asymptotic statistical analysis on special manifolds...

38
1 Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds) Yasuko Chikuse Faculty of Engineering Kagawa University Japan

Upload: others

Post on 25-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

1

Asymptotic Statistical Analysis on Special Manifolds

(Stiefel and Grassmann manifolds)

Yasuko ChikuseFaculty of Engineering

Kagawa UniversityJapan

Page 2: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

2

[ I ] Stiefel manifold

Dimension of .

mkV , )( mk ≤

)1(21

, +−= kkkmV mk

≡def { -frames in ; -frame = a set

of orthonormal vectors in }kkk mR

mR

( ) .}';{ kIXXkmX =×∴=

Page 3: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

3

Ex: (i) : orthogonal group.(ii) : unit hypersphere in .

( circle, sphere)

Applications in Earth Sciences, Medicine, Astronomy, Meteorology, Biology.

A large literature exists for analysis ofdirectional statistics.

vector cardiogramorbits of comets.

⎩⎨⎧ =

    m

mm

VVmO

,1

,)(mR

2=m 3=m

⎪⎩

⎪⎨⎧

≤≤≤

=

:32

:1

mk

k   

⎩⎨⎧

Page 4: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

4

[ II ] Grassmann manifold kmkG −, )( mk ≤

≡def { -planes in , i.e., -dimensional hyperplanes containing the origin in }

kk mR

mR

To each “ -plane” , corresponds a unique “ orthogonal projection matrix

idempotent of rank ” .

We carry out statistical analysis on .

k kmkG −∈ ,

mm×P kmkPk −∈ , 

kmkkmk PG −− ≡∴ ,,

kmkP −,

Page 5: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

5

Ex: ={axes or undirected lines through }

Applications: in the signal processing of radar with elements observing targets. A rather new sample space.

We confine our discussion mainly on in the following.

1,1 −mG→

0

m k

mkV ,

Page 6: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

6

[ III ] Population distributions on mkV ,

1. Uniform distribution (normalized invariant measure)

invariant under

).(),(,'

21

21

kOHmOHXHHX

∈∈→

   

][dX

Page 7: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

7

where the differential form∫=mkV

dXdXdX,

),(/)(][

,'')( 111

→→

<

+

=

=∧∧∧= ij

ji

kijk

k

i

km

jxdxxdxdX for )(

1 kxxX ・・・=

choosing mk xx→

+

・・・1 s.t. ),()( 1k1 mOxxxx mk ∈→

+

→→→

・・・・・・

∫ Γ=mkV k

kmk mdx,

),2/(/2)( 2/π with

).2/)1(()(||)()(1

4/)1(2/)1(

0−−ΓΠ=−=Γ

=

−+−

>∫ iadSSSetrak

i

kkka

Sk π

(multivariate Gamma function)

Page 8: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

8

2. Matrix Langevin distributionpdf

for matrix, w.r.t. with

hypergeometric function with matrix argument. Exponential type distribution. Parametrization of (svd), where

and (with first row positive) .0

),(),(,~

1

1,

≥≥≥

=Λ∈Θ∈Γ

k

kmk diagkOVλλλλ

・・・             ・・・    

),,;(~( , Σmkm IMNX∵ d

);,( FkmL)4/';2/()/'()( 10 FFmFXFetrXfx =

F km× ].[dX).'|1

kIXXMF =Σ= −

:10 F

'ΓΛΘ=F

Page 9: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

9

⎩⎨⎧

Λ=ΛΘΛΓ=∈ΓΘ=        

   .)'()(

)'()'()()('

0

,0

etrXFetrXetrXFetrVX mk

∵∵Mode:

Concentrations:

Assume rank , unless otherwise stated.

(or ): uniform distribution.

Historical background: : directional disrtibution

von Mises distribution (1918)

Fisher distribution (1953)

Langevin (1905)

generalization by Watson & Williams (1956).

kF =

0=F 0=Λ

1=k

⎪⎩

⎪⎨

≥==

232

mmm

Page 10: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

10

Matrix-variatenormal distribution),;( 21,

if has the pdf

i.e., all elements of are i.i.d.

