asen 5050 spaceflight dynamics interplanetary prof. jeffrey s. parker university of colorado –...

45
ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Upload: grace-parsons

Post on 06-Jan-2018

227 views

Category:

Documents


4 download

DESCRIPTION

Schedule from here out Lecture 29: Interplanetary 3 11/7: Interplanetary 2 11/10: Entry, Descent, and Landing 11/12: Low-Energy Mission Design 11/14: STK Lab 3 11/17: Low-Thrust Mission Design (Jon Herman) 11/19: Finite Burn Design 11/21: STK Lab 4 Fall Break 12/1: Constellation Design, GPS 12/3: Spacecraft Navigation 12/5: TBD 12/8: TBD 12/10: TBD 12/12: Final Review

TRANSCRIPT

Page 1: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

ASEN 5050SPACEFLIGHT DYNAMICS

Interplanetary

Prof. Jeffrey S. ParkerUniversity of Colorado – Boulder

Lecture 29: Interplanetary 1

Page 2: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Announcements• HW 8 is out

– Due Wednesday, Nov 12.– J2 effect– Using VOPs

• Reading: Chapter 12

Lecture 29: Interplanetary 2

Page 3: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Schedule from here out

Lecture 29: Interplanetary 3

• 11/7: Interplanetary 2

• 11/10: Entry, Descent, and Landing• 11/12: Low-Energy Mission Design• 11/14: STK Lab 3

• 11/17: Low-Thrust Mission Design (Jon Herman)• 11/19: Finite Burn Design• 11/21: STK Lab 4

• Fall Break

• 12/1: Constellation Design, GPS• 12/3: Spacecraft Navigation• 12/5: TBD

• 12/8: TBD• 12/10: TBD• 12/12: Final Review

Page 4: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Space NewsOrion’s EFT-1

Lecture 29: Interplanetary 4

Page 5: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Quiz #14

Lecture 29: Interplanetary 5

Page 6: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Quiz #14

Lecture 29: Interplanetary 6

✖✔

N

S

Atm motion

S/C motion(inertial)

Perigee Point

V ~ 8 km/sVatm ~ 0.48 km/stheta ~ 3.1 deg

θ

Page 7: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Quiz #14

• Problem 2

Lecture 19: Perturbations 7

Sun

Page 8: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Quiz #14

• Problem 3

Lecture 19: Perturbations 8

Sun

Page 9: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Quiz #14

Lecture 29: Interplanetary 9

Page 10: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Quiz #14

Lecture 29: Interplanetary 10

Page 11: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

ASEN 5050SPACEFLIGHT DYNAMICS

Interplanetary

Prof. Jeffrey S. ParkerUniversity of Colorado – Boulder

Lecture 29: Interplanetary 11

Page 12: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Interplanetary

• History

• Planets

• Moons

• Small bodies

Lecture 29: Interplanetary 12

Today: tools, methods, algorithms!

Page 13: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Building an Interplanetary Transfer

• Simple:– Step 1. Build the transfer from Earth to the planet.– Step 2. Build the departure from the Earth onto the

interplanetary transfer.– Step 3. Build the arrival at the destination.

• Added complexity:– Gravity assists– Solar sailing and/or electric propulsion– Low-energy transfers

Lecture 29: Interplanetary 13

Page 14: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Patched Conics

• Use two-body orbits

Lecture 29: Interplanetary 14

Page 15: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Patched Conics

• Gravitational forces during an Earth-Mars transfer

Lecture 29: Interplanetary 15

Page 16: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Sphere of Influence

• Measured differently by different astrodynamicists.– “Hill Sphere”– Laplace derived an expression that matches real trajectories

in the solar system very well.

• Laplace’s SOI:– Consider the acceleration of a spacecraft in the presence of

the Earth and the Sun:

Lecture 29: Interplanetary 16

Page 17: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Sphere of Influence

• Motion of the spacecraft relative to the Earth with the Sun as a 3rd body:

• Motion of the spacecraft relative to the Sun with the Earth as a 3rd body:

Lecture 29: Interplanetary 17

Page 18: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Sphere of Influence

• Laplace suggested that the Sphere of Influence (SOI) be the surface where the ratio of the 3rd body’s perturbation to the primary body’s acceleration is equal.

Lecture 29: Interplanetary 18

Page 19: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Sphere of Influence

• Laplace suggested that the Sphere of Influence (SOI) be the surface where the ratio of the 3rd body’s perturbation to the primary body’s acceleration is equal.

Lecture 29: Interplanetary 19

Primary Earth Accel

Primary Sun Accel

3rd Body Sun Accel

3rd Body Earth Accel

Page 20: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Sphere of Influence

• Laplace suggested that the Sphere of Influence (SOI) be the surface where the ratio of the 3rd body’s perturbation to the primary body’s acceleration is equal.

Lecture 29: Interplanetary 20

Primary Earth Accel

Primary Sun Accel

3rd Body Sun Accel

3rd Body Earth Accel

=

Page 21: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Sphere of Influence

• Find the surface that sets these ratios equal.

