ash3d: a new usgs tephra fall model hans schwaiger 1 larry mastin 2 roger denlinger 2 1 alaska...

29
Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

Upload: elfreda-stafford

Post on 04-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

Ash3d:A new USGS tephra fall model

Hans Schwaiger1

Larry Mastin2

Roger Denlinger 2

1 Alaska Volcano Observatory

2 Cascade Volcano Observatory

Page 2: Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

Why do we need a tephra fall model?

Forecasting ash distribution during unrest Constraining eruption parameters through

observation & modeling Research into the physics & hazards of ash

eruptions

Page 3: Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

A shfa ll mo delling pro gra m by A .W . H u rs t, N Z - IG N SW ind da ta from N O A A-A R L

0 40 80 12 0 16020K ilo m e ter s

M o u n t S t. H e le n s

A ir p o rts

Modeled Tephra Th ic knes s

Val u e4 m m

0 m m

H y p o th etic a l e r u p tio n o f M o u n t S t. H e le n s V o lc an oV o lu m e = 1 m il lio n c u b ic m ete rs , C o lu m n h e ig h t = 7 km

M M 5 (15 K m ) fo r ec as t w in d s 00 h rs U T C 0 5 J u n 0 7 (17 h rs P D T 04 J u n 0 7)

M o u n t S t . H e le n s

Cla rk

S kam an ia

Cow litz

Mu ltno ma h

Cla ckam as

W a shing ton

Ma rio n

Linn

Co lum bia

Ho odRive r

Wa sco

J effe rson

De schu tes

Crook

Lan e

K lam ath LakeDo ug la s

Coos

Benton

Linco ln

P olk

Yam hill

Tillam oo k

Cla tsop

S he rma n

Gilliam

Mo rrow

Um atilla

Un ion

W h eele rG ra nt

Harn ey

Ma lh eu r

Baker

Wa llo wa

Asotin

G arfield

Co lum bia

W allaWa lla

Fra nklin

Benton

Ada msW h itma n

Linco ln S pokan e

P endO reille

S te vens

Fe rryOkan og an

Doug la s

G rantK ittita s

Ch elan

Y akim a

Lewis

P ierce

K ing

S no homish

Skag it

W h atco m

S anJ ua n

Is land

Cla lla m

Th urs to n

G raysH arbo r

J efferson

Ma son

K itsap

P acific

W a hkiaku m

K lickita t

Bound ary

Bon ne r

K ooten ai

Benew ah

Latah

S ho sho ne

Cle arwate r

Lew is

Ne zP erce

Ida ho

Ada ms

Valley

Wa shington

P ayette

G emBoise

Ca nyo n

AdaE lmoreO w yhee

Lincoln

San de rs

Mine ral

What we were using

Ashfall: A 2-D model Developed by Tony Hurst

Page 4: Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

For Redoubt, Evan Thoms & Rob Wardwell wrote a Python script to automatically run Ashfall & plot these maps.

Main disadvantages:•We don’t have the source code•It’s limited to 2-D runs in a 1-D wind field.

Page 5: Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

What the model does

Calculated advection-diffusion of multiple grain sizes for 4-D wind field

Calculates deposit thickness and its variation with time.

Calculates time of arrival of ash at airports.

Writes out 3-D ash-cloud migration at time steps, for animation.

Page 6: Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

Model overview

The equation for advection of ash by wind and diffusion of ash by turbulent eddies is solved by method of fractional steps, treating advection and diffusion independently.

Advection step: Solve advection equation to get concentration at intermediate time step (q*):

Diffusion step: Solve diffusion equation, integrating the remaining fractional step:

Where q is ash concentration in kg/km3, u is velocity in km/hr, and K is an eddy diffusivity in units of km2/hr

( ) 0q

u qt x

* 2 *

20

q qK

t x

Page 7: Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

Methods of Solution

A domain of cells is constructed either in a spherical (lat./lon.) or Cartesian coordinates

Wind fields must be provided and are used to transport ash as it settles.

The numerical schemes used are: Finite volume methods with Riemann solvers, in which

ash flux occurs at cell boundaries. Semi-Lagrangian methods that backtrack ash transport

along wind streamlines in a fixed Eulerian framework. Turbulent diffusion is treated either explicitly (Forward

Euler) or implicitly (Crank-Nicolson)

Page 8: Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

Illustration of advection schemes

Donor CellUpwind withDimensionSplitting

CornerTransportUpwind

Semi-Lagrangian

t t+t

Page 9: Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

Illustration of advection schemesDonor CellUpwind withDimensionSplitting

CornerTransportUpwind

Semi-Lagrangian

• Conserves mass• Moderately fast• Uses most 2nd order terms•t = x/u• Increased numerical diffusion

• Conserves mass• Slow• Uses all 2nd order terms•t = x/u• Low numerical diffusion

• Conserves mass only approximately• Fast•t = c x/u• Low numerical diffusion• Accuracy depends on order of interpolation

Page 10: Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

Why so many options?

