

    Telephone: 617-253-83333

    E-mail: [email protected]

    website: http://mitbates.mit.edu/xfel/indexpass.htm

    Bates Senior Staff Contributors

    Manouchehr Farkhondeh William M. Fawley James Fujimoto

    Jan van der Laan Hermann Haus Erich Ippen

    Christoph Tschalaer Ian McNulty Denis B. McWhan

    Fuhua Wang Jianwei Miao Michael Pellin

    Abbi Zolfaghari Mark Schattenburg Gopal K. Shenoy

    Townsend Zwart

    Co-Principal Investigators Science Collaborators

    William S. Graves Simon Mochrie Keith A. Nelson

    Franz X. Kaertner Gregory Petsko Dagmar Ringe

    Richard Milner Henry I. Smith Andrei Tokmakoff

    3-year duration, $15M total request

  • 8/3/2019 ASAC Introduction

    42/47

    Existing Technology

    Electron Guns

    Adequate performance has been demonstrated.

    Room for continuing R&D and improvement.

    Not a cost driver.

  • 8/3/2019 ASAC Introduction

    43/47

    Existing Technology

    Linac

    Successful operation at Tesla Test Facility, JLAB.

    Capital cost driver.

  • 8/3/2019 ASAC Introduction

    44/47

    Existing Technology

    Undulator

    Well established. Successful experience at LEUTL, TTF.

    Make use of investment in LCLS design.

    Capital Cost driver.

  • 8/3/2019 ASAC Introduction

    45/47

    3 e r st d l n

  • 8/3/2019 ASAC Introduction

    46/47

    3-year study plan

  • 8/3/2019 ASAC Introduction

    47/47