assessment disorders acidbase sarah curtis

39
Assessment And Disorders Of Acid-Base Balance Mrs Sarah Curtis DipRCPath Royal Liverpool Hospital

Upload: monday125

Post on 03-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 1/39

Page 2: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 2/39

Aims of the lecture

• Understand measurements used to

describe acid-base biochemistry

• Develop a logical approach to assessment

of acid-base disorders

•  Apply knowledge to clinical cases

Page 3: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 3/39

Page 5: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 5/39

You may previously have seen two different ‘logs’ used: 

Base ‘10’ (Log10 often just written Log)

We are only concerned with Log10 

Base ‘e’ (Loge or Ln)

and the reverse of this, ‘antilog’, 10x

Page 6: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 6/39

The logarithm of 1000 to base 10 is 3… 

Log10 1000 = 3

The logarithm of a number  is the exponent by which another fixed

value, the base, has to be raised to produce that number.

????????

 And in reverse… the ‘antilog’ of 3 to base 10 is 1000

 Antilog 3  = 103 = 1000

…because 1000 is 103 

1000 =  103  = 10 × 10 × 10 

Page 7: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 7/39

Enough maths, time for

some Chemistry… 

Page 8: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 8/39

 Acid Equilibria

 Acids reversibly dissociate to release protons (H+)

 AH  A- H+

acid conjugate

base (salt)

proton

Page 9: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 9/39

 Acid Dissociation Constant

Ka = [A-] x [H+]

[AH]

Strong acids (e.g. HCl) are more favourably dissociated: Ka large

Weak acids (e.g. ethanol) are poorly dissociated: Ka small

Describes the readiness with which an acid will dissociate

HCl Cl- H+

HCl Cl-Cl-

Cl-H+

H+

H+

H+Cl-

EtOH EtO-H+

EtO-

H+EtOHEtOH

EtOH

EtOH

Page 10: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 10/39

Bringing in the logarithms… 

We all love ‘pH’, but what does it mean? 

Even for strong acids, [H+] is still very small… 

Logarithms make the numbers manageable (pre electronic calculators!)

pH = -Log10[H+] 

[H+]Blood  = 40 nmol/L

Blood pH = -Log10[0.00000040]

= 0.00000040 mol/L

= pH 7.0

The same trick is used for the rather less popular ‘pKa’ 

pKa = -Log10[Ka]

Page 11: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 11/39

Deep breath… 

pKa  = -Log10 [Ka] Substituting for Ka

Since LogXY = LogX + LogY

pH = pKa + Log10 [A-][AH]

= -Log10 [A-] [H+][AH]

= -Log10 [A-

] - Log10 [H+

][AH]

= -Log10 [A-] + pH

[AH]

pKa = -Log10 [Ka]Ka = [A-] [H+][AH]

We know:

Substituting for -Log10[H+]

Rearranging to put pH at the beginning

pH = -Log10 [H+]

= -Log10  [A-] x [H+]

[AH]

Henderson-Hasselbalch

Page 12: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 12/39

Let’s take another look at the 

Henderson-Hasselbalch equation… 

pH = pKa + Log10 [A-

][AH]

Conjugate base (salt)

 Acid

In blood there is a bicarbonate buffering system

Describes the relationship between pH and a buffering system

weak acid and its conjugate base (salt)

HCO3

-H2CO3  + H+ 

Page 13: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 13/39

Henderson-Hasselbalch

and the blood

pH = pKa + Log10 [HCO3-

][H2CO3]

Conjugate base (salt)

 Acid

The lungs

excrete CO2,

increasing

the buffering

capacity

Bicarbonate buffering in

blood has a pKa’ = 6.1 

H2O + CO2

Carbonic

anhydrase

 As H2CO3 is in equilibrium with CO2 we can replace this with PCO2 (kPa)

multiplied by a solubility factor 0.225

HCO3

-H2CO3  + H+ 

6.10.225 x PCO2 

Page 14: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 14/39

How does this relate to laboratory

assessment of acid-base Biochemistry?

pH = 6.1 + Log10  [HCO3- ]

0.225 x PCO2 

Normal blood pH = 7.35-7.45

[H+] > 45 nmol/L = acidaemia

[H+] < 35 nmol/L = alkalaemia

Normal [H+] = 35-45 nmol/L

What is the prevailing [H

+

]?