Fast, but non-conservative, calculations can be automated for ensemble forecast runs

Fully conservative calculations (slower) might be necessary for greater confidence in particular results

Full mass conservation might also be required when including additional physics (aggregation)

Page 11: Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

Types of calculation thatAsh3d can do

Calculation on a sphere Calculation on a plane• Uses lower-resolution Global Forecast System winds

•But, it can model an eruption from any volcano on Earth.

• Uses high-resolution winds from projected models (e.g. NAM, WRF)

•But, it can only model eruptions in certain geographic locations.

<12-50 km

0.5-2.5 deg.(50-250 km))

Page 12: Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

Projected Meteorological models used

NAM 11 km

NAM AK 45 km

Page 13: Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

Model inputs

Wind files (1-D, 3-D, 4-D) Grid parameters: dx,dy,dz Grain size distribution, fall velocities Eruption source parameters: Number of eruptions Time, duration, plume height, erupted volume, Suzuki

constant

Page 14: Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

Model outputs

Deposit thickness (final, at specified times) Ash cloud elevation & concentration Ash arrival times & thickness at airports & other points of

interest 3-D data in various formats:

ESRI ASCII (For import to Arc products) Kml/kmz (Google Earth) NetCDF Raw binary

Page 15: Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

Example: Iceland (4-14-2010)24-hours after start of simulation

Resolution = 0.33 degrees

Page 16: Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

Example: Iceland (4-14-2010)24-hours after start of simulation

Resolution = 0.20 degrees

Page 17: Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

Example: Iceland (4-14-2010)24-hours after start of simulation

Resolution = 0.10 degrees

Page 18: Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

Example: Iceland (4-14-2010)42-hours after start of simulation

Resolution = 0.10 degrees

Pavolonis

Page 19: Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

Example: Ensemble simulationsRedoubt: March 24, 2009 (event 6)dx,dy=5 kmdz = 1 kmnx,ny,nz = 140,140,22nt = ~600K = 0 km2/hrgrain sizes (1,2,4 m/s)

ESP:Duration = 15 minErup. Vol = 0.007 km3

Plume H = random uniform (6-20 km)

50 realizations (~90 min)

Page 20: Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

Example: Ensemble simulations

Redoubt 2009 event 6

ESP:

Plume H uniform 6-20 km

Erup. Vol. 7x10-4 km3

Duration 15 min

Probability of ash deposit > 1mm Contours at 5%, 50%, 95%

Page 21: Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

Example: Ensemble simulationsRedoubt: March 24, 2009 (event 6)dx,dy=5 kmdz = 1 kmnx,ny,nz = 140,140,22nt = ~600K = 0 km2/hrgrain sizes (1,2,4 m/s)

ESP:Duration = uniform

15-30 minErup. Vol = uniform

0.005-0.009 km3

Plume H = normal= 14 km, =3 km50 realizations (~90 min)

Page 22: Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

Example: Ensemble simulations

Redoubt 2009 event 6

ESP:

Plume H normal = 14 km=3 kmErup. Vol. uniform 5-9x10-4 km3

Duration uniform 15-30 min

Probability of ash deposit > 1mm Contours at 5%, 50%, 95%

Page 23: Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

Next steps

Finish verification Start validation: compare with field data Automate operational runs for volcanoes in unrest Sensitivity analysis Adaptive mesh refinement Include Aggregation Topography

Page 24: Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

Summary

New USGS tephra fall model nearly complete Automated simulations for volcanoes in unrest

coming soon Feedback appreciated on output formats

Simulation output Ensemble output

Page 25: Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

Illustration of diffusion schemesExplicit Forward Euler

• Easily implemented• First-order accurate •t = (x)2/K

tt+t

Implicit Crank-Nicolson

• Assumes linearity• Requires solving Ax=b• Second-order accurate •t limited only by accuracy

tt+t

Page 26: Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

Verification and Validation

• Verification – Is your code solving the equations correctly?• Construct suite of test cases to check behavior in idealized conditions

o Linear advection in x,yo Linear advection in zo Diffusion in x,y,zo Circular advection

• Method of manufacturedsolutions

• Validation – Are you even solving the right equations?• Comparison with experimental data• Comparison with field data

Page 27: Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

Convergence for different schemes

Page 28: Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

Execution time for different schemes

Page 29: Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory

Circular advection test case

• Smooth boundaries are modeled well

• Sharp boundaries are smoothed by numerical diffusion