Let [i.e., ]

for

then

ΣΣMN km

)]2/'(exp[)2()(

Z),;0(~)(2/),(

,

ZZtrZ

IINkmZkmkm

kmkm

−=

×−πϕ  

).1,0(NZ   

( ),0)(,0)(),( 21

2/12

2/11

2/12

2/11

>×Σ>×Σ×

Σ−Σ=+ΣΣ= −−

kkmmkmM

MYZMZY

    

d

( ) ( ) .,;~ 21, ΣΣ× MNkmY kmd

Page 11: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

11

Hypergeometric functions with symmetric matrix argument.

Starting with for symmetric,

(Laplace transforms)

),()(00 SetrSF =

).;;(

))(;;(||)()(

1

111

0 112/)1(

YbbaaaF

dSYSbbaaFSSetra

qpqp

S qpqpma

m

・・・・・・

・・・・・・

+

>

+−

=

−Γ ∫

( )!)()(

)()(

);;(

1

1

0

11

lSC

bbaa

SbbaaF

q

p

ll

qpqp

λ

λλ

λλ

λ ・・・・・・

  

・・・・・・

トΣΣ=

=,

mmS ×

Page 12: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

12

where ordered partition of),...,( 1 mll=λ ,l

)(

,1)(),1()1()(

,2

1)(

),0(

0

1

11

SC

alaaaa

iaa

llll

l

l

m

i

i

m

im

i

λ

λ

=−++=

⎟⎠⎞

⎜⎝⎛ −

−Π=

=Σ≥≥≥

=

=

・・・

 

・・・

with

: zonal polynomial with

symmetric matrix

mm×.S

Page 13: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

13

Multi-mode with

and any

Concentrations:

3. Matrix Bingham distribution

pdf

Exponential type distribution. Parametrization of (sd), where

and

( ) ( ) ( )BmkFBXXetrXf x ;2/;2//' 11=

);,( BkmB

for symmetric matrix.mmB ×( ) ).'|

21,,;0~( 1

, kkkm IXXBINX =Σ−=Σ −   ∵ withd

'ΓΛΓ=B( ),~ mO∈Γ ( ) ., 11 mmdiag λλλλ ≥≥=Λ

( ) ( )( )

⎪⎩

⎪⎨

Λ∈

×ΓΓΓ=ΓΓ

.

,

2

12121

                 

       kOH

kmH for

Page 14: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

14

4. A general form of distributions

pdf ( ));2/,;2/,(

)';;(

1111

11

BmbbkaaFBXXbbaaF

Xfqpqp

qpqpx ・・・・・・

・・・・・・

++

=

for symmetric matrix.mmB ×:

Ex: ( ) ( )( ) .|'|';

,''

01

00b

k BXXIBXXbF

BXXetrBXXF−−=

=

Page 15: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

15

5. Distributions with pdfof the form

where a subspace of of dimension

orthogonal projection matrix onto

( ),XPf ν

⎩⎨⎧

::

ν

νP

mR q

Ex: ( )( ) ( )

( )( ) ( ) ( )[ ]⎪

⎪⎩

⎪⎪⎨

=ΓΓΓΛΓΓΓ=ΓΛΓ=

=ΓΓΘΛΓ=ΓΛΘ=

,''''',';,

,''',';,

XPBXPetrXXetrBkmB

XPFetrXetrFkmL

νν

ν

 

 with pdf ( )XFetr '∝

with pdf ( )BXXetr '∝

with

⎩⎨⎧ ΓΓ=

:'

ννP

subspace spanned by the the columns of .Γ

Page 16: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

16

6. A method to generate a new family of distributions

For an random matrix

What is the distribution of ?

using

where

km× ,Z( ) ( ) 2/12/12/1

2/1

'' ZZ

TH

THZZZZZZZZ

・・ == −

(polar decomposition of ).ZmkZ VH ,∈ : orientation of .Z

ZH

( ) ( ) [ ] ( ),2/

2/

ZZk

km

dTdHm

dZ  Γ

( )[ ]:

:)(,

Z

Z

dH

dTdZ Lebesgue measures,

normalized invariant measure on .,mkV

Page 17: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

17

Ex: (i) When

(ii) More generally, when

for

then

( )( ),,;0~ , kkm ImmNZ ×Σ then

( ) :|||| 2/1'2/ mZZ

kZH HHHf

Z

−−− ΣΣ=

Matrix angular central Gaussian [MACG( )] distribution.mI

Σ(MACG( ) = uniform distribution)

( ) ( ) ( ) ,''||'|| 12/12/ ZHZHgZZgZf kkZ

−−−− ΣΣ=ΣΣ=

( ),kOH ∈

( ).~ ΣMACGHZ d

d

Page 18: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

18

[ IV ] Inference for of Langevin distribution

Let a random sample from

then the log-likelihood is

where (svd), with

M.l.e.’s and

where

'ΓΛΘ=F

nXX ,,1 ( ).;, FkmL

,/1

nXX i

n

i=Σ=

( ) ( ) ( )[ ]( ) ( )[ ]   ,4/;2/log'

4/;2/log',,;2

101'2

2101

Λ−ΘΛΓ=

Λ−=

mFXHHtrn

mFXFtrnXXFl

d

n

21 'HXHX d= ,~,1 mkVH ∈

( ) ( ) .0,, 112 >>>=∈ kkd xxxxdiagXkOH  

( )kdiagHH λλ ˆˆˆ,ˆ,ˆ121 =Λ=Θ=Γ   

( ) )(.,,1,ˆ4/ˆ;2/log 2

10 *  kixmFi

i

==∂

Λ∂λ

Page 19: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

19

[ V ] Asymptotic theorems in Inference and disrtibution theory

for

⎩⎨⎧ large sample n

large or small concentrations(near uniformity)

Λ

high dimension m

Page 20: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

20

(or ),

Testing

⎩⎨⎧

==Λ

−     

02/1

1

0

:0:

FnFHH (uniformity) against

02/1 Λ=Λ −n

[ V.1 ] Large sample asymptotics

( )( )⎪⎩

⎪⎨⎧

=−

102/1

,

0,

,;

,;0~

HIIFmN

HIINXnmZ

kmkm

kmkm

      

Under , for large

under

⎪⎩

⎪⎨⎧

∴Λ ;,

~'1/;

20

2

20

nHxHx

ZtrZmtrkm

km

               under

under for large

asymptotically Rayleigh-style, likelihood ratio, Rao score, locally best invariant tests.

:d .n

:d

Page 21: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

21

Solve (*) by using the asymptotic expansion

for the with small or large:

.ˆ,,,1),ˆ(ˆ 3 Λ=Λ+=         kiOmxiiλ for small

[ V.2 ] Small or large asymptoticsΛ

( )4/ˆ;2/ 210 ΛmF Λ̂

( ) ,,,1,ˆˆˆ

121

ˆ21 2

,1kixOkm

iji

k

ijji

==Λ++

Σ−−

− −

≠= λλλfor large .Λ̂

(when has rank 1, then )Λ ( ) ( )11

ˆ12

1ˆ −Λ+− 1

−= O

xmλ

Page 22: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

22

[ V.3 ] High dimensional asymptotics

(i) BackgroundApplications in compositional data and certain

permutation distributions.

For Langevin distributions with it is known that practically, concentrations for are larger than those for

3=m,1=k

.2=m

~);,( FkmL : uniform distribution ( ),0=Fas (see later) . ∞→m ( )?βmOF =∴

Page 23: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

23

(ii) Asymptotic expansions for distributions

For a random sample from , putfor fixed fixed.

pdf

nXX ,,1 … ( )FkmL ;,

( ),' kqXnmZ ×Ψ= ( ) qVqm mq ,,∈×Ψ

( ) ( )( ) ( )

( )( )

)},()]''

)'((21[41

'1{

2/3

2

2

,

,

−+ΨΨ−

Ψ++

Ψ+=

∑mOFFtr

ZFtrnZHanm

ZFtrmnZZf

kq

kqZ

        