Measured using pH electrode on blood gas machine

pH1st

Page 15: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 15/39

How does this relate to laboratory

assessment of acid-base Biochemistry?

pH = 6.1 + Log10  [HCO3-

]0.225 x PCO2 

Normal blood PCO2 = 4.7-6.0 kPa

PCO2 > 6.0 kPa = metabolic

PCO2 < 4.7 kPa = respiratory

2nd

PCO2 > 6.0 kPa = respiratory

PCO2 < 4.7 kPa = metabolic

 Alkalosis Acidosis

Is the primary disorder metabolic or respiratory?

Measured using CO2  electrode on blood gas machine

PCO2

Page 16: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 16/39

How does this relate to laboratory

assessment of acid-base Biochemistry?

pH = 6.1 + Log10  [HCO3- ]

0.225 x PCO2 

Normal blood standard HCO3- = 22-26 mmol/L

3rd

Is there any compensation?

Derived by blood gas machine (Van Slyke equation) using pH, PCO2  & Hb

Normal [HCO3-]standard  = all respiratory

 Abnormal [HCO3

-]standard

  = metabolic component

‘Standard’ bicarbonate is one corrected for respiratory contribution (normalise PCO2  )

a  - 24.4 = - (2.3 ± b  + 7.7) ± (c  - 7.40) + d  /(1 - 0.023 ± b )

a = bicarbonate concentration in plasma (mmol/L)

b = haemoglobin concentration in blood (mmol/L)

c = pH of plasma at 37 °C

d = base excess concentration in blood (mmol/L)

Page 17: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 17/39

How does this relate to laboratory

assessment of acid-base Biochemistry?

pH = 6.1 + Log10  [HCO3- ]

0.225 x PCO2 

Normal Total CO2 (‘bicarbonate’) = 22-33 mmol/L

Measured enzymatically or derived by gas machine from Henderson-Hasselbalch

‘Total CO2 ’ is approximation of bicarbonate = HCO3- + CO2 + H 2 CO3 + CO3

-

TCO2 = Metabolic acidosis / Respiratory alkalosis 

TCO2 = Metabolic alkalosis / Respiratory acidosis

Page 18: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 18/39

Base Excess

CO2 cannot be buffered by bicarbonate… 

Respiratoryalkalosis

relative base deficit

HPr

Pr - H+

Pr -

HPr

H+

Equilibration of CO2 requires non-bicarbonate buffers

relative base excess

H2O + CO2Carbonic

anhydrase

HCO3-H2CO3  + H+ 

/ negative base excess

Derived by blood gas machine using pH, PCO2  & Hb

 Amount of strong acid/alkali needed to titrate whole blood to pH 7.4 at normal PCO2

BE = (HCO3- - 24.4 + [2.3 × Hb + 7.7] × [pH - 7.4]) × (1 - 0.023 × Hb)

Respiratory

acidosis

Page 19: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 19/39

 Anion Gap

‘Unmeasured’ Anions •  Proteins

•  -Hydroxybutyrate

•  Acetoacetate

•  Lactate

•  Sulphates

•  Phosphates•  Formate

•  Glycolate

•  Oxalate

•  Hippurate

•  Salicylate

‘Unmeasured’ Cations •  Calcium

•  Magnesium

•  (Lithium)

•  (Cationic Igs)

Difference between sum of measured anions and cationsAnion gap = [Na+] + [K+]  – [Cl-]  – [HCO3

-] 

Normal individuals have excess measured cations, hence anion ‘gap’ 

Increased

anion gap inmetabolic

acidosis

(HCO3-)

 Absent gap is rare phenomenon

•  Increased unmeasured cations

•  Hypoalbuminaemia

•  Bromide toxicity (spurious Cl-)

•  Nitrates

(Osmolar gap indicates uncharged species)

Page 20: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 20/39

Disorders of Hydrogen Ion

Homeostasis

Page 21: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 21/39

Metabolic Acidosis

pH [H+] PCO2 HCO3- PO2

    N /     

Page 22: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 22/39

Metabolic Acidosis - Causes

Increased Acid FormationKetoacidosis: diabetic, alcoholic, starvation

Lactic acidosis

Type A: tissue hypoxia

Type B: drugs, liver disease, IEMs

D-lactic acidosis

Poisoning: salicyate, alcohols

Inherited organic acidoses

Decreased Acid ExcretionUraemia

Distal renal tubular acidosis (1/4)

Acid IngestionStrong acid

 Ammonium chloride

I.V. feeding with cationic amino acids

Loss Of BaseGastrointestinal: diarrhoea, fistula

Renal

Proximal renal tubular acidosis (2)

 Acetazolamide

Ureteroenterostomy

Which of these increase the anion gap?