Lecture 29: Interplanetary 21

After simplifications:

Page 22: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Sphere of Influence

• Find the surface that sets these ratios equal.

Lecture 29: Interplanetary 22

Earth’s SOI: ~925,000 kmMoon’s SOI: ~66,000 km

Page 23: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Patched Conics

• Use two-body orbits

Lecture 29: Interplanetary 23

Page 24: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Interplanetary Transfer

• Use Lambert’s Problem • Earth – Mars in 2018

Lecture 29: Interplanetary 24

Page 25: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Interplanetary Transfer

• Lambert’s Problem gives you:– the heliocentric velocity you require at the Earth departure– the heliocentric velocity you will have at Mars arrival

• Build hyperbolic orbits at Earth and Mars to connect to those.– “V-infinity” is the hyperbolic excess velocity at a planet.

Lecture 29: Interplanetary 25

Page 26: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Earth Departure

• We have v-infinity at departure

• Compute specific energy of departure wrt Earth:

• Compute the velocity you need at some parking orbit:

Lecture 29: Interplanetary 26

Page 27: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Earth Departure

Lecture 29: Interplanetary 27

Departing from a circular orbit, say, 185 km:

Page 28: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Launch Target

Lecture 29: Interplanetary 28

Page 29: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Launch Target

Lecture 29: Interplanetary 29

Page 30: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Launch Targets

• C3, RLA, DLA

Lecture 29: Interplanetary 30

(In the frame of the V-inf vector!)

Page 31: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Launch Targets

Lecture 29: Interplanetary 31

Page 32: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Mars Arrival

• Same as Earth departure, except you can arrive in several ways:– Enter orbit, usually a very elliptical orbit– Enter the atmosphere directly– Aerobraking. Aerocapture?

Lecture 29: Interplanetary 32

Page 33: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Aerobraking

Lecture 29: Interplanetary 33

Page 34: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Comparing Patched Conics to High-Fidelity

Lecture 29: Interplanetary 34

Page 35: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Gravity Assists

• A mission designer can harness the gravity of other planets to reduce the energy needed to get somewhere.

• Galileo launched with just enough energy to get to Venus, but flew to Jupiter.

• Cassini launched with just enough energy to get to Venus (also), but flew to Saturn.

• New Horizons launched with a ridiculous amount of energy – and used a Jupiter gravity assist to get to Pluto even faster.

Lecture 29: Interplanetary 35

Page 36: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Gravity Assists• Gravity assist, like pretty much everything else, must obey the

laws of physics.

• Conservation of energy, conservation of angular momentum, etc.

Lecture 29: Interplanetary 36

So how did Pioneer 10 get such a huge kick of energy, passing by Jupiter?

Page 37: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Designing Gravity Assists• Rule: Unless a spacecraft performs a maneuver or flies

through the atmosphere, it departs the planet with the same amount of energy that it arrived with.

• Guideline: Make sure the spacecraft doesn’t impact the planet (or rings/moons) during the flyby, unless by design.

Lecture 29: Interplanetary 37

Turning Angle

Page 38: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

How do they work?

• Use Pioneer 10 as an example:

Lecture 29: Interplanetary 38

INTO FLYBY

OUT OF FLYBY

Page 39: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Gravity Assists• We assume that the planet doesn’t move during the flyby

(pretty fair assumption for initial designs).– The planet’s velocity doesn’t change.

• The gravity assist rotates the V-infinity vector to any orientation.– Check that you don’t hit the planet

Lecture 29: Interplanetary 39

Page 40: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Gravity Assists• We assume that the planet doesn’t move during the flyby

(pretty fair assumption for initial designs).– The planet’s velocity doesn’t change.

• The gravity assist rotates the V-infinity vector to any orientation.– Check that you don’t hit the planet

Lecture 29: Interplanetary 40

Page 41: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Designing a Gravity Assist

• Build a transfer from Earth to Mars (for example)– Defines at Mars

• Build a transfer from Mars to Jupiter (for example)– Defines at Mars

• Check to make sure you don’t break any laws of physics:

Lecture 29: Interplanetary 41

Page 42: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Designing a Gravity Assist

• Another strategy:– Build a viable gravity assist that doesn’t necessarily

connect with either the arrival or departure planets.– Adjust timing and geometry until the trajectory becomes

continuous and feasible.

Lecture 29: Interplanetary 42

Page 43: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Gravity Assists

Lecture 29: Interplanetary 43

Please note!

This illustration is a compact, beautiful representation of gravity assists.

But know that the incoming and outgoing velocities do NOT need to be symmetric about the planet’s velocity! This is just for illustration.

Page 44: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Gravity Assists

• We can use them to increase or decrease a spacecraft’s energy.

• We can use them to add/remove out-of-plane components– Ulysses!

• We can use them for science

Lecture 29: Interplanetary 44

Page 45: ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1

Announcements• HW 8 is out

– Due Wednesday, Nov 12.– J2 effect– Using VOPs

• Reading: Chapter 12

Lecture 29: Interplanetary 45