     トλ

λλ

ϕ

Page 24: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

24

where ( ) ( ) ( )( )( )⎪⎩

⎪⎨⎧

−= −

:,2/'2

,

2/kq,

kq

qk

HZZetrZ

λ

πϕ

Hermite polys. associated with the normal defined by( ),,;0, kqkq IIN

( )( ) ( )( ) ( ) ( )( )ZZZCZZH kqkqkq ,,, ' ϕϕ λλ ∂∂=

with ( ) ., ijij

ZZZ

Z =⎟⎟⎠

⎞⎜⎜⎝

∂∂

=∂    for

not dependent on ,F( )( )~;,

,;0~ ,

FkmL

IINZ kqkq

∴ :

: uniform distribution as

d

.∞→m

Page 25: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

25

(iii) Generalized Stam’s Limit Theorems

(iii, 1) Histrical backgroundde Finetti’s theorem (1929): an infinite, exchangeable

sequence of random variables is mixed i.i.d.

Poincare’s theorem (1912), or Stam’s (first) theorem (1982):asymptotic normality of the first coordinates of a random point (uniform) on as

If is orthogonally invariant, has a -mixture distribution of normal as [Diaconis, Eaton, Freedman, Lauritzen (1980’s)]

k.,,1 ∞→mV m

nXX ,,1 …nXX ,,1 …( ) ,,0 2σNσ .∞→n

Page 26: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

26

(iii, 2) Stam’s first theorem

Theorem 0. [Stam (1982)] Asymptotic normality of a finite number of coordinates of the uniform variate on as

Theorem 1. [Watson (1983)] If uniform on a finite number of elements of arei.i.d. as

,,1 mV .∞→m

~X d

,,mkV Xm( ) .,1,0 ∞→mN

Page 27: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

27

Extensions to more general distributions with pdf ( )XPf ν

where the orthogonal projection matrix ontoa subspace of dimension

Ex:

:νPν .q

( )( )( )( )⎩

⎨⎧

ΓΛΓ=ΓΛΘ=

,';,,';,

sdBkmBsvdFkmL 

with pdf ( )XPFetr ν'∝with pdf ( ) ( )[ ]

'.'

ΓΓ=∝

ν

νν

PXPBXPetr

with

Page 28: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

28

( uniform case)

Theorem 2. [Chikuse (1991)] If

( ),,' , mfixedqVP mq ≤∈ΓΓΓ=ν

( ),~ XPfX ν

( ) ( ) ,,;0~' , kqkq IINkqXm ×Γ

with

then as .∞→m

↔= mq

d

d:

Page 29: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

29

Theorem 3. [Chikuse] Suppose that(1) When

(2) When the limiting distribution depends on

( ) .~ XPmfX νβ

( ) .,,;0~',21

, ∞→Γ< mIINXm kqkq   β as↔⎟

⎠⎞

⎜⎝⎛ <=

210β(ex: Theorem 2.)

:

,21

=β ( ) .⋅f

Ex: (i) When then( ) ,',;,~ ΓΛΘ=FFmkmLX d

( ) ,,;'~' , kqkq IIFNXm ΓΓ as .∞→m(ii) When then ( ) ,',;,~ ΓΛΓ=BmBkmBX d

( )( ) ,,2;0~' 1, kqkq IINXm −Λ−Γ as .∞→m

d

d

:d

:d

Page 30: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

30

(iii, 3) Stam’s second theorem(limit orthogonality of )nXX ,,1 …

Theorem 0. [Stam (1982)] On

Theorem 1. [Watson (1983)] If is a random sample from the uniform distribution on then

are mutually

independent normal

nXX ,,1 …

.,1 mV

,,mkV

( ) ,1,' njikkXXm ji ≤<≤×

( ),,;0, kkkk IIN as .∞→m

Page 31: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

31

Extensions to non-uniform distributions on mkV ,

Theorem 2. [Chikuse (1993)] If is a randomsample from orthen are mutually independent normal