Page 23: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 23/39

Metabolic Acidosis – Response

Buffering Acute H+ resisted by bicarbonate buffering causing HCO3

-

Tissue proteins and bone important in chronic acidosis

Respiratory Compensation

Peripheral chemoreceptors and respiratory centre stimulated – hyperventiliation

Self-limiting as generates additional CO2  – lower limit for PCO2 is 1.6 kPa

Develops rapidly but several hours to become maximal

Renal CompensationUrine H+ excretion maximised (pH 4.2)

Glutaminase induced in chronic acidosis

Increased renal gluconeogenesis

Increased rate of regeneration of bicarbonateGlutamine Glutamate

NH3 H2O

Page 24: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 24/39

Systemic Effects Of Acidosis

Cardiovascular

Negative inotropic effect

 Arteriolar vasodilaton

Constriction of peripheral veins

Oxygen Delivery

Immediate right shift (Bohr) in oxyHb dissociation curve

Slow left shift in oxyHb dissociation curve (synthesis breakdown 2,3-BPG)

Potassium

K+ movement from ICF to ECF causing hyperkalaemia

Decreased renal excretion

Frequently K-depleted; hypokalaemia common with correction

Bone

Decalcification with negative calcium balance

Osteodystrophy

Page 25: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 25/39

Metabolic Acidosis - Management

Identify and treat cause

 Administration of i.v. sodium bicarbonate (alkali)

Usually only given if [H+] > 100 nmol/L (pH 7.0)

Oral bicarbonate

CKD, RTA types 1 & 2

Rapid correction impairs O2 delivery (until 2,3-BPG normal)

Rebound alkalosis possible

Page 26: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 26/39

Respiratory Acidosis

pH [H+] PaCO2 HCO3-

      N /  

Page 27: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 27/39

Respiratory Acidosis - Causes

Defective Control Of RespirationCNS depression

 Anaesthetics

Narcotics

Severe hypoxia

CNS disease

TraumaStroke

Neurological disease

Spinal cord lesions

Poliomyelitis

Guillan-Barre syndrome

Motor neurone diseaseNeurotoxins

Defective Respiratory FunctionMechanical

Myasthenic syndrome

Myopathies

Thoracic tumours and deformities

Pneumothorax

Pleural effusion Airway disease

Restrictive defects

Fibrosis

Pulmonary oedema

Infiltrative tumours

Obstructive defectsChronic bronchitis

Emphysema

Severe asthma

Laryngospasm

Impaired perfusion

Massive pulmonary embolism

Page 28: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 28/39

Respiratory Acidosis – Response

Buffering

Limited buffering by haemoglobin 

Intracellular buffers important in chronic acidosis

Respiratory Compensation

PCO2 stimulates respiratory centre but disease prevents adequate response

Renal Compensation

Maximal bicarbonate reabsorption

 Almost all phosphate excreted as H2PO4-

Marked increase in urinary ammonium

Page 29: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 29/39

Respiratory Acidosis – Systemic Effects

Hypoxaemia:

Breathlessness, cyanosis, drowsiness

Hypercapnia:

Neurological, headache, papilloedema, extensor plantar responses, myoclonus

Effects of acidosis (as for metabolic)

Respiratory Acidosis – Management

Treat underlying cause if possible

Maintain adequate arterial PO2, avoid loss of hypoxic stimulus to respiration Avoid rapid correction as risk of alkalosis due to persistence of compensation

Page 30: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 30/39

Metabolic Alkalosis

pH [H+] PaCO2 HCO3- K+

    N /  

(not > 8kPa)

   

Page 31: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 31/39

Metabolic Alkalosis - Causes

Saline-Responsive

Gastrointestinal

Vomiting

Gastric drainageCongenital Cl-losing diarrhoea

Exogenous alkali administration

Sodium bicarbonate

Lactate

 Acetate (especially if GFR)