nXX ,,1 …

( )FkmL ;, ( ),;, BkmB,1,' njiXXm ji ≤<≤( ),,;0, kkkk IIN as .∞→m

Page 32: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

32

Theorem 3. [Chikuse](1) If is a r. sample from

or then are mutually independent normal

(2) If is a r. sample from then are mutually independent normalwhere

nXX ,,1 … ( ) ,21,;, ≤ββ FmkmL

( ) ,21,;, 2 <ββ BmkmB ,1,' njiXXm ji ≤<≤

( ),,;0, kkkk IIN as .∞→mnXX ,,1 … ( ) ,

21,;, 2 =ββ BmkmB

,1,' 2/1 njiXXm ji ≤<≤Σ−

( ),,;0, kkkk IIN as ,∞→m( ) .02 1 >−=Σ −BIm

(ex: Theorem 2.)↔⎟⎠⎞

⎜⎝⎛<=

210β

Page 33: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

33

Applications

Let be a random sample fromor

Then independent as

nXX ,,1 …( ) ,

21,;, ≤ββ FmkmL ( ) .

21,;, 2 <ββ BmkmB

.∞→m( )kkkkji IINXXm ,;0~ ,

' :d

Page 34: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

34

Ex: distance between 2 random points ( )2, =nYX  

( ) ( )

,21,2~

'

1

2

⎟⎠⎞

⎜⎝⎛

−−=

mkNd

YXYXtrd

.∞→mas:d

,2||||, '1

'21 ji

ji

nnnnnn XtrXnkStrSSXXS ∑

<

+==++=

( ) .,0~ 1' kNXtrXmu jiij =

( )

,2

1,~||||

1||||

1

1

⎟⎠⎞

⎜⎝⎛ −

++=∴ ∑<

mnnkNS

mOunkm

nkS

n

jiijn

.∞→mas:d

:d

(i)

where

Page 35: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

35

( )( ) ( )

,2~

.2

1,~

22

2

22''

qn

qijji

ji

nnktrMm

knnqXXXXtrm

χ

χ

⎟⎠⎞

⎜⎝⎛ −∴

−=∑

<

(ii)

( )( ) ,2

1

''2

2

1

'

<

=

+=

=

jiijjin

n

iiin

XXXXtrnn

ktrM

XXn

M

.∞→mas:

:

d

d

where

Page 36: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

36

References[1] C. Bingham, An antipodally symmetric distribution

on the sphere, Ann. Statist. 2 (1974) 1201-1225.

[2] Y. Chikuse, Statistics on Special Manifolds, Lecture Notes in Statistics, Vol. 174, Springer, New York, 2003.

[3] P. Diaconis, D. Freedman, A dozen de Finetti-style results in search of a theory, Ann. Insti Henri Poincare,

Probabilities et Statistique 23 (1987) 397-423.

Page 37: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

37

[4] T. D. Downs, Orientation statistics, Biometrika 59 (1972) 665-676.

[5] A. T. James, Normal multivariate analysis and the orthogonalgroup, Ann. Math. Statist. 25 (1954) 40-75.

[6] P. E. Jupp, K. V. Mardia, Maximum likelihood estimators for the matrix von Mises-Fisher and Bingham distributions, Ann. Statist. 7 (1979) 599-606.

[7] C. G. Khatri, K. V. Mardia, The von Mises-Fisher matrix distribution in orientation statistics, J. Roy. Statist. Soc. B 39 (1977) 95-106.

Page 38: Asymptotic Statistical Analysis on Special Manifolds ...web.mit.edu/sea06/agenda/talks/Chikuse.pdf · Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds)

38

[8] R. J. Muirhead, Aspects of Multivariate Statistical Theory, Wiley, New York, 1982.

[9] M. J. Prentice, Antipodally symmetric distributions for orientation statistics, J. Statist. Plann. Inference 6 (1982) 205-214.

[10] A. J. Stam, Limit theorems for uniform distributions on spheres in high dimensional Euclidean spaces, J. Appl. Prob. 19 (1982) 221-228.

[11] G. S. Watson, Limit theorems on high dimensional spheres and Stiefel manifolds, in: S. Karlin, T. Amemiya, and L. A. Goodman (Eds.), Studies in Econometrics, Time Series, and Multivariate Statistics, Academic Press, New York, 1983, pp. 559-570.