Urinary

Poorly reabsorpable anion therapy

Diuretic administration post PCO2

Saline-Unresponsive

 Association with hypertension

Primary hyperaldosteronism

Secondary hyperaldosteronism

Not usually associated with HT

Barter’s syndrome 

Refeeding syndrome

Severe potassium depletion

Magnesium deficiency

Excessive loss / increased generation of H+

, exogenous alkali

Page 32: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 32/39

Metabolic Alkalosis – Response

Buffering

Release of buffered H+, with HCO3-

Respiratory Compensation

Decreased stimulation of chemoreceptors but self-limiting as PCO2 stimulates

Hypoxic stimulus also overrides H+ 

Renal Compensation

Inappropriate reabsorption of HCO3- due to GFR and increased tubular function

If ECF volume associated with Cl- deficiency, obligatory HCO3- reabsorption

Potassium deficiency contributes to persistence of alkalosis

Increased mineralocorticoid activity promotes distal tubular Na+

Page 33: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 33/39

Metabolic Alkalosis – Systemic Effects

Generally opposite to those of acidosis

Less pronounced CV effects, poor O2 delivery, no apparent bone effects

Potassium depletion, which sustains alkalosis

Neuromuscular hyperexcitability: parasthesia, muscle cramps, tetany, convulsions

( Binding of H+ to albumin increases Ca2+ binding, lowering ionised calcium)

Metabolic Alkalosis – Management

Treat underlying cause

Treat factors that sustain alkalosisDo not give saline if saline-unresponsive cause

(e.g. sodium excess)

Page 34: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 34/39

Respiratory Alkalosis

pH [H+] PaCO2 HCO3- K+ Phos 

      N /      

Page 35: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 35/39

Respiratory Alkalosis - Causes

Rate of excretion of CO2 exceeds rate of production Voluntary hyperventiliation

Mechanical hyperventilation

Reflex hyperventilationPulmonary compliance

Disease affecting chest wall

Irritative lesions of the air passages

Respiratory stimulation

Cortical influences : pain, fever, anxietyLocal disease: trauma, tumours

Toxins: salicylate, hepatic failure

Hypoxaemia: high altitude, right-to-left shunts, pulmonary disease, CO

Recovery from metabolic acidosis 

Page 36: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 36/39

Respiratory Alkalosis – Response

Buffering

Release of H+ from non-bicarbonate buffers

New steady state achieved within 6 hours 

Respiratory CompensationInhibitory effect of PCO2 overwhelmed by primary cause

Renal Compensation

Decreased renal generation of bicarbonate (CO2 is substrate)

Page 37: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 37/39

Respiratory Alkalosis – Systemic Effects

Manifestations of underlying disease predominate

 Acute hypocapnia decreases cerebral blood flow

Ionised calcium: perioral and peripheral parasthesia

Cardiovascular: increased heart rate, tightening of chest, angina

Mild hypokalaemia

Marked hypophosphataemia

Respiratory Alkalosis – Management

Treat underlying cause

Rapid symptomatic relief by re-breathing

Sedation or prevention of hyperventilation

by mechanical hyperventilation

Page 38: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 38/39

Mixed Acid-Base DisordersMixed primary disorders are quite common if you look for them

Some examples of double disorders… triple etc. also occur! 

Metabolic Acidosis Metabolic Alkalosis

Respiratory Acidosis Respiratory failure

Cardiac arrest

Ethanol

Methanol

Diuretics + COPD

Vomiting + COPD

Severe K+ depletion

Respiratory Alkalosis Salicylate

Septicaemia

Fulminant hepatic failure

Ketoacidosis + pneumonia

Vomiting + CCF

Diuretics + pneumonia

Metabolic Alkalosis Vomiting + renal failure

Diuretics + DKA

Severe vomiting in ketoacidosis

Counterbalancing Additive

Page 39: Assessment Disorders Acidbase Sarah Curtis

8/11/2019 Assessment Disorders Acidbase Sarah Curtis

http://slidepdf.com/reader/full/assessment-disorders-acidbase-sarah-curtis 39/39

Conclusions

• Henderson-Hasselbalch is our friend!

• Respiratory disorders are compensated by

metabolic processes

• Metabolic disorders are compensated by

respiratory processes

• Over-compensation does not occur